
SOFTWARE

METAPAPER

Epidemiological
Agent-Based Modelling
Software (Epiabm)

KIT GALLAGHER**

IOANA BOUROS**

NICHOLAS FAN**

ELIZABETH HAYMAN**

LUKE HEIRENE**

PATRICIA LAMIRANDE**

ANNABELLE LEMENUEL-DIOT

BEN LAMBERT

DAVID GAVAGHAN

RICHARD CRESWELL

ABSTRACT
Epiabm is an open-source software package for epidemiological agent-based modelling,
re-implementing the well-known CovidSim model from the MRC Centre for Global
Infectious Disease Analysis at Imperial College London. It has been developed as part
of the first-year training programme in the EPSRC SABS:R3 Centre for Doctoral Training
at the University of Oxford. The model builds an age-stratified, spatially heterogeneous
population and offers a modular approach to configure and run epidemic scenarios,
allowing for a broad scope of investigative and comparative studies. Two simulation
backends are provided: a pedagogical Python backend (with full functionality) and a
high performance C++ backend for use with larger population simulations. Both are
highly modular, and include a comprehensive testing suite (including 100% coverage
on unit tests alongside a range of functional and integration tests), as well as complete
online documentation for ease of understanding and extensibility. Epiabm is publicly
available through GitHub at github.com/SABS-R3-Epidemiology/epiabm.

CORRESPONDING AUTHOR:
Kit Gallagher

Mathematical Institute,
University of Oxford, UK

kit.gallagher@maths.ox.ac.uk

KEYWORDS:
Agent-based modelling;
epidemiology; COVID-19;
Python; C++

TO CITE THIS ARTICLE:
Gallagher K, Bouros I, Fan
N, Hayman E, Heirene L,
Lamirande P, Lemenuel-Diot
A, Lambert B, Gavaghan
D, Creswell R 2024
Epidemiological Agent-Based
Modelling Software (Epiabm).
Journal of Open Research
Software, 12: 3. DOI: https://
doi.org/10.5334/jors.449

*Author affiliations can be found in the back matter of this article

**These authors contributed equally to this research

https://github.com/SABS-R3-Epidemiology/epiabm
mailto:kit.gallagher@maths.ox.ac.uk
https://doi.org/10.5334/jors.449
https://doi.org/10.5334/jors.449
https://orcid.org/0000-0003-1401-115X
https://orcid.org/0000-0002-5532-3603
https://orcid.org/0000-0002-3689-1242
https://orcid.org/0009-0000-2845-7860
https://orcid.org/0000-0001-6585-4734
https://orcid.org/0000-0002-9837-8188
https://orcid.org/0000-0003-4274-4158
https://orcid.org/0000-0001-8311-3200
https://orcid.org/0000-0002-9491-1897

2Gallagher et al. Journal of Open Research Software DOI: 10.5334/jors.449

(1) OVERVIEW

INTRODUCTION
As a result of the recent COVID-19 pandemic, a wealth
of epidemiological models have been developed, or
adapted from pre-existing models. These range from
simple, population-wide models which predict the total
number of infected individuals in a population [10],
to models with spatial variation/age stratification to
track the case rates among different groups within a
population [17, 13]. Some of the most complex models,
often used to advise government and policy-maker
decisions, are agent-based models (ABMs) [11]. The
representation of populations on an individual scale by
ABMs allows for the modelling of complex spatial and
behavioural phenomena which are not straightforward
to account for in traditional population-averaged,
compartmental differential equations models. In these
spatially homogeneous models, only the total number
of individuals at each step of disease progression
(e.g. Susceptible, Infected, Recovered) is modelled. In
contrast, implementing individual agents allows for
complex inter-agent interaction networks with more
realistic transmission dynamics, where interaction
probabilities can be affected by each individual’s spatial
position and age.

