
1. Overview
Introduction
Data provenance is information about the entities, activi-
ties and people who have effected some type of transfor-
mation on a data product through the product’s lifecycle. 
Data provenance captured from scientific applications is a 
critical precursor to data sharing and reuse. For research-
ers wanting to repurpose and reuse data, it is a source of 
information about the lineage and attribution of the data 
and this is needed in order to establish trust in a data set. 
Data provenance has been shown useful in results vali-
dation, failure tracing, and reproducibility. The Komadu 
provenance capture system is standalone, meaning it is 
not coupled to or dependent upon any database manage-
ment system, repository, or scientific workflow system. It 
provides an ingest API through which provenance noti-
fications are fed into the system at high speeds, and a 
query API through which provenance information can be 
queried. The data model is both event oriented and graph 
oriented, in that graphs are pieced together in Komadu 
based on the events received from the environment.

Komadu has its roots in the Karma [2] provenance cap-
ture system, an earlier version that complied with the 
OPM community standard [3] both for defining the type 
of provenance notifications that the system accepted, 
and for defining the format of the results. Komadu, on 
the other hand, supports the W3C PROV specification 
[1] which provides far richer types of relationships and 
has a more formal model for handling time than does 

OPM. Karma was additionally limited by assuming that 
every notification belonging to the same external activity 
shared a common global identifier that is shared across 
all components (services, methods etc.) of the external 
environment. This limitation was found to be severe in 
applications where provenance is not only captured at 
the application level, but also at in the larger environ-
ment where the application runs. Take for instance a 
distributed application running in PlanetLab [7] and 
running under Twister [8]; it is highly limiting to expect 
provenance events generated from the application, from 
PlanetLab, and from Twister to all have shared knowledge 
about any single global identifier. This limitation derives 
from Karma’s early days where it tracked provenance for 
applications running within a single workflow system. 
Additionally, a researcher may be interested in tracking 
lineage starting from some data product or agent. Such 
scenarios are not supported by Karma. 

In this paper, we introduce Komadu [9] provenance 
capture and visualization system. Komadu is a complete 
redesign and reimplementation of Karma that supports 
new features while addressing the above mentioned limi-
tations of Karma. The main contributions of Komadu are 
as follows. 

1.	 PROV Support: Komadu is completely W3C PROV 
specification compliant. 

2.	 Beyond Workflow: Komadu client API is simple 
and designed according to standards defined in the 

SOFTWARE METAPAPER

Komadu: A Capture and Visualization System for 
Scientific Data Provenance
Isuru Suriarachchi1, Quan (Gabriel) Zhou1 and Beth Plale1

1	School of Informatics and Computing, Indiana University, Bloomington, IN, 47405

Suriarachchi, I et al 2015 Komadu: A Capture and Visualization System for Scientific Data 
Provenance. Journal of Open Research Software, 3: e4, DOI: http://dx.doi.org/10.5334/jors.bq

Keywords: Data provenance; Data Lineage; Visualization; Komadu

Data provenance captured from scientific applications is a critical precursor to data sharing and reuse. For 
researchers wanting to repurpose data, it is a source of information about the lineage and attribution of 
the data and this is needed in order to establish trust in a data set. Komadu is a standalone provenance 
capture and visualization system for capturing, representing, and manipulating provenance coming from 
scientific tools, infrastructures, and repositories. It uses the W3C PROV standard [1] in representing 
data, and it is the successor of the Karma [2] provenance capture system which was based on Open Prov-
enance Model (OPM) [3]. Komadu comes with two different interfaces: a Web Services interface based on 
Apache Axis2 [4] and a messaging interface based on RabbitMQ [5]. Komadu is completely open source 
and the source code is publicly available on GitHub [6]. Even though Komadu has been used most exten-
sively in relation to scientific research, its interfaces are designed to collect and visualize provenance of 
any kind of application needing provenance.

