
SOFTWARE METAPAPER

Fan-Slicer: A Pycuda
Package for Fast Reslicing of
Ultrasound Shaped Planes

JOÃO RAMALHINHO

THOMAS DOWRICK

ESTER BONMATI

MATTHEW J. CLARKSON

ABSTRACT
Fan-Slicer (https://github.com/UCL/fan-slicer) is a Python package that enables the
fast sampling (slicing) of 2D ultrasound-shaped images from a 3D volume. To increase
sampling speed, CUDA kernel functions are used in conjunction with the Pycuda package.
The main features include functions to generate images from both 3D surface models
and 3D volumes. Additionally, the package also allows for the sampling of images
from curvilinear (fan shaped planes) and linear (rectangle shaped planes) ultrasound
transducers. Potential uses of Fan-slicer include the generation of large datasets of 2D
images from 3D volumes and the simulation of intra-operative data among others.

CORRESPONDING AUTHOR:

João Ramalhinho

Wellcome/EPSRC Centre for
Interventional and Surgical
Sciences, University College
London, UK

joao.ramalhinho.15@ucl.ac.uk

KEYWORDS:
Python; CUDA; Medical
Imaging; Simulation; Synthetic
Ultrasound; Volumetric Imaging

TO CITE THIS ARTICLE:
Ramalhinho J, Dowrick T,
Bonmati E, Clarkson MJ 2023
Fan-Slicer: A Pycuda Package
for Fast Reslicing of Ultrasound
Shaped Planes. Journal of
Open Research Software, 11: 3.
DOI: https://doi.org/10.5334/
jors.422

*Author affiliations can be found in the back matter of this article

https://github.com/UCL/fan-slicer
mailto:joao.ramalhinho.15@ucl.ac.uk
https://doi.org/10.5334/jors.422
https://doi.org/10.5334/jors.422
https://orcid.org/0000-0002-8438-2215
https://orcid.org/0000-0002-2712-4447
https://orcid.org/0000-0001-9217-5438
https://orcid.org/0000-0002-5565-1252

2Ramalhinho et al. Journal of Open Research DOI: 10.5334/jors.422

(1) OVERVIEW

INTRODUCTION
Fan-slicer is a package designed for the sampling/
simulation of ultrasound shaped planes from a pre-
operative scan such as Computed Tomography (CT)
or Magnetic Resonance Imaging (MRI). This software
has been initially implemented as part of an imaging
pipeline to aid the development of ultrasound guidance
algorithms for laparoscopic liver surgery [1, 2] and
endoscopic interventions [3]. Given a set of Laparoscopic
Ultrasound (LUS) images and a pre-operative 3D scan,
the resampling of LUS planes in pre-operative space
enables both the implementation of image registration
pipelines and visualisation of the corresponding results.

MATLAB1 and 3D Slicer2 have functionalities to
perform this sampling operation. However, none of these
software tools allow for the fast simulation of smaller
planes bounded by the ultrasound fan shape taken at an
arbitrary position and orientation in 3D space. Since speed
and easy integration of this sampling is a key requirement
for registration pipelines in medical imaging applications,
we have designed a parallel solution in CUDA that allows
for the sampling of multiple planes. Initially implemented
in MATLAB with the Parallel Computing Toolbox and CUDA
kernels written in C++, the software was later implemented
in Python and Pycuda for easier deployment. Currently,
this software has enabled research on new registration
methods of LUS to CT scans of the liver using Content-
based Image Retrieval [1, 2, 4, 5] and the training of
General Adversarial Networks (GANs) for the simulation of
Ultrasound images from abdominal CT [6].

IMPLEMENTATION AND ARCHITECTURE
Fan-slicer is implemented with Python and CUDA kernels
written in C++ that are compiled using Pycuda. A simple

overview of the package functionality is described in
Figure 1. The project structure is generated from the
PythonTemplate of Scikit-Surgery [7]. The package
consists of two main classes for the sampling of 2D
images – IntensityVolume in intensity_volume.py
samples 3D volumes (intensity) and SegmentedVolume
in segmented_volume.py samples 3D surfaces (binary).
Their implementation is briefly described in Figure 2.

