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ABSTRACT
The Dynamic Synchronization Toolbox allows the calculation of dynamic graphs 
based on phase synchronization in experimental data. This enables an analysis of the 
time-development of network connectivity between multiple recording sites (e.g. in 
electroencephalography (EEG) or magnetoencephalography (MEG) data) with a high 
temporal resolution. Optionally, the toolbox offers the possibility to compute several 
graph metrics (such as cluster dynamics, node degree, HUB nodes) via the Brain 
Connectivity toolbox.
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(1) OVERVIEW
INTRODUCTION
The Dynamic Synchronization Toolbox (DST) is an 
implementation of the pipeline used in our previous 
article [10] to calculate phase connectivity based 
dynamic graphs. This study dealt with the analysis of 
EEG data recorded during externally triggered finger 
movements in younger and older subjects. We used this 
pipeline to get in depth information on the connectivity 
dynamics during movement planning and movement 
execution and especially how these dynamics are 
changed in healthy aged persons. For this purpose it 
was necessary to use a non-static connectivity measure 
which can detect instantaneous changes in the 
coupling of the signals. Compared to other toolboxes 
that allow connectivity analyses of EEG signals, we 
focused here on ensuring the highest possible temporal 
resolution. Other toolboxes such as Dynamic Causal 
Modeling (DCM, [4]) as a function of the Statistical 
Parametric Mapping toolbox (SPM, [1]) for instance, 
require static connectivity and thus do not allow for 
time course analysis. Also, connectivity approaches, 
like Granger Causality [3] or Mutual Information [7], 
assume stationary signals and thus have a fairly low 
temporal resolution.

The Brain Connectivity Toolbox (BCT, [11]) comes into 
play after connectivity has been determined to perform 
further network-related calculations. It is a very powerful 
toolbox that includes different graph theoretic measures. 
For this reason, we also use this functionality for the 
calculation of network properties in our toolbox.

The scripts presented here have been generalized as 
much as possible to allow application not only to EEG 
data as in our prior publication, but to a wide variety of 
data as long as they were transformed to phase space. 
Thereby, this toolbox has a high reuse potential also in 
other fields of research, e.g Geophysics, Geomorphology, 

Systems Biology, Ecology or Social Network Sciences, 
that deal with dynamic connectivity, i.e. interactions of 
signals at different ‘recording sites’.

IMPLEMENTATION AND ARCHITECTURE
The toolbox presented here provides a MATLAB 
implementation of the pipeline for creating and graph 
theoretically analyzing dynamic networks as has been 
introduced in [10]. The pipeline consists of three major 
steps (Figure 1): First, phase-locking values between two 
measuring sites, e.g. electrodes, are computed relative 
to a defined baseline period, second, the calculated 
connectivities are used to define dynamic graphs at the 
group level by testing for significant increase compared 
to baseline using t-tests and last, the dynamic graphs are 
analyzed using graph-theoretic measures from the BCT 
[11].

In the first step, the input data, that has been 
epoched and transformed to phase space prior 
application, undergoes a connectivity analysis based on 
the relative phase-locking value (rPLV), which is defined 
as follows:
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where t denotes time, f frequency and j km  in Eq. (1) the 
phase of the signal at measuring site m in the k-th trial. 
N is the total number of trials, i.e. repeating segments 
of measurements, and i is the imaginary unit. In Eq. (2) 
the previously calculated PLV is normalized relative to the 
mean PLV in a predefined baseline period.

In the second step, t-tests are used to define periods of 
significally increased phase-connectivity for each signal 
pair. In the toolbox we included the options to compare 

Figure 1 Schematic drawing of the three software parts: connectivity, statistics and graph measures.
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the rPLV against zero or against an artificially computed 
baseline signal consisting of random noise with the same 
mean and standard deviation as the baseline period 
and of the same length as the test interval. We further 
implemented three options for dealing with multiple 
comparisons: (i) no correction (for simple checks), (ii) 
false discovery rate (FDR) correction for single pairs and 
(iii) FDR correction pooled over all timepoints and signal 
pairs. A connection is assigned between a signal pair if 
the rPLV is significantly greater than zero or the artificial 
baseline.