Journal of
open research software

http://dx.doi.org/10.5334/jors.bq


Suriarachchi et al: KomaduArt. e4, p.  2 of 7 

specification. This makes Komadu usable for any 
kind of provenance capture. 

3.	 Context-free: Unlike Karma, the graph generation 
algorithm used in Komadu does not depend on 
any global context identifier. This makes it possi-
ble to collect provenance from disparate and unre-
lated pieces of infrastructure and application. It 
of course introduces the challenge to be handled 
within Komadu of stitching together graphs based 
on events that are not easily identifiable as being 
causally related. Komadu is backward compatible 
with Karma through graph generation that uses 
global context identifiers. A new user is advised to 
use the more convenient context-less mechanism. 

4.	 Multiple Perspectives: In addition to generat-
ing provenance from the perspective of an activity, 
Komadu is capable of generating provenance graphs 
starting from data products and agents as well. 

Provenance is generated through first instrumenting 
an application, a tool, or system middleware directly; or 
by processing log files after executing the application. 
Komadu has support for both generation mechanisms. 
Queries can be executed any time once the notifications 
are ingested. Komadu comes with an Ingest API and a 
Query API, both of which are exposed as a Web Service 
and a Messaging service. 

A tool to enable the visualization of provenance graphs 
is included in the package as this aids the researcher in 
making sense of what can be gigabytes and terabytes of 
provenance. When the provenance is voluminous, which 
it can easily be, it is hard to extract important informa-
tion through any other means. Komadu comes with a sim-
ple command line tool that converts the generated XML 
graph into a CSV file. This CSV file can be imported into 
most of the visualization tools. We use Cytoscape [10] to 
visualize provenance generated from Komadu (and Karma 

before it) and have written a provenance specific plugin 
for Cytoscape. Figure 1 shows a sample provenance graph 
generated by Komadu and visualized using Cytoscape. 
This graph includes dummy Activities, Entities and Agents 
generated by one of the Komadu integration test cases. 
An Agent (Agent_16) invokes a service (Activity_142). 
Activity_142 uses a collection of files (Collection_661) 
in the generation of an output file (File_660). Service 
(Activity_142) additionally invokes service (Activity_143); 
the latter reads input file, File_663, and generates output 
file, File_659. All elements and relationships contain addi-
tional attributes and those are displayed in a separate win-
dow when a specific part of the graph is selected. 

We recently released Komadu version 1.0, available on 
GitHub [6] and including source code and documentation. 

Motivation
An example of Komadu use in a scientific setting is in 
the Sustainable Environment Actionable Data (SEAD) 
[11] DataNet project. SEAD is developing tools for 
data management in the long tail of science. The sci-
entific community in the US is recognizing the need 
for increased availability of the data products of their 
research, but the mechanisms for submitting data sets 
to public repositories still involve considerable manual 
effort. SEAD tools are attempting to reduce the manual 
barrier to submission of data from scientists in the long 
tail, those that generate small but highly voluminous 
data sets. SEAD had adopted the notion of the Research 
Object (RO) [12] as the unit of preservation, and uses 
Komadu to track the lifecycle of the RO through deriva-
tion, revision, and reuse. 

The use of Komadu in SEAD is captured in Figure 2. 
A sustainability science project sets up a shared Project 
Space for its work. When a collection is ready for publica-
tion to a public repository, it is “published”, whereupon 
the SEAD Virtual Archive (VA) picks it up, and curates it. 

Figure 1: Sample Komadu provenance graph.



Suriarachchi et al: Komadu Art. e4, p.  3 of 7 

A BagIt service inside VA pulls collection metadata and 
data from Project Spaces and generates additional meta-
data. An ingest workflow is then invoked, carrying out 
functions on the ingest package. The provenance of the 
activity is published into Komadu. Once the data collec-
tion is ingested, the data curator who often works in an 
academic library, can edit related metadata using the VA 
user interface. Provenance events of the curation actions 
are also sent to Komadu. Finally, when the curation is 
complete, the data curator publishes the collection into 
an appropriate Institutional Repository. Provenance 
events related to publish workflow are also captured. VA 
components like BagIt, Workflows and Registry are dis-
tributed components that are connected using web ser-
vice interfaces. All those components push provenance 
events into Komadu using the web service interface 
exposed by Komadu. The SEAD VA allows scientists to 
search for published data collections. When a particular 
collection is selected, a provenance graph related to that 
collection is visualized in a separate provenance win-
dow. This provenance graph contains the relationships 
between collections and also provenance information 
inside each collection.

