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ABSTRACT
Epiabm is an open-source software package for epidemiological agent-based modelling, 
re-implementing the well-known CovidSim model from the MRC Centre for Global 
Infectious Disease Analysis at Imperial College London. It has been developed as part 
of the first-year training programme in the EPSRC SABS:R3 Centre for Doctoral Training 
at the University of Oxford. The model builds an age-stratified, spatially heterogeneous 
population and offers a modular approach to configure and run epidemic scenarios, 
allowing for a broad scope of investigative and comparative studies. Two simulation 
backends are provided: a pedagogical Python backend (with full functionality) and a 
high performance C++ backend for use with larger population simulations. Both are 
highly modular, and include a comprehensive testing suite (including 100% coverage 
on unit tests alongside a range of functional and integration tests), as well as complete 
online documentation for ease of understanding and extensibility. Epiabm is publicly 
available through GitHub at github.com/SABS-R3-Epidemiology/epiabm.
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(1) OVERVIEW

INTRODUCTION
As a result of the recent COVID-19 pandemic, a wealth 
of epidemiological models have been developed, or 
adapted from pre-existing models. These range from 
simple, population-wide models which predict the total 
number of infected individuals in a population [10], 
to models with spatial variation/age stratification to 
track the case rates among different groups within a 
population [17, 13]. Some of the most complex models, 
often used to advise government and policy-maker 
decisions, are agent-based models (ABMs) [11]. The 
representation of populations on an individual scale by 
ABMs allows for the modelling of complex spatial and 
behavioural phenomena which are not straightforward 
to account for in traditional population-averaged, 
compartmental differential equations models. In these 
spatially homogeneous models, only the total number 
of individuals at each step of disease progression 
(e.g. Susceptible, Infected, Recovered) is modelled. In 
contrast, implementing individual agents allows for 
complex inter-agent interaction networks with more 
realistic transmission dynamics, where interaction 
probabilities can be affected by each individual’s spatial 
position and age.

One of the most influential models in the UK during 
the COVID-19 pandemic has been the CovidSim model 
[8], developed by the MRC Centre for Global Infectious 
Disease Analysis at Imperial College London. The model 
was initially designed to support influenza pandemic 
planning [9]. At the start of the COVID-19 pandemic, 
the code was very rapidly adapted to enable modelling 
of the initial stages of the outbreak. Notably, the model 
was used to produce the high profile ‘Report 9’, which 
considered the impact of various non-pharmaceutical 
interventions (NPIs) on the transmission of COVID-19 [7], 
and this report is widely held to have been influential in 
the UK government’s decision making [1]. This model has 
a higher level of spatial and behavioural complexity than 
alternative age-stratified models [2, 4, 12, 5].

CovidSim is highly efficient, allowing large-scale 
simulations to be run. The model and code were 
originally created to underpin a time-critical academic 
publication. Because of this, the codebase is not (and was 
not intended to be) easily extensible. A range of changes 
to the code and software engineering practices have 
therefore been suggested in the academic literature, 
including making it more modularised; controlling 
the random number seeding to make results entirely 
reproducible; and including comprehensive code testing 
and documentation [14, 16, 6].

The development of a fully modular and well-
documented version of CovidSim code would therefore 
have multiple potential benefits both for modelling and 
responding to future pandemics, and as a pedagogical 

tool. The modularity will enable researchers across the 
epidemiological modelling community to isolate and 
characterise dominant transmission mechanisms and 
viral characteristics in agent-based models, and allow 
flexible configuration of interventions. In this paper, 
we present such a modular and fully documented 
re-implementation of the CovidSim model, which we 
call Epiabm, that adheres to professional software 
development principles [3, 15], for use in research and 
education settings. The Epiabm code has been developed 
as part of the first year training programme for PhD 
students at the EPSRC CDT in Sustainable Approaches 
to Biomedical Science: Responsible and Reproducible 
Research (SABS:R3) CDT at the University of Oxford. The 
SABS:R3 programme focuses on providing comprehensive 
training in software development and software 
engineering to all of its students, in the context of 
industrially derived research in the biomedical sciences. 
To make this training immediately relevant, all students 
undertake an industry-supported group software 
development project over the course of their first year, 
allowing them to learn and apply their software skills in a 
realistic setting; the Epiabm software is the result of one 
of these year-long projects. The project was supported 
by colleagues in Roche’s Infectious Disease Modelling 
Group.