Dynamic graphs were then defined as the ordered set 
G(t) = {Gt |t ϵ [1,…, T]} of binary undirected graphs Gt = 
(V,Et), where the graph G is defined by a set of vertices V 
and edges Et: V × V → R, for each point in time t.

In the last step, we added the option to compute 
several graph measures from the BCT. These are, the 
node degree (i.e. the number of connections of a node), 
a Louvain community detection (also called clustering), 
the node flexibility (i.e. how often the nodes switch 
between the clusters) and the HUB nodes (i.e. the most 
influencial nodes) of the networks. We determined all 
of these measures at all given points in time to obtain 
their overall dynamics. For a better overview, we added 
an optimization step for community detection. Here, 
we always used the previous cluster configuration 
as the initial condition for the following community 
detection. Additionally, we post-hoc assigned the label 
for each community, minimizing the number of label 
switches between time points, which prevents the same 
cluster from being assigned different cluster labels at 
consecutive time points.

A more detailed description of the methods used can 
be found in [10].

SCRIPT ARCHITECTURE
The DST is fully implemented in MATLAB. It includes 
a main directory consisting of the master function 
dynamic_synchronization_toolbox_function.m, a 
documentation file readme.m and subfolders for data 
and scripts.

The master script is used to specify various options 
used for further processing. In this script we define the 
subject IDs, which will afterwards be loaded from the 
subfolders of the same name in the subject folder, e.g.:

subjects=[‘Sub01’;’Sub02’];

These subject folders are organized in a BIDS (Brain 
Imaging Data Structure; [2, 8]) like fashion, i.e. each 
subject has its own subfolder within the data folder. 
These subfolders then consist of a mat-file containing the 
epoched EEG data transformed to phase space and a trial 
definition file (in case of multiple experimental conditions).

Within the master script, an options structure is 
defined which sets several options for calculating the 
rPLV in step 1. See Table 1 for all available options. The 
rPLVs are then computed by calling the function rplv_
func.m (Figure 2, step 1).

Furthermore, we define the stats structure which sets 
several options for statistical analysis of the rPLV in step 2. 
See Table 2 for all available options. As described above, 
we included three options for multiple comparison, which 
can be set by stats.pid. The corresponding thresholds 
for t-tests and FDR correction can be defined in this 
structure. Additionally, this structure includes an option 
stats.comp to select the desired statistical comparison, 
i.e. against an artificial baseline (described above) or 
against zero. Subsequently the function stats_rplv.m 
is called to compute the significant edges and construct 
the dynamic graphs (Figure 2, step 2).

The optional calculation of node degree, community 
detection, node flexibility and HUB nodes can be altered 
by adjusting the variable graph_measures = True or 
False (Figure 2, step 3).

SCRIPT APPLICATION
The first step for using the DST pipeline is to arrange 
the preprocessed data in a BIDS-like data structure 
in the Data subfolder. The data set of each subject 
should be stored in a subfolder SubID of the Data folder 
and labelled SubID_eeg.mat. Each preprocessed (e.g. 
transformed to time-frequency phase-space) data 
set has to be stored in a mat-file with the dimensions 
[channels × frequencies × timepoints × trials]. In order 

OPTION TYPE DESCRIPTION

electrodes integer 
list 

subset of electrode indices of 
interest

freqs integer 
list 

frequency range for time-
frequency decomposition

baseline integer (begin, end) of time-interval for 
relative baseline

multiple_
conds 

boolean single (false) or multiple (true) 
conditions

switch_hands boolean enables mapping of electrodes to 
other hemisphere

channels_new integer 
list 

new order of electrodes for 
mapped condition

channels_old integer 
list 

old order of electrodes for 
mapped condition

contrast boolean enabling contrasting conditions

contrast_
conds 

integer 
list 

indices of two conditions to 
contrast

avg_freqs integer 
list 

frequencies of interest for 
averaging

Table 1 Options for rPLV calculation in step 1.
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to use the pipeline for multiple experimental conditions 
an additional file called SubID_trialselection.mat 
with dimensions [Trials × Conditions] giving boolean 
information about the condition of each trial is needed. 
In the second step, the user has to set the options for the 