INSTANTIATION AND PRE-ALLOCATION
Upon instantiation, both SegmentedVolume and
IntensityVolume allocate volume data in a 3D
array. IntensityVolume creates a single array from
either a NumPy array, a NifTI file (.nii) or a DICOM file.
SegmentedVolume receives a variable number of surfaces
in VTK format, performs voxelisation, and then outputs
a separate binary 3D array for each of them. As an
intermediate step, VTK files are converted to simpler mesh
structures described in mesh.py – code can be adapted to
other formats as long as this mesh structure is obtained.

To minimise data transfer between CPU and GPU and
therefore increase sampling speed, all volume and image
data is pre-allocated to the GPU upon instantiation.
Besides the 3D data, both classes receive as input a
configuration file (.json) with the ultrasound image shape
parameterisation and the number of images (an integer)
that should be simulated per run. The configuration can
be either linear or curvilinear and has variable parameters
described in USING.rst. By knowing the configuration and
image number to be simulated, the classes pre-allocate
a set of fixed size GPU arrays for the slicing task.

IMAGE SAMPLING
Slicing of 2D images is achieved with the function
simulate_image for both classes by providing the number of
images to slice and an array with a corresponding number

Figure 1 Overview of Fan-slicer package pipelines. Given a virtual ultrasound transducer pose, the package can generate ultrasound
shaped images from segmented medical surfaces by voxelising binary volumes or directly from 3D volumetric medical images.

3Ramalhinho et al. Journal of Open Research DOI: 10.5334/jors.422

of concatenated 4 × 4 poses composed of rotation and
translation. If the number of images is different from the
one used in the constructor, the software repeats the pre-
allocation step. To generate the input number of images,
simulate_image calls a method that uses a sequence of
CUDA kernels loaded from cuda_reslicing.py (see Figure 2).
Depending on the class and image parameterisation used,
a specific combination of kernels listed in Table 1. is used.

For all slicing options, the first kernel computes
point clouds from poses (kernels highlighted with (1)).
Then, depending on the class (binary or intensity), an
interpolation kernel is used (kernels highlighted with
(2)). If the configuration is curvilinear, a third kernel
must be used to warp the interpolated result into a 2D
fan-shaped grid (kernels highlighted with (3)). If the
configuration is linear there is no need for a third kernel
as the interpolation result is already in linear coordinates.

QUALITY CONTROL
Unit tests in tests/test_pycuda_simulations.py are used
to test the image simulation with both intensity and
binary models, both with linear and curvilinear shapes.

These tests have been checked in Windows and Linux
environments. In addition to the tests, simulation_demo.py
provides a simple demo on how to simulate images using
both intensity and binary models. Therefore, to check if
the package is working, a user should:

•	 Run the unit tests in tests/test_pycuda_simulations.py.
•	 Run the script simulation_demo.py and check if the

plotted image results are the same as the ones
stored in the demo_outputs folder.

(2) AVAILABILITY

OPERATING SYSTEM
Minimum versions tested:

1. Windows 10, with CUDA Toolkit 11.3 and Visual
Studio 2019 for C++ compiler.

2. Windows 10/11 with Windows Subsystem Linux (WSL2).
3. Ubuntu 18.04.5 LTS, with CUDA Toolkit 10.1, gcc 7.5.0

as C++ compiler.

KERNEL DESCRIPTION

transform (1) Generates point clouds of 3D fan-shaped planes from 4 × 4 poses. Used by slice_volume and intensity_slice_volume.

linear_transform (1) Generates point clouds of 3D rectangle-shaped planes from 4 × 4 poses. Used by linear_slice_volume and
linear_intensity_slice_volume.

slice (2) Uses nearest-neighbour interpolation to map values from a 3D binary array to a set of 3D points. Used by
slice_volume and linear_slice_volume.

weighted_slice (2) Uses tri-linear interpolation to map values from a 3D array to a set of 3D points. Used by intensity_slice_volume
and linear_intensity_slice_volume.

map_back (3) Uses nearest-neighbour interpolation to warp a 2D grid of binary values onto a curvilinear/fan-shaped grid. Used
by slice_volume.

intensity_map_back (3) Uses bi-linear interpolation to warp a 2D grid of intensity values onto a curvilinear/fan-shaped grid. Used by
intensity_slice_volume.