One of the most influential models in the UK during
the COVID-19 pandemic has been the CovidSim model
[8], developed by the MRC Centre for Global Infectious
Disease Analysis at Imperial College London. The model
was initially designed to support influenza pandemic
planning [9]. At the start of the COVID-19 pandemic,
the code was very rapidly adapted to enable modelling
of the initial stages of the outbreak. Notably, the model
was used to produce the high profile ‘Report 9’, which
considered the impact of various non-pharmaceutical
interventions (NPIs) on the transmission of COVID-19 [7],
and this report is widely held to have been influential in
the UK government’s decision making [1]. This model has
a higher level of spatial and behavioural complexity than
alternative age-stratified models [2, 4, 12, 5].

CovidSim is highly efficient, allowing large-scale
simulations to be run. The model and code were
originally created to underpin a time-critical academic
publication. Because of this, the codebase is not (and was
not intended to be) easily extensible. A range of changes
to the code and software engineering practices have
therefore been suggested in the academic literature,
including making it more modularised; controlling
the random number seeding to make results entirely
reproducible; and including comprehensive code testing
and documentation [14, 16, 6].

The development of a fully modular and well-
documented version of CovidSim code would therefore
have multiple potential benefits both for modelling and
responding to future pandemics, and as a pedagogical

tool. The modularity will enable researchers across the
epidemiological modelling community to isolate and
characterise dominant transmission mechanisms and
viral characteristics in agent-based models, and allow
flexible configuration of interventions. In this paper,
we present such a modular and fully documented
re-implementation of the CovidSim model, which we
call Epiabm, that adheres to professional software
development principles [3, 15], for use in research and
education settings. The Epiabm code has been developed
as part of the first year training programme for PhD
students at the EPSRC CDT in Sustainable Approaches
to Biomedical Science: Responsible and Reproducible
Research (SABS:R3) CDT at the University of Oxford. The
SABS:R3 programme focuses on providing comprehensive
training in software development and software
engineering to all of its students, in the context of
industrially derived research in the biomedical sciences.
To make this training immediately relevant, all students
undertake an industry-supported group software
development project over the course of their first year,
allowing them to learn and apply their software skills in a
realistic setting; the Epiabm software is the result of one
of these year-long projects. The project was supported
by colleagues in Roche’s Infectious Disease Modelling
Group.

Two simulation backends are provided: a pedagogical
Python backend (with full functionality) and a high
performance C++ backend for use with larger population
simulations. Both are highly modular, with complete
documentation and a range of working examples for
ease of understanding and extensibility. The code is
thoroughly tested, with 100% coverage on unit tests
alongside a range of functional and integration tests.
Epiabm is publicly available through GitHub at github.
com/SABS-R3-Epidemiology/epiabm.

IMPLEMENTATION AND ARCHITECTURE
The basic units of an agent-based model are individual
people. For each individual, personal characteristics
such as age are used to determine their vulnerability
to infection. Each individual is also assigned a time-
dependent infection state, which is based on the basic
SEIR (Susceptible/Exposed/Infected/Recovered) model
but can be extended to include additional infection
states and sub-states (e.g. hospitalised individuals).
Individuals may move between states according to a
network defined by a state transition matrix, depicted
in Figure 1. The set of states and the network between
them used within the CovidSim model is implemented
by default in Epiabm, but specific methods to add
user-defined compartments and connections allow for
configurability to allow modelling of other diseases or
alternative networks of states.

All individuals are initially ‘Susceptible’, a state where
they have not been infected, and have no prior immunity

https://github.com/SABS-R3-Epidemiology/epiabm
https://github.com/SABS-R3-Epidemiology/epiabm

3Gallagher et al. Journal of Open Research Software DOI: 10.5334/jors.449

to the virus. Upon being infected, individuals initially
become ‘Exposed’ (where they remain unable to infect
others), before transitioning to an infected state after a
randomly sampled latent time. The model implements
a number of different ‘Infected’ states with differing
degrees of severity, where vulnerable individuals have
a higher likelihood of entering states with increased
probabilities of death. This method also allows pressure
on public health systems and intensive care units to be
tracked, through specific states for those ill enough to
require these facilities. Individuals with sufficiently severe
infections may subsequently die, while all others will

enter the ‘Recovered’ status after a randomly sampled
waiting time. While this model does not include waning
immunity by default, the configurability of this method
allows for simple addition of a ‘Recovered’ to ‘Susceptible’
pathway over sufficient time.