calculation of the synchronization metric in structures 
(as defined above) options, stats and graphs as well 
as a list of subject IDs and the path to the subject data 
subfolder. In the last step, the main function dynamic_
connectivity_toolbox_function.m has to be executed 

Figure 2 Flowchart depicting the logical sequence of the dynamic graph calculations.
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with the previously defined options. This will at the end 
produce the following output variables:

rplv:  relative phase-locking value for each 
dataset in a cell {num, subjects, 1}, each 
cell stores the rPLV with dimensions [time, 
channel, channel, conditions].

trials:  number of trials in each experimental 
condition and subject.

rplv_mean:  group average of rPLV in [time, channel, 
channel, conditions].

sig_ti_FDR:  significant timepoints after statistics and 
multiple comparisons as a cell {channel, 
channel}.

xa:  list of significant intervals [intervals, 3] with 
information about start timepoint, stop 
timepoint and the amount of timepoints 
to the next interval for each channel pair 
stored in a cell {channel, channel}.

length:  list of length of significant intervals for 
each channel pair stored in a cell {channel, 
channel}.

The optional graph metric generates the following 
additional outputs:

Agg:  aggregated graph showing the frequency of 
all connections over the whole interval in a 
matrix [channel, channel].

bet:  temporal betweenness centrality in a matrix 
[timepoint, channel].

hub:  temporal hub nodes, i.e. nodes with 
highest betweenness centrality, in a matrix 
[timepoint, 2].

clusters:  clusters assignment for each channel and 
timepoint [channel, timepoints].

node_flex:  node flexibility for each channel stored in a 
matrix [2, channel].

deg:  each channels node degree over time in a 
matrix [timepoint, channel].

QUALITY CONTROL
To ensure sufficient quality control, two sample 
datasets of artificial data each consisting of four 
conditions were added to the scripts, one exhibiting a 
high degree of connectivity and the other a low degree 
of connectivity. The data are created by running the 
script sample_data_creation.m located in the “Data” 
subfolder. The data consists of two identical subjects 
with the dimensions [61 channels, 48 frequencies, 
800 timepoints, 100 trials]. A set of 27 channels is 
perfectly phase-locked after artifical stimulation in the 
time-interval [300:500] for trials [1:25] and [51:75]. In 
contrast, the remaining channels are phase-locked in 
the same interval, but for trials [26:50] and [76:100]. 
We also provide two figures depicting the rPLV for all 
possible connections: First, the connectivity is shown for 
all four conditions in the originally created dataset (File 
rplv_sampledata_original.png) and second, there is a 
version after switching a set of electrodes and merging 
conditions 1 with 2 and 3 with 4 (File rplv_sampledata_
merged.png). In the first case the contrast of conditions 
1 and 2 will show a huge difference in rPLV between 
two distinct sets of measurement sites (e.g. left and 
right hemispheric electrodes). In the second case this 
difference should disappear since those two groups 
were swapped in the second condition leading to equal 
experimental conditions. These figures are located in 
the folder “Quality control”. This makes it possible to 
check if the definition of the networks was successful. 
In the following, this data will also be used to ensure 
the correct integration of the scripts from the BCT.

The data associated with the original article, analyzed 
with the toolbox, has been made available [9].

(2) AVAILABILITY
OPERATING SYSTEM
DST is a pure MATLAB code, and should function on all 
operating systems in which MATLAB is supported.

PROGRAMMING LANGUAGE
MATLAB (developed in vR2018b).

ADDITIONAL SYSTEM REQUIREMENTS
None.