Table 1 Description of CUDA kernels in cuda_reslicing.py and functions where these are used. On the left column, a number shows the
order in which the kernel is called for simulation.

Figure 2 Overview of the two Fan-slicer image sampling classes. Left shows class instantiation and right shows the image sampling
process. Inputs are highlighted in blue, classes in gray, methods in green and dependencies in orange.

4Ramalhinho et al. Journal of Open Research DOI: 10.5334/jors.422

PROGRAMMING LANGUAGE
Python 3.6, 3.7 and 3.8

ADDITIONAL SYSTEM REQUIREMENTS
Main requirement is a CUDA enabled GPU device with a
minimum of 2GB.

DEPENDENCIES
Python packages:

1. Pycuda 2021.1, which requires CUDA Toolkit and a
C++ Compiler;

2. NumPy 1.11;
3. VTK;
4. Matplotlib;
5. Scipy;
6. NiBabel;
7. Pydicom.

SOFTWARE LOCATION
Archive

Name: Zenodo
Persistent identifier: 10.5281/zenodo.7387902
Licence: BSD 3-clause
Publisher: João Ramalhinho
Version published: v1.0.1
Date published: 01/12/22

Code repository
Name: GitHub
 Persistent identifier: https://github.com/UCL/fan-slicer/
Licence: BSD 3-clause
Date published: 03/03/22

LANGUAGE
Python, C++

(3) REUSE POTENTIAL

This package has the potential to support users that
desire either visualise ultrasound shaped sections from
3D volumes or generate large sets of 2D images (e.g
for training neural networks). Additionally, the Pycuda
implementations of Fan-slicer are compatible with the
CUDA environments of Pytorch and Tensorflow. This
means the package allows for the simulation of images
during neural network training without storing images
in disk.

The package is expected to be continuously supported
as authors will maintain the repository and reply to any
Github issues.

Contributions to the software could include other
ultrasound image shape parameterisations, additional
visualisation tools and compatibility with additional
image and surface formats.

NOTES
1 https://mathworks.com/.

2 https://www.slicer.org.

FUNDING INFORMATIONS

This work is supported in part by the National Institute
for Health Research (NIHR) under its Invention for
Innovation (i4i) Programme (Grant Reference Number
NIHR II-LA-1116-20005), the Wellcome/EPSRC Centre
for Interventional and Surgical Sciences (WEISS)
[203145Z/16/Z] and the EPSRC [EP/T029404/1] grants.

COMPETING INTERESTS

The authors have no competing interests to declare.

AUTHOR AFFILIATIONS
João Ramalhinho orcid.org/0000-0002-8438-2215
Wellcome/EPSRC Centre for Interventional and Surgical
Sciences, University College London, UK

Thomas Dowrick orcid.org/0000-0002-2712-4447
Wellcome/EPSRC Centre for Interventional and Surgical
Sciences, University College London, UK

Ester Bonmati orcid.org/0000-0001-9217-5438
Wellcome/EPSRC Centre for Interventional and Surgical
Sciences, University College London, UK

Matthew J. Clarkson orcid.org/0000-0002-5565-1252
Wellcome/EPSRC Centre for Interventional and Surgical
Sciences, University College London, UK

REFERENCES

1. Ramalhinho J, Tregidgo H, Allam M, Travlou N, Gurusamy K,

Davidson B, Hawkes D, Barratt D, Clarkson MJ. Registration

of Untracked 2D Laparoscopic Ultrasound Liver Images to CT

using Content-based Retrieval and Kinematic Priors. In Smart

Ultrasound Imaging and Perinatal, Preterm and Paediatric

Image Analysis. 2019; 11–19. Cham: Springer. DOI: https://doi.

org/10.1007/978-3-030-32875-7_2

2. Ramalhinho J, Tregidgo HF, Gurusamy K, Hawkes DJ,

Davidson B, Clarkson MJ. Registration of Untracked

2D Laparoscopic Ultrasound to CT Images of the Liver

using Multi-labelled Content-based Image Retrieval. IEEE

Transactions on Medical Imaging. 2020; 40(3): 1042–1054.