Each individual is a member of a population, with the
overall population being made up of a hierarchy of cells
and microcells as illustrated in Figure 2. Individuals are
assigned to households and to places (such as schools
or workplaces) within these microcells, through which
they may infect other individuals. Such infection events
are probabilistic and depend on a number of factors

Figure 1 Infection state progression, with arrows depicting the possible routes of progression through this scheme. Based on a SEIRD
model, where all individuals are either susceptible (S) to the disease, exposed (E) to the disease, infected (I) by the disease, or who
have recovered (R) or died (D) from the disease. Multiple compartments for infection account for cases of differing severity, and this
network is highly configurable, and new compartments or connections can be added with ease.

S

Figure 2 Population structure in Epiabm. A population is formed of many microcells, which are grouped into cells (the largest spatial
unit). Infected individuals may infect others within their cell through households and places, while infections are spread between
cells according to a spatial kernel.

4Gallagher et al. Journal of Open Research Software DOI: 10.5334/jors.449

including the age and infectiousness of the individuals
involved.

Epiabm supports a complete epidemic simulation
through a number of key workflow steps:

•	 Population Generation,
•	 Simulation Configuration,
•	 Simulation Evaluation,
•	 Results Output.

It also includes a range of example plotting scripts to
visualise output data. Each of these workflow steps is
explained below:

Population Generation
To generate a population, users can read in an external
file with counts of places, households and individuals
in each infection state per microcell (examples of this
are provided in our repository). Alternatively, users may
configure the population randomly based on given
parameters (such as the number of places of each type
per cell).

Simulation Configuration
A simulation may be configured by assigning a number
of sweeps. These are functions that iterate over the
population and are responsible for within-host infection
progression and infection events between individuals via
various transmission mechanisms (e.g. via households
or places). A parameters file must also be specified here,
with key-value pairs for each parameter used in the
model – the default values provided are the same as
those used in CovidSim, and referenced in our Wiki.

Simulation Evaluation
To evaluate the simulation, the sweep functions are called
at each time step. This is completely modular, and so
different infection mechanisms (such as via households
or workplaces) may be removed independently to explore
the role of different transmission mechanisms in the viral
spread.

Results Output
At each timestep, output loggers may be used to record
the current state of the simulation in a .csv file, over a
range of resolutions – from microcell to global.

A full representation of the simulation routine is given
in Appendix A.

COMPARISON TO COVIDSIM
While we have endeavoured to emulate both the
overall structure and the functionality of CovidSim, the
architecture we have used to achieve this in Epiabm
differs significantly. Most notably, we have used a
strongly object-oriented approach to population

generation and storage; while less efficient, we believe
this is more intuitive and will enable other users to easily
adapt sections of the code for their own use. While many
aspects of simulation configuration (such as determining
which infection sweeps to use) are specified through
command line flags and parameter files in CovidSim, we
have chosen to manage configuration though workflow
scripts, again to increase readability and ease of sharing.
This is made possible through our modular architecture;
while CovidSim combines sweeps and output functions in
large code blocks, Epiabm has separate individual classes
and methods that may be included or excluded at will.
Related classes, such as the different infection sweeps,
also inherit from abstract parent classes to reduce
code duplication where daughter classes have similar
functionality.

EXAMPLE SIMULATION
An example simulation was configured using a synthetic
population of 10,000 individuals distributed across 200
cells, each containing 2 microcells with five households
per microcell. One infected individual is initialised in the
central cell, with mild infection status. The resulting
propagation of the infection through the population over
a period of 80 days is visualised in Figure 3.

We also configured a national-scale simulation
based on real-world parameter values to enable direct
comparison to the results of CovidSim. The region of
Gibraltar (with an approximate population of 34,000)
was chosen for computational simplicity. Age-stratified
output plots from both software packages are displayed
in Figure 4 and show strong agreement, with the number
of weekly cases peaking around April 15–April 22.