Implementation and architecture
Figure 3 shows the high level architecture of Komadu. 
Komadu can be run as a Web Service hosted on Apache 
Axis2 [4] or as a standalone server that listens to a 
RabbitMQ message queue. In both cases, a client has to 
be created to send messages into Komadu. A research 
programmer instruments a researcher’s application, ser-
vices, and tools to ingest provenance notifications into 
Komadu on the fly or can use a log processing script that 
parses execution logs for provenance information after 
the execution of the application. Queries can be issued 
to Komadu to generate provenance graphs and retrieve 
provenance information related to Activities, Entities or 
Agents. Both ingest and query APIs are exposed through 
Web Services and RabbitMQ channels, the RabbitMQ 
channels are set up and configured by the research pro-
grammer. More details on how to set up Komadu as an 
Axis2 Web Service or as a RabbitMQ server can be found 
in the user guide [13]. 

Ingest API: The Ingest API is used to send provenance 
notifications into Komadu during provenance collec-
tion time. XML notifications must be compliant with the 
Komadu XML Schema. For example, if a service A invokes 

Figure 2: Provenance Capture in SEAD VA using Komadu.



Suriarachchi et al: KomaduArt. e4, p.  4 of 7 

a service B using some parameters, the notification will 
contain the identifiers of Service A and B and the required 
parameters. 

Query API: The Query API is used to issue queries to 
the Komadu server anytime after the provenance is cap-
tured. Queries can be issued to retrieve information about 
certain Activities, Entities etc. or to get the generated 
provenance graphs. Queries also must be compliant with 
Komadu XML Schema.

Database: Komadu uses a MySQL database to store all 
incoming notifications, processed components, their rela-
tionships and generated provenance graphs. A connection 
pool is used to create and efficiently manage database 
connections under high data rates.

Raw Notification Ingester: This component is respon-
sible for ingesting incoming XML raw notifications into 
the database as quickly as possible. Once the message is 
ingested, the incoming thread is immediately returned to 
make the server more responsive under high loads. Raw 
notifications are processed by a separate component run-
ning asynchronously. 

Asynchronous Raw Notification Processor: This 
component is responsible for processing raw notifica-
tions in the database asynchronously. It consists of a pool 
of threads that run periodically and check whether there 

are unprocessed notifications left in the database. If such 
notifications are found, those are processed and split 
into Activities, Entities and Agents and stored back into 
the Komadu database. Once processed, raw notifications 
are marked as processed in the database. Each notifica-
tion comes as a relationship between two elements (Ex: 
Activity-Activity, Activity-Entity etc.) and contains element 
identifiers. Raw notification processor creates elements in 
the database if those do not already exist and adds the 
relationship between those elements.

Query Processor: query processor is responsible for 
handling all incoming queries. There are two types of 
queries: queries that request specific information about 
a certain Activity, Entity or Agent or graph queries. The 
former are easy to handle and the Query Processor directly 
accesses the database to respond to such queries. For the 
latter, the Graph Generator is invoked with the relevant 
start node identifier sent by the client. 

Graph Generator: The graph generator generates prov-
enance graphs for incoming node identifiers. It starts by 
creating the start node with the incoming Activity, Entity 
or Agent identifier, then continues to add connected nodes 
into the graph until there are no connected nodes left. 
The graph generation process uses a depth first approach 
and a stack of unexpanded nodes. Graph Generator uses 

Figure 3: Komadu Architecture.