Two simulation backends are provided: a pedagogical 
Python backend (with full functionality) and a high 
performance C++ backend for use with larger population 
simulations. Both are highly modular, with complete 
documentation and a range of working examples for 
ease of understanding and extensibility. The code is 
thoroughly tested, with 100% coverage on unit tests 
alongside a range of functional and integration tests. 
Epiabm is publicly available through GitHub at github.
com/SABS-R3-Epidemiology/epiabm.

IMPLEMENTATION AND ARCHITECTURE
The basic units of an agent-based model are individual 
people. For each individual, personal characteristics 
such as age are used to determine their vulnerability 
to infection. Each individual is also assigned a time-
dependent infection state, which is based on the basic 
SEIR (Susceptible/Exposed/Infected/Recovered) model 
but can be extended to include additional infection 
states and sub-states (e.g. hospitalised individuals). 
Individuals may move between states according to a 
network defined by a state transition matrix, depicted 
in Figure 1. The set of states and the network between 
them used within the CovidSim model is implemented 
by default in Epiabm, but specific methods to add 
user-defined compartments and connections allow for 
configurability to allow modelling of other diseases or 
alternative networks of states.

All individuals are initially ‘Susceptible’, a state where 
they have not been infected, and have no prior immunity 

https://github.com/SABS-R3-Epidemiology/epiabm
https://github.com/SABS-R3-Epidemiology/epiabm
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to the virus. Upon being infected, individuals initially 
become ‘Exposed’ (where they remain unable to infect 
others), before transitioning to an infected state after a 
randomly sampled latent time. The model implements 
a number of different ‘Infected’ states with differing 
degrees of severity, where vulnerable individuals have 
a higher likelihood of entering states with increased 
probabilities of death. This method also allows pressure 
on public health systems and intensive care units to be 
tracked, through specific states for those ill enough to 
require these facilities. Individuals with sufficiently severe 
infections may subsequently die, while all others will 

enter the ‘Recovered’ status after a randomly sampled 
waiting time. While this model does not include waning 
immunity by default, the configurability of this method 
allows for simple addition of a ‘Recovered’ to ‘Susceptible’ 
pathway over sufficient time.

Each individual is a member of a population, with the 
overall population being made up of a hierarchy of cells 
and microcells as illustrated in Figure 2. Individuals are 
assigned to households and to places (such as schools 
or workplaces) within these microcells, through which 
they may infect other individuals. Such infection events 
are probabilistic and depend on a number of factors 

Figure 1 Infection state progression, with arrows depicting the possible routes of progression through this scheme. Based on a SEIRD 
model, where all individuals are either susceptible (S) to the disease, exposed (E) to the disease, infected (I) by the disease, or who 
have recovered (R) or died (D) from the disease. Multiple compartments for infection account for cases of differing severity, and this 
network is highly configurable, and new compartments or connections can be added with ease.

S

Figure 2 Population structure in Epiabm. A population is formed of many microcells, which are grouped into cells (the largest spatial 
unit). Infected individuals may infect others within their cell through households and places, while infections are spread between 
cells according to a spatial kernel.
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including the age and infectiousness of the individuals 
involved.

Epiabm supports a complete epidemic simulation 
through a number of key workflow steps:

•	 Population Generation,
•	 Simulation Configuration,
•	 Simulation Evaluation,
•	 Results Output.

It also includes a range of example plotting scripts to 
visualise output data. Each of these workflow steps is 
explained below:

Population Generation
To generate a population, users can read in an external 
file with counts of places, households and individuals 
in each infection state per microcell (examples of this 
are provided in our repository). Alternatively, users may 
configure the population randomly based on given 
parameters (such as the number of places of each type 
per cell).

Simulation Configuration
A simulation may be configured by assigning a number 
of sweeps. These are functions that iterate over the 
population and are responsible for within-host infection 
progression and infection events between individuals via 
various transmission mechanisms (e.g. via households 
or places). A parameters file must also be specified here, 
with key-value pairs for each parameter used in the 
model – the default values provided are the same as 
those used in CovidSim, and referenced in our Wiki.

Simulation Evaluation
To evaluate the simulation, the sweep functions are called 
at each time step. This is completely modular, and so 
different infection mechanisms (such as via households 
or workplaces) may be removed independently to explore 
the role of different transmission mechanisms in the viral 
spread.

Results Output
At each timestep, output loggers may be used to record 
the current state of the simulation in a .csv file, over a 
range of resolutions – from microcell to global.

A full representation of the simulation routine is given 
in Appendix A.