This simulation takes 42 seconds to run on the python
backend, and 8 seconds on the C++ backend (including
all population configuration and model running) on an
AMD 3600X processor (6 cores, 3.8 GHz). In comparison,
CovidSim takes a total of 45 seconds, although this is
heavily dominated by build time (which does not scale as
heavily in more complex cases) with the simulation alone
running in 4.5 seconds. This highlights the performance
compromises that have been necessary particularly in
pyEpiabm, to ensure modularity and readability, relative
to the highly optimised codebase of CovidSim. For this
reason, the largest simulations we have conducted are
for the country of New Zealand (with a population of
5 million people), which took 8 hours on the processor
above. Despite this, we have demonstrated the capacity
of Epiabm to perform complete epidemic simulations on
small countries on a personal computer in feasible time
periods, sufficient for many educational and research
purposes.

Full code listings for these simulations are available
on GitHub, alongside more basic workflows to introduce
new users to the simulation capabilities of this software.

https://github.com/SABS-R3-Epidemiology/epiabm/wiki
https://github.com/SABS-R3-Epidemiology/epiabm/tree/main/python_examples

5Gallagher et al. Journal of Open Research Software DOI: 10.5334/jors.449

QUALITY CONTROL
Both the Python and C++ backends have full unit testing
with 100% test coverage, verifying expected behaviour
of all deterministic and stochastic methods. Functional
testing is used for automatic verification of random
seed reproducibility in both population generation and
simulation methods.

Epiabm also has testing routines to ensure all publicly
exposed methods and classes are included in the
documentation, and uses Flake8 linter tests to ensure
that contributed code is consistent in style. All these
tests are included in a continuous integration pipeline

implemented through GitHub workflows, with unit
testing evaluated across Python versions 3.6–3.9 and the
latest macOS, Windows and Ubuntu distributions with
Python version 3.8.

The CONTRIBUTING.md file in the epiabm repository
contains more detailed and up-to-date information on
our development workflow, testing and continuous
integration infrastructure, and coding style guidelines.

Users are also provided with a number of example
workflows, to configure and run different types of
simulation, as well as plotting methods to visualise their
outputs. This includes simple simulations with known

Figure 3 Spatial distribution of infected individuals within the population, at different time points during the simulation. Configured
with a population of 10,000 people distributed across 200 cells, each containing 2 microcells with 5 households per microcell. One
infected individual is initialised in the central cell, with mild infection status; the simulation is run for 80 days. Inter-cell infections
only occur between nearby cells, allowing visualisation of the infection propagating through the simulation region over time.

Figure 4 A comparison of simulation outputs from pyEpiabm (a) and CovidSim (b), for an epidemic in Gibraltar initiated by 100
infected individuals. While the outputs are highly stochastic, a strong agreement is broadly observed.

6Gallagher et al. Journal of Open Research Software DOI: 10.5334/jors.449

behaviour, to allow bench-marking against pre-existing
models.

(2) AVAILABILITY

OPERATING SYSTEM
Epiabm uses no functions specific to any operating
system (OS) and so can run on any OS that provides
Python and C++.

PROGRAMMING LANGUAGE

•	 Python – version 3.6 or higher.
•	 C++ – version 17 or higher (for cEpiabm only,

recommended compiler G++ 9)
•	 CMake – version 3.15 (for cEpiabm only)

ADDITIONAL SYSTEM REQUIREMENTS
Memory and disk space dependent on usage case.

DEPENDENCIES
Essential:

•	 numpy >=1.8
•	 packaging
•	 pandas >=1.4
•	 tqdm

Optional:

•	 flake8 >= 3 – Used to check code style
•	 matplotlib – Used in example workflow
•	 parameterized – Used in unit tests
•	 sphinx >= 1.5 – Used to generate documentation

LIST OF CONTRIBUTORS
Our project is hosted on GitHub, and publicly visible,
allowing researchers from around the world to find our
work and contribute to the codebase. In addition to the
authors of this paper, who were the primary developers
to Epiabm, we also acknowledge contributions from the
following individuals:

•	 Open-Source Software Contribution – Saket Kumar,
Netaji Subhash Engineering College, Maulana Abul
Kalam Azad University of Technology, India.

•	 Open-Source Software Contribution – Pietro
Monticone, University of Turin.