DEPENDENCIES
The graph analysis is based on significant edges which 
depend on the Statistic toolbox [6]). The optional 

OPTION TYPE DESCRIPTION

pid string multiple comparisons ‘original’, 
‘individual’, ‘uncorr’

pID_fix double fixed p-value for corrected stats

p_fix double fixed p-value for uncorrected stats

q_FDR double q-value for FDR-correction

comp string type of comparison ‘baseline’ or ‘zero’

test_interval_
start 

integer start of testinterval in ms

test_interval_
end 

integer end of testinterval in ms

baseline_start integer start of baseline in ms

baseline_end integer end of baseline in ms

task integer definition of task by id (contrast 
appears last)

contrast boolean enabling contrasting conditions

time integer 
list 

sampling timepoints

sampling_rate integer sampling rate of the data

Table 2 Options for statistical testing and dynamic graph 
construction in step 2.
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calculation of dynamic graph metrics makes use of the 
Brain Connectivity Toolbox [11]).

LIST OF CONTRIBUTORS
Nils Rosjat wrote the software and is its current 
maintainer. Silvia Daun: Conceptualization, Supervision, 
Project administration, Funding acquisition.

SUPPORT
Support requests of any kind are preferably to be submitted 
in GitHub as an issue or sent to the corresponding author 
Nils Rosjat via email.

SOFTWARE LOCATION
Archive Jülich-DATA
 Name: Dynamic Synchronization Toolbox
 Persistent identifier: https://doi.org/10.26165/JUELI 
CH-DATA/BRXHZ9
 Licence: BSD 3-Clause
 Publisher: Nils Rosjat
 Version published: v1.0
 Date published: 02/09/21

Code repository Github
 Name: Dynamic Synchronization Toolbox
 Persistent identifier: https://github.com/nrosjat/
dynamic-synchronization-toolbox
 Licence: BSD 3-Clause
 Date published: 02/09/21

LANGUAGE
English.

(3) REUSE POTENTIAL

This toolbox is of great importance for researchers 
interested in investigating dynamic connectivity patterns 
in EEG data based on phase-synchronization. Even though 
the scripts were developed for a specific analysis of EEG 
data and performed at the electrode level, they could 
also be useful for researchers interested in performing 
source-based connectivity analyses or using different 
modalities such as MEG. Since the only requirement for 
the input data of the toolbox is that the signals have 
to be phase-transformed, the analysis can be applied 
to any signals with expected phase-locking between 
different recording sites. Additionally, we generalized the 
scripts as much as possible, not focusing too much on 
modality specific features, to increase its reuse potential 
even further. In the current version the connectivity is 
calculated based on rPLVs. Here, we presented the scripts 
as they were used for our prior connectivity analysis 
[10] which focused on the use of rPLV for connectivity 

analysis. However, the connectivity measure can easily 
be replaced by other methods, e.g. phase-lag index, 
coherence, corrected imaginary part of phase-locking 
value, amplitude based connectivity etc., which will be 
implemented as an option in future versions. Instead 
of performing group level statistics one might also use 
different statistical approaches, e.g. phase-locking 
statistics [5], or thresholding techniques, i.e. fixed 
amount of edges or ratio of strongest connections, to 
define subject specific individual graphs. This might be of 
special interest for patient-related research where only 
few subjects are available or subjects are too diverse to be 
analyzed on a group level. These techniques can also be 
applied in the case of continuous recordings, e.g. resting 
state (M/EEG) data. However, in this case the connectivity 
measure has to be adjusted to account for single-trial 
connectivity instead of the inter-trial connectivity that 
was used here.

This toolbox provides a pipeline beginning at the 
level of phase-transformed data, constructing dynamic 
connectivity networks using statistical analysis and 
ending with the application of certain graph metrics 
from the BCT [11]. The format of the generated output 
makes it easy to incorporate even more sophisticated 
graph metrics if needed. Therefore, this toolbox provides 
a good starting point for researchers studying phase-
connectivity in a wide range of signals since it provides a 
pipeline for their entire analysis.
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