COMPARISON TO COVIDSIM
While we have endeavoured to emulate both the 
overall structure and the functionality of CovidSim, the 
architecture we have used to achieve this in Epiabm 
differs significantly. Most notably, we have used a 
strongly object-oriented approach to population 

generation and storage; while less efficient, we believe 
this is more intuitive and will enable other users to easily 
adapt sections of the code for their own use. While many 
aspects of simulation configuration (such as determining 
which infection sweeps to use) are specified through 
command line flags and parameter files in CovidSim, we 
have chosen to manage configuration though workflow 
scripts, again to increase readability and ease of sharing. 
This is made possible through our modular architecture; 
while CovidSim combines sweeps and output functions in 
large code blocks, Epiabm has separate individual classes 
and methods that may be included or excluded at will. 
Related classes, such as the different infection sweeps, 
also inherit from abstract parent classes to reduce 
code duplication where daughter classes have similar 
functionality.

EXAMPLE SIMULATION
An example simulation was configured using a synthetic 
population of 10,000 individuals distributed across 200 
cells, each containing 2 microcells with five households 
per microcell. One infected individual is initialised in the 
central cell, with mild infection status. The resulting 
propagation of the infection through the population over 
a period of 80 days is visualised in Figure 3.

We also configured a national-scale simulation 
based on real-world parameter values to enable direct 
comparison to the results of CovidSim. The region of 
Gibraltar (with an approximate population of 34,000) 
was chosen for computational simplicity. Age-stratified 
output plots from both software packages are displayed 
in Figure 4 and show strong agreement, with the number 
of weekly cases peaking around April 15–April 22.

This simulation takes 42 seconds to run on the python 
backend, and 8 seconds on the C++ backend (including 
all population configuration and model running) on an 
AMD 3600X processor (6 cores, 3.8 GHz). In comparison, 
CovidSim takes a total of 45 seconds, although this is 
heavily dominated by build time (which does not scale as 
heavily in more complex cases) with the simulation alone 
running in 4.5 seconds. This highlights the performance 
compromises that have been necessary particularly in 
pyEpiabm, to ensure modularity and readability, relative 
to the highly optimised codebase of CovidSim. For this 
reason, the largest simulations we have conducted are 
for the country of New Zealand (with a population of 
5 million people), which took 8 hours on the processor 
above. Despite this, we have demonstrated the capacity 
of Epiabm to perform complete epidemic simulations on 
small countries on a personal computer in feasible time 
periods, sufficient for many educational and research 
purposes.

Full code listings for these simulations are available 
on GitHub, alongside more basic workflows to introduce 
new users to the simulation capabilities of this software.

https://github.com/SABS-R3-Epidemiology/epiabm/wiki
https://github.com/SABS-R3-Epidemiology/epiabm/tree/main/python_examples
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QUALITY CONTROL
Both the Python and C++ backends have full unit testing 
with 100% test coverage, verifying expected behaviour 
of all deterministic and stochastic methods. Functional 
testing is used for automatic verification of random 
seed reproducibility in both population generation and 
simulation methods.

Epiabm also has testing routines to ensure all publicly 
exposed methods and classes are included in the 
documentation, and uses Flake8 linter tests to ensure 
that contributed code is consistent in style. All these 
tests are included in a continuous integration pipeline 

implemented through GitHub workflows, with unit 
testing evaluated across Python versions 3.6–3.9 and the 
latest macOS, Windows and Ubuntu distributions with 
Python version 3.8.

The CONTRIBUTING.md file in the epiabm repository 
contains more detailed and up-to-date information on 
our development workflow, testing and continuous 
integration infrastructure, and coding style guidelines.

Users are also provided with a number of example 
workflows, to configure and run different types of 
simulation, as well as plotting methods to visualise their 
outputs. This includes simple simulations with known 

Figure 3 Spatial distribution of infected individuals within the population, at different time points during the simulation. Configured 
with a population of 10,000 people distributed across 200 cells, each containing 2 microcells with 5 households per microcell. One 
infected individual is initialised in the central cell, with mild infection status; the simulation is run for 80 days. Inter-cell infections 
only occur between nearby cells, allowing visualisation of the infection propagating through the simulation region over time.

Figure 4 A comparison of simulation outputs from pyEpiabm (a) and CovidSim (b), for an epidemic in Gibraltar initiated by 100 
infected individuals. While the outputs are highly stochastic, a strong agreement is broadly observed.
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behaviour, to allow bench-marking against pre-existing 
models.

(2) AVAILABILITY

OPERATING SYSTEM
Epiabm uses no functions specific to any operating 
system (OS) and so can run on any OS that provides 
Python and C++.