SOFTWARE LOCATION
Archive

Name: Zenodo
Persistent identifier: DOI: 10.5281/zenodo.7327444
Licence: BSD 3-Clause

Publisher: Kit Gallagher
Version published: 1.0.1
Date published: 16/11/22

Code repository
Name: GitHub
Persistent identifier: https://github.com/SABS-R3-

Epidemiology/epiabm
Licence: BSD-3-Clause
Date published: 01/03/22

LANGUAGE
English

(3) REUSE POTENTIAL

Epiabm is designed with both research and educational
use in mind. The modular aspect of the code allows
for highly configurable simulations and investigation
into the sensitivity of large scale agent-based models
to different transmission mechanisms. While the
default parameter values provided are tailored to the
spread of COVID-19 within the UK population, minimal
reconfiguration is required to adapt these for other
countries/diseases. The modular nature of the code
offers considerable freedom to explore and compare the
roles of different transmission mechanisms in epidemic
growth for viral strains with varied properties. The model
can also be extended to include custom interventions,
both pharmaceutical and non-pharmaceutical, on local
and global spatial scales, and indeed this will be the
task of one the first year group projects in the coming
academic year.

Detailed documentation and example workflows are
provided, also enabling use of Epiabm in educational
settings and for users with little familiarity with agent-
based epidemiological models. We welcome questions,
suggestions, bug reports, and user contributions via the
GitHub repository, which acts as a central communication
platform for Epiabm. A detailed guide on contributing to
Epiabm is also available there.

APPENDIX A
EPIABM IMPLEMENTATION
This section introduces our implementation of CovidSim,
in the pyEpiabm backend. The cEpiabm backend
broadly follows the same structure at all levels, and all
pseudocode given here also applies to this backend.

The overall workflow is illustrated in Algorithm 1,
which represents the simulation flow file and the broad
functionality of the ‘Simulation’ class. The bulk of the
simulation work occurs within the ‘sweep()’ function
calls, an example of which is given in Algorithm 2.

https://doi.org/10.5281/zenodo.7327444
https://github.com/SABS-R3-Epidemiology/epiabm
https://github.com/SABS-R3-Epidemiology/epiabm

7Gallagher et al. Journal of Open Research Software DOI: 10.5334/jors.449

ACKNOWLEDGEMENTS

We acknowledge the advice of Fergus Cooper in setting
up the C++ software architecture. We also acknowledge
the work of Martin Robinson from the University of
Oxford, as well as Steve Crouch and James Graham from
the Software Sustainability Institute, for their helpful
instruction on the topic of software engineering.

FUNDING INFORMATION

All authors except A.L.D. acknowledge funding from
the EPSRC CDT in Sustainable Approaches to Biomedical
Science: Responsible and Reproducible Research –
SABS:R3 (EP/S024093/1). R.C. acknowledges funding
from a doctoral training partnership studentship in the
Department of Computer Science at the University of

Oxford. A.L.D. was funded as a Roche Pharmaceutical
Research employee.

COMPETING INTERESTS

The authors have no competing interests to declare.

AUTHOR CONTRIBUTIONS

Kit Gallagher, Ioana Bouros, Nicholas Fan, Elizabeth
Hayman, Luke Heirene and Patricia Lamirande contributed
equally to this research.

AUTHOR AFFILIATIONS
Kit Gallagher orcid.org/0000-0003-1401-115X
Mathematical Institute, University of Oxford, UK

Require: parameters.json file
Ensure: Output .csv files � Containing case numbers at each timestep
pop params ← {‘population size’: 1000, ...}
population ← ToyPopulationFactory.make pop(pop params)

sim ← Simulation()
sim.configure(population, list of sweeps)
t ← start time
while t < end time do

HouseholdSweep()
PlaceSweep()
t ← t + time step

end while

Algorithm 1 Outline of the overall workflow for Epiabm.

Algorithm 2 Example of an infection sweep from Epiabm, handling infections occurring within a household.