Suriarachchi et al: Komadu Art. e4, p.  5 of 7 

caching to improve performance where the cache interval 
is configurable by the system administrator. When a new 
graph is created, it is cached in the database and if the 
same graph is requested again within the cache interval, 
cached graph is returned. If the cached version is expired, 
a new graph is created and the cache is updated.

RabbitMQ Messaging Channel: RabbitMQ is an event-
ing system supporting asynchronous communication. 
A publisher publishes messages to a middleware, often 
called a broker; one or more subscribers subscribe to chan-
nels on which the publishers place notifications. Komadu 
uses RabbitMQ as a messaging broker to receive prov-
enance notifications and send responses to the incoming 
queries. RabbitMQ provides a persistent and reliable store 
for messages.

Axis2 Web Service Channel: When Komadu is 
deployed as a Web Service on top of Axis2, a service cli-
ent can be used to communicate with the server using the 
SOAP messaging protocol. A service client can be easily 
generated using the Komadu WSDL file.

Komadu is implemented completely in Java program-
ming language and it uses MySQL as the backend data-
base. Komadu uses the Prov Toolbox [14] library in the 
process of generating provenance graphs. Komadu API 
is clearly defined as an XML schema and it is exposed on 
both Web Services and Messaging channels.

Quality control 
Komadu comes with a comprehensive set of functional 
tests that cover ingesting all types of notifications into 
Komadu, executing graph generation queries and execut-
ing detail requesting queries. Maven [15] is used as the 
build tool for Komadu and all tests are executable using 
the Maven scripts. Any user who checks out the code can 
execute these tests to understand the functionality and 
get familiarized with the client API. These test cases use 
the Komadu Web Service API. First the code should be 
built without tests to generate binaries. Once the binary 
files are generated, those should be deployed as an Axis2 
Web Service on an application server like Apache Tomcat 
[16]. The MySQL database has to be created using Komadu 
database schema and connected with the Komadu service. 
Once this is done, the Maven build can be executed with 
test cases. Komadu client that is integrated with the Maven 
build send ingest and query requests to the Komadu Web 
Service hosted on Tomcat. 

In addition, Komadu has been load tested under SEAD 
[11] project with more than 20 concurrent users perform-
ing data curation activities using SEAD VA user interface. 
For each curation activity, provenance information is 
stored in Komadu and retrieved when the user tries to see 
the lineage graph. Komadu was able to handle the con-
current ingest and query requests during this test without 
any failures.

2. Availability
Operating system
Komadu is tested on Ubuntu 12.04, Red Hat Linux 6.4, 
Windows 7 and Mac OS X 10.8. As it is implemented in 
Java, Komadu runs on any operating system that runs Java.

Programming language
Komadu is implemented completely in Java. It runs on 
JDK 1.6 or higher versions.

Additional system requirements
We recommend at least 4GB of memory to run Komadu. 
However, this depends on the expected load and size of 
notifications and generated provenance graphs.

Dependencies
MySQL 5.1 or higher 
MySQL connector/JDBC 5.1 or higher
Prov ToolBox 4.0
Apache Axis2 1.6.2
Apache Tomcat 6.0.x or higher
RabbitMQ Server 3.3.1 or higher
Apache Maven 3.0

List of contributors

1.	 Suriarachchi, Isuru (Indiana University)
2.	 Zhou, Quan (Indiana University)
3.	 Ghoshal, Devarshi (Indiana University)
4.	 Chen, Peng (Indiana University)
5.	 Chandrasekar, Kavitha (Indiana University)
6.	 Plale, Beth (Indiana University)

Software location
Archive

Name
Komadu: A Provenance Collection and Visualization System

Persistent identifier 
DOI: http://dx.doi.org/10.5281/zenodo.12698

Licence 
Apache License, 2.0

Publisher 
Zenodo

Date published 
13/11/2014

Code repository 
Name 
GitHub

Identifier 
https://github.com/Data-to-Insight-Center/komadu

Licence 
Apache License, 2.0

Date published 
24/07/2014

Language
English

http://dx.doi.org/10.5281/zenodo.12698
https://github.com/Data-to-Insight-Center/komadu


Suriarachchi et al: KomaduArt. e4, p.  6 of 7 

3. Reuse potential 
The main use of Komadu is for tracking lineage of data 
generated and used in scientific research. As a standalone 
system, provenance can be aggregated from tools, ser-
vices, applications, and middleware. The generated prov-
enance traces have been shown as useful to reproduce the 
workflow execution and to trace failures. 

