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ABSTRACT
Fan-Slicer (https://github.com/UCL/fan-slicer) is a Python package that enables the 
fast sampling (slicing) of 2D ultrasound-shaped images from a 3D volume. To increase 
sampling speed, CUDA kernel functions are used in conjunction with the Pycuda package. 
The main features include functions to generate images from both 3D surface models 
and 3D volumes. Additionally, the package also allows for the sampling of images 
from curvilinear (fan shaped planes) and linear (rectangle shaped planes) ultrasound 
transducers. Potential uses of Fan-slicer include the generation of large datasets of 2D 
images from 3D volumes and the simulation of intra-operative data among others.
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(1) OVERVIEW

INTRODUCTION
Fan-slicer is a package designed for the sampling/
simulation of ultrasound shaped planes from a pre-
operative scan such as Computed Tomography (CT) 
or Magnetic Resonance Imaging (MRI). This software 
has been initially implemented as part of an imaging 
pipeline to aid the development of ultrasound guidance 
algorithms for laparoscopic liver surgery [1, 2] and 
endoscopic interventions [3]. Given a set of Laparoscopic 
Ultrasound (LUS) images and a pre-operative 3D scan, 
the resampling of LUS planes in pre-operative space 
enables both the implementation of image registration 
pipelines and visualisation of the corresponding results.

MATLAB1 and 3D Slicer2 have functionalities to 
perform this sampling operation. However, none of these 
software tools allow for the fast simulation of smaller 
planes bounded by the ultrasound fan shape taken at an 
arbitrary position and orientation in 3D space. Since speed 
and easy integration of this sampling is a key requirement 
for registration pipelines in medical imaging applications, 
we have designed a parallel solution in CUDA that allows 
for the sampling of multiple planes. Initially implemented 
in MATLAB with the Parallel Computing Toolbox and CUDA 
kernels written in C++, the software was later implemented 
in Python and Pycuda for easier deployment. Currently, 
this software has enabled research on new registration 
methods of LUS to CT scans of the liver using Content-
based Image Retrieval [1, 2, 4, 5] and the training of 
General Adversarial Networks (GANs) for the simulation of 
Ultrasound images from abdominal CT [6].

IMPLEMENTATION AND ARCHITECTURE
Fan-slicer is implemented with Python and CUDA kernels 
written in C++ that are compiled using Pycuda. A simple 

overview of the package functionality is described in 
Figure 1. The project structure is generated from the 
PythonTemplate of Scikit-Surgery [7]. The package 
consists of two main classes for the sampling of 2D 
images – IntensityVolume in intensity_volume.py 
samples 3D volumes (intensity) and SegmentedVolume 
in segmented_volume.py samples 3D surfaces (binary). 
Their implementation is briefly described in Figure 2.

INSTANTIATION AND PRE-ALLOCATION
Upon instantiation, both SegmentedVolume and 
IntensityVolume allocate volume data in a 3D 
array. IntensityVolume creates a single array from 
either a NumPy array, a NifTI file (.nii) or a DICOM file. 
SegmentedVolume receives a variable number of surfaces 
in VTK format, performs voxelisation, and then outputs 
a separate binary 3D array for each of them. As an 
intermediate step, VTK files are converted to simpler mesh 
structures described in mesh.py – code can be adapted to 
other formats as long as this mesh structure is obtained.

To minimise data transfer between CPU and GPU and 
therefore increase sampling speed, all volume and image 
data is pre-allocated to the GPU upon instantiation. 
Besides the 3D data, both classes receive as input a 
configuration file (.json) with the ultrasound image shape 
parameterisation and the number of images (an integer) 
that should be simulated per run. The configuration can 
be either linear or curvilinear and has variable parameters 
described in USING.rst. By knowing the configuration and 
image number to be simulated, the classes pre-allocate 
a set of fixed size GPU arrays for the slicing task.

IMAGE SAMPLING
Slicing of 2D images is achieved with the function 
simulate_image for both classes by providing the number of 
images to slice and an array with a corresponding number 

Figure 1 Overview of Fan-slicer package pipelines. Given a virtual ultrasound transducer pose, the package can generate ultrasound 
shaped images from segmented medical surfaces by voxelising binary volumes or directly from 3D volumetric medical images.
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of concatenated 4 × 4 poses composed of rotation and 
translation. If the number of images is different from the 
one used in the constructor, the software repeats the pre-
allocation step. To generate the input number of images, 
simulate_image calls a method that uses a sequence of 
CUDA kernels loaded from cuda_reslicing.py (see Figure 2). 
Depending on the class and image parameterisation used, 
a specific combination of kernels listed in Table 1. is used.