PROGRAMMING LANGUAGE

•	 Python – version 3.6 or higher.
•	 C++ – version 17 or higher (for cEpiabm only, 

recommended compiler G++ 9)
•	 CMake – version 3.15 (for cEpiabm only)

ADDITIONAL SYSTEM REQUIREMENTS
Memory and disk space dependent on usage case.

DEPENDENCIES
Essential:

•	 numpy >=1.8
•	 packaging
•	 pandas >=1.4
•	 tqdm

Optional:

•	 flake8 >= 3 – Used to check code style
•	 matplotlib – Used in example workflow
•	 parameterized – Used in unit tests
•	 sphinx >= 1.5 – Used to generate documentation

LIST OF CONTRIBUTORS
Our project is hosted on GitHub, and publicly visible, 
allowing researchers from around the world to find our 
work and contribute to the codebase. In addition to the 
authors of this paper, who were the primary developers 
to Epiabm, we also acknowledge contributions from the 
following individuals:

•	 Open-Source Software Contribution – Saket Kumar, 
Netaji Subhash Engineering College, Maulana Abul 
Kalam Azad University of Technology, India.

•	 Open-Source Software Contribution – Pietro 
Monticone, University of Turin.

SOFTWARE LOCATION
Archive

Name: Zenodo
Persistent identifier: DOI: 10.5281/zenodo.7327444
Licence: BSD 3-Clause

Publisher: Kit Gallagher
Version published: 1.0.1
Date published: 16/11/22

Code repository
Name: GitHub
Persistent identifier: https://github.com/SABS-R3-

Epidemiology/epiabm
Licence: BSD-3-Clause
Date published: 01/03/22

LANGUAGE
English

(3) REUSE POTENTIAL

Epiabm is designed with both research and educational 
use in mind. The modular aspect of the code allows 
for highly configurable simulations and investigation 
into the sensitivity of large scale agent-based models 
to different transmission mechanisms. While the 
default parameter values provided are tailored to the 
spread of COVID-19 within the UK population, minimal 
reconfiguration is required to adapt these for other 
countries/diseases. The modular nature of the code 
offers considerable freedom to explore and compare the 
roles of different transmission mechanisms in epidemic 
growth for viral strains with varied properties. The model 
can also be extended to include custom interventions, 
both pharmaceutical and non-pharmaceutical, on local 
and global spatial scales, and indeed this will be the 
task of one the first year group projects in the coming 
academic year.

Detailed documentation and example workflows are 
provided, also enabling use of Epiabm in educational 
settings and for users with little familiarity with agent-
based epidemiological models. We welcome questions, 
suggestions, bug reports, and user contributions via the 
GitHub repository, which acts as a central communication 
platform for Epiabm. A detailed guide on contributing to 
Epiabm is also available there.

APPENDIX A 
EPIABM IMPLEMENTATION
This section introduces our implementation of CovidSim, 
in the pyEpiabm backend. The cEpiabm backend 
broadly follows the same structure at all levels, and all 
pseudocode given here also applies to this backend.

The overall workflow is illustrated in Algorithm 1, 
which represents the simulation flow file and the broad 
functionality of the ‘Simulation’ class. The bulk of the 
simulation work occurs within the ‘sweep()’ function 
calls, an example of which is given in Algorithm 2.

https://doi.org/10.5281/zenodo.7327444
https://github.com/SABS-R3-Epidemiology/epiabm
https://github.com/SABS-R3-Epidemiology/epiabm
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Require: parameters.json file
Ensure: Output .csv files � Containing case numbers at each timestep
pop params ← {‘population size’: 1000, ...}
population ← ToyPopulationFactory.make pop(pop params)

sim ← Simulation()
sim.configure(population, list of sweeps)
t ← start time
while t < end time do

HouseholdSweep()
PlaceSweep()
t ← t + time step

end while

Algorithm 1 Outline of the overall workflow for Epiabm.

Algorithm 2 Example of an infection sweep from Epiabm, handling infections occurring within a household.

Require: population, t (current time)
Ensure: Queues individuals newly infected within households
for cell in population.cells do

for infector in cell.persons do
assert infector.household is not None:
if not infector.is infectious() then

continue
end if

for infectee in infector.household.persons do
if not infectee.is susceptible() then

continue
end if
force of infection ← household foi(infector, infectee, t)
r ← random.uniform(0, 1)
if r < force of infection then

cell.enqueue person(infectee) � Queue person for infection
end if

end for
end for

end for
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