As mentioned previously, Komadu is the successor of the 
Karma provenance capture system. One of the drawbacks 
of Karma is that its APIs are tightly coupled with work-
flows. Almost all operations in Karma client API are using 
workflow related terms. Therefore, it is hard to use Karma 
to collect provenance data in other settings. One of the 
main goals of Komadu was to overcome this limitation. 
Komadu APIs are designed using the generic definitions 
used in the W3C Prov [1] specification. Therefore, Komadu 
can be easily used by any kind of application where prov-
enance data has to be collected. Komadu comes with a 
comprehensive documentation [13] explaining how to set 
up the server, how to create a client, how to execute que-
ries and how to visualize provenance graphs.

Another area where Komadu is useful is research data 
preservation repositories like SEAD [11]. Actions are 
taken on research/data objects that reside in long term 
repositories. These actions could affect the object and 
thus should be part of the provenance record. For exam-
ple, once a dataset is submitted into a repository, num-
ber of data curators can edit metadata or transform the 
dataset into different formats. Provenance can be used to 
distinguish changes to a research object that can be con-
stituted a revision (e.g., by same author, to correct error) 
from those that should be viewed as a derivation (e.g. 
subset of data object used for another purpose). This can 
be accomplished by integrating Komadu with the preser-
vation repository. 

A single standalone provenance tool like Komadu can 
serve as an aggregator of provenance from multiple 
sources. There is nothing preventing Komadu from rep-
resenting other data manipulation processes that occur in 
industry or government. Finally, it can be useful for big 
data processing frameworks like Apache Hadoop [17] and 
Apache Storm [18] in certain applications to track lineage 
of produced data products. Users can integrate Komadu in 
their application specific code (Ex: In Hadoop mapper or 
reducer) to collect provenance data.

For support related to Komadu, any of the authors of 
this paper can be contacted. In addition to that, Komadu 
user mailing list can be used for free support. Directions 
for subscribing to the mailing list can be found on the 
Komadu project page [9].

Competing Interests 
This work funded in part by the National Science 
Foundation under grant OCI-0940824. No other compet-
ing interests exist.

References
	 1.	PROV-DM: The PROV Data Model. [online] Available 

at: http://www.w3.org/TR/prov-dm/ [Accessed 14 
Nov. 2014].

	 2.	Simmhan, Y., Plale, B. and Gannon, D. 2006 A 
Framework for Collecting Provenance in Data-Cen-
tric Scientific Workflows. In: Proceedings of the IEEE 
International Conference on Web Services. Washing-
ton: IEEE Computer Society, pp. 427–436.

	 3.	Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, 
Y., Groth, P., Kwasnikowska, N., Miles, S., Mis-
sier, P. and Myers, J. 2011 The open provenance 
model core specification (v1. 1). Future Generation 
Computer Systems, 27(6), pp. 743–756.

	 4.	Apache Axis2. [online] Available at: http://axis.
apache.org/axis2/java/core/ [Accessed 14 Nov. 2014].

	 5.	RabbitMQ. [online] Available at: http://www.rab-
bitmq.com/ [Accessed 14 Nov. 2014].

	 6.	Komadu Git Repository. [online] Available at: 
https://github.com/Data-to-Insight-Center/
komadu [Accessed 14 Nov. 2014].