Require: population, t (current time)
Ensure: Queues individuals newly infected within households
for cell in population.cells do

for infector in cell.persons do
assert infector.household is not None:
if not infector.is infectious() then

continue
end if

for infectee in infector.household.persons do
if not infectee.is susceptible() then

continue
end if
force of infection ← household foi(infector, infectee, t)
r ← random.uniform(0, 1)
if r < force of infection then

cell.enqueue person(infectee) � Queue person for infection
end if

end for
end for

end for

https://orcid.org/0000-0003-1401-115X
https://orcid.org/0000-0003-1401-115X

8Gallagher et al. Journal of Open Research Software DOI: 10.5334/jors.449

Ioana Bouros orcid.org/0000-0002-5532-3603

Department of Computer Science, University of Oxford, UK

Nicholas Fan
Mathematical Institute, University of Oxford, UK

Elizabeth Hayman orcid.org/0000-0002-3689-1242
Department of Engineering Science, University of Oxford, UK

Luke Heirene orcid.org/0009-0000-2845-7860
Mathematical Institute, University of Oxford, UK

Patricia Lamirande orcid.org/0000-0001-6585-4734
Mathematical Institute, University of Oxford, UK

Annabelle Lemenuel-Diot orcid.org/0000-0002-9837-8188
Roche Pharmaceutical Research and Early Development,
Pharmaceutical Sciences, Roche Innovation Center Basel,
Switzerland

Ben Lambert orcid.org/0000-0003-4274-4158
College of Engineering, Mathematics and Physical Sciences,
University of Exeter, UK

David Gavaghan orcid.org/0000-0001-8311-3200
Department of Computer Science, University of Oxford, UK

Richard Creswell orcid.org/0000-0002-9491-1897
Department of Computer Science, University of Oxford, UK

REFERENCES

1. Adam D. Special report: The simulations driving the

world’s response to COVID-19. Nature. Apr. 2020;

580(7803): 316–318. DOI: https://doi.org/10.1038/

d41586-020-01003-6

2. Birrell P, et al. Real-time nowcasting and forecasting

of COVID-19 dynamics in England: the first wave.

Philosophical Transactions of the Royal Society B: Biological

Sciences. 2021; 376(1829). DOI: https://doi.org/10.1098/

rstb.2020.0279

3. Crick T, Hall BA, Ishtiaq S. Reproducibility in Research:

Systems, Infrastructure, Culture. Journal of Open Research

Software. Nov. 2017; 5. DOI: https://doi.org/10.5334/jors.73

4. Danon L, et al. A spatial model of COVID-19 transmission

in England and Wales: early spread, peak timing and the

impact of seasonality. Philosophical Transactions of the

Royal Society B: Biological Sciences. May 2021; 376(1829).

DOI: https://doi.org/10.1098/rstb.2020.0272

5. Davies NG, et al. Effects of non-pharmaceutical

interventions on COVID-19 cases, deaths, and demand for

hospital services in the UK: a modelling study. The Lancet

Public Health. 2020; 5(7): e375–e385. ISSN: 2468–2667.

DOI: https://doi.org/10.1016/S2468-2667(20)30133-X

6. Eglen SJ. CODECHECK certificate 2020-010. en (2020).

DOI: https://doi.org/10.5281/ZENODO.3865490

7. Ferguson NM, et al. Report 9: Impact of non-

pharmaceutical interventions (NPIs) to reduce COVID-19

mortality and healthcare demand; 2020. DOI: https://doi.

org/10.25561/77482

8. Ferguson NM, Nedjati Gilani G, Laydon, D. COVID-19

CovidSim microsimulation model. Computer Software. R

Foundation for Statistical Computing; Apr. 2020.

9. Ferguson NM, et al. Strategies for mitigating an influenza

pandemic. Nature. Apr. 2006; 442(7101): 448–452. DOI:

https://doi.org/10.1038/nature04795

10. He S, Peng Y, Sun K. SEIR modeling of the COVID-19 and

its dynamics. Nonlinear Dynamics. June 2020; 101(3):

1667–1680. DOI: https://doi.org/10.1007/s11071-020-

05743-y

11. Hunter E, Mac Mamee B, Kelleher JD. A Comparison

of Agent-Based Models and Equation Based Models for

Infectious Disease Epidemiology; 2018. DOI: https://doi.