DOI: https://doi.org/10.1109/TMI.2020.3045348

3. Bonmati E, Hu Y, Gibson E, Uribarri L, Keane G, Gurusamy

K, Davidson B, Pereira SP, Clarkson MJ, Barratt DC.

Determination of optimal ultrasound planes for the

initialisation of image registration during endoscopic

ultrasound-guided procedures. International Journal of

Computer Assisted Radiology and Surgery. 2018; 13: 875–

883. DOI: https://doi.org/10.1007/s11548-018-1762-2

https://doi.org/10.5281/zenodo.7387902
https://github.com/UCL/fan-slicer/
https://mathworks.com/
https://www.slicer.org
https://orcid.org/0000-0002-8438-2215
https://orcid.org/0000-0002-8438-2215
https://orcid.org/0000-0002-2712-4447
https://orcid.org/0000-0002-2712-4447
https://orcid.org/0000-0001-9217-5438
https://orcid.org/0000-0001-9217-5438
https://orcid.org/0000-0002-5565-1252
https://orcid.org/0000-0002-5565-1252
https://doi.org/10.1007/978-3-030-32875-7_2
https://doi.org/10.1007/978-3-030-32875-7_2
https://doi.org/10.1109/TMI.2020.3045348
https://doi.org/10.1007/s11548-018-1762-2

5Ramalhinho et al. Journal of Open Research DOI: 10.5334/jors.422

TO CITE THIS ARTICLE:
Ramalhinho J, Dowrick T, Bonmati E, Clarkson MJ 2023 Fan-Slicer: A Pycuda Package for Fast Reslicing of Ultrasound Shaped Planes.
Journal of Open Research Software, 11: 3. DOI: https://doi.org/10.5334/jors.422

Submitted: 20 March 2022 Accepted: 25 January 2023 Published: 08 February 2023

COPYRIGHT:
© 2023 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0
International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original
author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by Ubiquity Press.

4. Montaña-Brown N, Ramalhinho J, Allam M, Davidson B,

Hu Y, Clarkson MJ. Vessel Segmentation for Automatic

Registration of Untracked Laparoscopic Ultrasound to CT

of the Liver. International Journal of Computer Assisted

Radiology and Surgery. 2021; 16(7): 1151–1160. DOI:

https://doi.org/10.1007/s11548-021-02400-6

5. Ramalhinho J, Koo B, Montaña-Brown N, Saeed SU,

Bonmati E, Gurusamy K, Pereira SP, Davidson B, Hu Y,

Clarkson MJ. Deep Hashing for Global Registration of

Untracked 2D Laparoscopic Ultrasound to CT. International

Journal of Computer Assisted Radiology and Surgery. 2022;

17: 1461–1468. DOI: https://doi.org/10.1007/s11548-022-

02605-3

6. Grimwood A, Ramalhinho J, Baum Z, Montaña-Brown N,

Johnson GJ, Hu Y, Clarkson MJ, Pereira SP, Barratt DC,

Bonmati E. Endoscopic Ultrasound Image Synthesis using

a Cycle-consistent Adversarial Network. In International

Workshop on Advances in Simplifying Medical Ultrasound.

2021, September; 169–178. Cham: Springer. DOI: https://

doi.org/10.1007/978-3-030-87583-1_17

7. Thompson S, Dowrick T, Ahmad M, Xiao G, Koo B,

Bonmati E, Kahl K, Clarkson MJ. SciKit-Surgery: compact

libraries for surgical navigation. International journal of

computer assisted radiology and surgery. 2020; 15(7):

1075–1084. DOI: https://doi.org/10.1007/s11548-020-

02180-5

https://doi.org/10.5334/jors.422
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s11548-021-02400-6
https://doi.org/10.1007/s11548-022-02605-3
https://doi.org/10.1007/s11548-022-02605-3
https://doi.org/10.1007/978-3-030-87583-1_17
https://doi.org/10.1007/978-3-030-87583-1_17
https://doi.org/10.1007/s11548-020-02180-5
https://doi.org/10.1007/s11548-020-02180-5