	 7.	PlanetLab. [online] Available at: https://www.
planet-lab.org [Accessed 14 Nov. 2014].

	 8.	Ekanayake, J., Li, H., Zhang, B., Gunarathne, T., 
Bae, S., Qiu, J. and Fox, G. 2010 Twister: A Runt-
ime for Iterative MapReduce. The First Interna-
tional Workshop on MapReduce and its Applications 
(MAPREDUCE’10) - HPDC2010

	 9.	Komadu Provenance Collection Tool. [online] 
Available at: http://d2i.indiana.edu/provenance_
komadu [Accessed 14 Nov. 2014].

	 10.	Cytoscape. [online] Available at: http://www.
cytoscape.org/ [Accessed 14 Nov. 2014].

	 11.	Sustainable Environment Actionable Data. 
[online] Available at: http://sead-data.net/ 
[Accessed14 Nov. 2014].

	 12.	Bechhofer, S., De Roure, D., Gamble, M., Goble, 
C. and Buchan, I. 2010 Research Objects: Towards 
Exchange and Reuse of Digital Knowledge. Nature 
Precedings, (ERIM Project Document erim1re-
p091103ab12). Retrieved from http://eprints.soton.
ac.uk/268555/

	 13.	Komadu Userguide. [online] Available at: http://
d2i.indiana.edu/sites/default/files/komaduuser-
guide.pdf [Accessed 14 Nov. 2014].

	 14.	ProvToolbox. [online] Available at: http://lucmoreau.
github.io/ProvToolbox/ [Accessed14 Nov. 2014].

	 15.	Apache Maven. [online] Available at: http://
maven.apache.org/ [Accessed 14 Nov. 2014].

	 16.	Apache Tomcat. [online] Available at: http://tom-
cat.apache.org/ [Accessed 14 Nov. 2014].

	 17.	Apache Hadoop. [online] Available at: http://
hadoop.apache.org/ [Accessed 14 Nov. 2014].

	 18.	Apache Storm. [online] Available at: https://storm.
apache.org/ [Accessed 14 Nov. 2014].

http://www.w3.org/TR/prov-dm/
http://axis.apache.org/axis2/java/core/
http://axis.apache.org/axis2/java/core/
http://www.rabbitmq.com/
http://www.rabbitmq.com/
https://github.com/Data-to-Insight-Center/komadu
https://github.com/Data-to-Insight-Center/komadu
https://www.planet-lab.org
https://www.planet-lab.org
http://d2i.indiana.edu/provenance_komadu
http://d2i.indiana.edu/provenance_komadu
http://www.cytoscape.org/
http://www.cytoscape.org/
http://sead-data.net/
http://eprints.soton.ac.uk/268555/
http://eprints.soton.ac.uk/268555/
http://d2i.indiana.edu/sites/default/files/komaduuserguide.pdf
http://d2i.indiana.edu/sites/default/files/komaduuserguide.pdf
http://d2i.indiana.edu/sites/default/files/komaduuserguide.pdf
http://lucmoreau.github.io/ProvToolbox/
http://lucmoreau.github.io/ProvToolbox/
http://maven.apache.org/
http://maven.apache.org/
http://tomcat.apache.org/
http://tomcat.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/
https://storm.apache.org/
https://storm.apache.org/


Suriarachchi et al: Komadu Art. e4, p.  7 of 7 

How to cite this article: Suriarachchi, I, Zhou, Q and Plale, B 2015 Komadu: A Capture and Visualization System for 
Scientific Data Provenance. Journal of Open Research Software, 3: e4, DOI: http://dx.doi.org/10.5334/jors.bq

Published: 30 March 2015

Copyright: © 2015 The Author(s). This is an open-access article distributed under the terms of the Creative Commons 
Attribution 3.0 Unported License (CC-BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original author and source are credited. See http://creativecommons.org/licenses/by/3.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by 
Ubiquity Press. OPEN ACCESS

http://dx.doi.org/10.5334/jors.bq
http://creativecommons.org/licenses/by/3.0/