For all slicing options, the first kernel computes 
point clouds from poses (kernels highlighted with (1)). 
Then, depending on the class (binary or intensity), an 
interpolation kernel is used (kernels highlighted with 
(2)). If the configuration is curvilinear, a third kernel 
must be used to warp the interpolated result into a 2D 
fan-shaped grid (kernels highlighted with (3)). If the 
configuration is linear there is no need for a third kernel 
as the interpolation result is already in linear coordinates.

QUALITY CONTROL
Unit tests in tests/test_pycuda_simulations.py are used 
to test the image simulation with both intensity and 
binary models, both with linear and curvilinear shapes. 

These tests have been checked in Windows and Linux 
environments. In addition to the tests, simulation_demo.py  
provides a simple demo on how to simulate images using 
both intensity and binary models. Therefore, to check if 
the package is working, a user should:

•	 Run the unit tests in tests/test_pycuda_simulations.py.
•	 Run the script simulation_demo.py and check if the 

plotted image results are the same as the ones 
stored in the demo_outputs folder.

(2) AVAILABILITY

OPERATING SYSTEM
Minimum versions tested:

1. Windows 10, with CUDA Toolkit 11.3 and Visual 
Studio 2019 for C++ compiler.

2. Windows 10/11 with Windows Subsystem Linux (WSL2).
3. Ubuntu 18.04.5 LTS, with CUDA Toolkit 10.1, gcc 7.5.0 

as C++ compiler.

KERNEL DESCRIPTION

transform (1) Generates point clouds of 3D fan-shaped planes from 4 × 4 poses. Used by slice_volume and intensity_slice_volume.

linear_transform (1) Generates point clouds of 3D rectangle-shaped planes from 4 × 4 poses. Used by linear_slice_volume and 
linear_intensity_slice_volume.

slice (2) Uses nearest-neighbour interpolation to map values from a 3D binary array to a set of 3D points. Used by 
slice_volume and linear_slice_volume.

weighted_slice (2) Uses tri-linear interpolation to map values from a 3D array to a set of 3D points. Used by intensity_slice_volume 
and linear_intensity_slice_volume.

map_back (3) Uses nearest-neighbour interpolation to warp a 2D grid of binary values onto a curvilinear/fan-shaped grid. Used 
by slice_volume.

intensity_map_back (3) Uses bi-linear interpolation to warp a 2D grid of intensity values onto a curvilinear/fan-shaped grid. Used by 
intensity_slice_volume.

Table 1 Description of CUDA kernels in cuda_reslicing.py and functions where these are used. On the left column, a number shows the 
order in which the kernel is called for simulation.

Figure 2 Overview of the two Fan-slicer image sampling classes. Left shows class instantiation and right shows the image sampling 
process. Inputs are highlighted in blue, classes in gray, methods in green and dependencies in orange.
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PROGRAMMING LANGUAGE
Python 3.6, 3.7 and 3.8

ADDITIONAL SYSTEM REQUIREMENTS
Main requirement is a CUDA enabled GPU device with a 
minimum of 2GB.

DEPENDENCIES
Python packages:

1. Pycuda 2021.1, which requires CUDA Toolkit and a 
C++ Compiler;

2. NumPy 1.11;
3. VTK;
4. Matplotlib;
5. Scipy;
6. NiBabel;
7. Pydicom.

SOFTWARE LOCATION
Archive

Name: Zenodo
Persistent identifier: 10.5281/zenodo.7387902
Licence: BSD 3-clause
Publisher: João Ramalhinho
Version published: v1.0.1
Date published: 01/12/22

Code repository
Name: GitHub
 Persistent identifier: https://github.com/UCL/fan-slicer/
Licence: BSD 3-clause
Date published: 03/03/22

LANGUAGE
Python, C++

(3) REUSE POTENTIAL

This package has the potential to support users that 
desire either visualise ultrasound shaped sections from 
3D volumes or generate large sets of 2D images (e.g 
for training neural networks). Additionally, the Pycuda 
implementations of Fan-slicer are compatible with the 
CUDA environments of Pytorch and Tensorflow. This 
means the package allows for the simulation of images 
during neural network training without storing images 
in disk.

The package is expected to be continuously supported 
as authors will maintain the repository and reply to any 
Github issues.

Contributions to the software could include other 
ultrasound image shape parameterisations, additional 
visualisation tools and compatibility with additional 
image and surface formats.

NOTES
1 https://mathworks.com/.

2 https://www.slicer.org.
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