org/10.18564/jasss.3414

12. Keeling MJ, et al. Predictions of COVID-19 dynamics in

the UK: Shortterm forecasting and analysis of potential

exit strategies. PLOS Computational Biology. Jan. 2021;

17(1): 1–20. DOI: https://doi.org/10.1371/journal.

pcbi.1008619

13. Lyra W, et al. COVID-19 pandemics modeling with

modified determinist SEIR, social distancing, and age

stratification. The effect of vertical confinement and

release in Brazil. PLOS ONE. Sept. 2020; 15(9): e0237627,

Samy AM (ed.). DOI: https://doi.org/10.1371/journal.

pone.0237627

14. Shen C, Taleb NN, Bar-Yam Y. Review of Ferguson et al

‘Impact of non-pharmaceutical interventions…’. New

England Complex Systems Institute; Mar. 2020.

15. Stodden V, Miguez S. Best Practices for Computational

Science: Software Infrastructure and Environments for

Reproducible and Extensible Research. Journal of Open

Research Software. July 2014; 2(1). DOI: https://doi.

org/10.5334/jors.ay

16. Wooldridge M. The Software that Led to the Lockdown.

July 2020.

17. Wu JT, Cowling BJ. The use of mathematical models

to inform influenza pandemic preparedness and

response. Experimental Biology and Medicine. Aug.

2011; 236(8): 955–961. DOI: https://doi.org/10.1258/

ebm.2010.010271

https://orcid.org/0000-0002-5532-3603
https://orcid.org/0000-0002-5532-3603
https://orcid.org/0000-0002-3689-1242
https://orcid.org/0000-0002-3689-1242
https://orcid.org/0009-0000-2845-7860
https://orcid.org/0009-0000-2845-7860
https://orcid.org/0000-0001-6585-4734
https://orcid.org/0000-0001-6585-4734
https://orcid.org/0000-0002-9837-8188
https://orcid.org/0000-0002-9837-8188
https://orcid.org/0000-0003-4274-4158
https://orcid.org/0000-0003-4274-4158
https://orcid.org/0000-0001-8311-3200
https://orcid.org/0000-0001-8311-3200
https://orcid.org/0000-0002-9491-1897
https://orcid.org/0000-0002-9491-1897
https://doi.org/10.1038/d41586-020-01003-6
https://doi.org/10.1038/d41586-020-01003-6
https://doi.org/10.1098/rstb.2020.0279
https://doi.org/10.1098/rstb.2020.0279
https://doi.org/10.5334/jors.73
https://doi.org/10.1098/rstb.2020.0272
https://doi.org/10.1016/S2468-2667(20)30133-X
https://doi.org/10.5281/ZENODO.3865490
https://doi.org/10.25561/77482
https://doi.org/10.25561/77482
https://doi.org/10.1038/nature04795
https://doi.org/10.1007/s11071-020-05743-y
https://doi.org/10.1007/s11071-020-05743-y
https://doi.org/10.18564/jasss.3414
https://doi.org/10.18564/jasss.3414
https://doi.org/10.1371/journal.pcbi.1008619
https://doi.org/10.1371/journal.pcbi.1008619
https://doi.org/10.1371/journal.pone.0237627
https://doi.org/10.1371/journal.pone.0237627
https://doi.org/10.5334/jors.ay
https://doi.org/10.5334/jors.ay
https://doi.org/10.1258/ebm.2010.010271
https://doi.org/10.1258/ebm.2010.010271

9Gallagher et al. Journal of Open Research Software DOI: 10.5334/jors.449

TO CITE THIS ARTICLE:
Gallagher K, Bouros I, Fan N, Hayman E, Heirene L, Lamirande P, Lemenuel-Diot A, Lambert B, Gavaghan D, Creswell R 2024
Epidemiological Agent-Based Modelling Software (Epiabm). Journal of Open Research Software, 12: 3. DOI: https://doi.org/10.5334/
jors.449

Submitted: 24 November 2022 Accepted: 02 February 2024 Published: 05 March 2024

COPYRIGHT:
© 2024 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0
International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original
author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by Ubiquity Press.

https://doi.org/10.5334/jors.449
https://doi.org/10.5334/jors.449
http://creativecommons.org/licenses/by/4.0/

