
SOFTWARE METAPAPER

Plots.jl – A User
Extendable Plotting API
for the Julia Programming
Language

SIMON CHRIST

DANIEL SCHWABENEDER

CHRISTOPHER RACKAUCKAS

MICHAEL KRABBE BORREGAARD

THOMAS BRELOFF

ABSTRACT
There are many excellent plotting libraries. Each excels at a specific use case: one
is particularly suited for creating printable 2D figures for publication, another for
generating interactive 3D graphics, while a third may have excellent LaTeX integration
or be ideal for creating dashboards on the web. The aim of Plots.jl is to enable the
user to use the same syntax to interact with a range of different plotting libraries,
making it possible to change the library that does the actual plotting (the backend)
without needing to touch the code that creates the content – and without having to
learn multiple application programming interfaces (API). This is achieved by separating
the specification of the plot from the implementation of the graphical backend. This
plot specification is extendable by a recipe system that allows package authors and
users to create new types of plots, as well as to specify how to plot any type of object
(e.g. a statistical model, a map, a phylogenetic tree or the solution to a system of
differential equations) without depending on the Plots.jl package. This design
supports a modular ecosystem structure for plotting and yields a high code reuse
potential across the entire Julia package ecosystem. Plots.jl is publicly available at
https://github.com/JuliaPlots/Plots.jl.

CORRESPONDING AUTHOR:

Simon Christ

Leibniz Universität Hannover, DE

christ@cell.uni-hannover.de

KEYWORDS:
visualization; julia; plotting;
julia-language; user-extendable

TO CITE THIS ARTICLE:
Christ S, Schwabeneder D,
Rackauckas C, Borregaard MK,

Breloff T 2023 Plots.jl – A
User Extendable Plotting API
for the Julia Programming
Language. Journal of Open
Research Software, 11: 5.
DOI: https://doi.org/10.5334/
jors.431

*Author affiliations can be found in the back matter of this article

https://github.com/JuliaPlots/Plots.jl
mailto:christ@cell.uni-hannover.de
https://doi.org/10.5334/jors.431
https://doi.org/10.5334/jors.431
https://orcid.org/0000-0002-5866-1472
https://orcid.org/0000-0002-0412-0777
https://orcid.org/0000-0001-5850-0663
https://orcid.org/0000-0002-8146-8435

2Christ et al. Journal of Open Research DOI: 10.5334/jors.431

(1) OVERVIEW

INTRODUCTION
Julia [5] is a programming language that achieves high
performance, stellar modularity and easy composability
by making use of multiple dispatch and just-in-time
compilation. This comes at the cost of increased latency
for new function calls, as the language compiles new
machine-code the first time any function is called on
new types of arguments. This first call compilation
time is a notorious issue for packages that call a large
part of their codebase in the first call, such as plotting
packages. It even coined the term time to first plot (TTFP)
as a phrase for Julia’s start-up latency. Indeed, the Julia
language survey 2020 [34] identified “it takes too long to
generate the first plot” as the biggest problem faced by
Julia users.

Package authors try to minimize loading time by
reducing the number of dependencies, in particular
those that themselves have long loading times.
Because depending on a plotting package drastically
increases startup time, authors are faced with
a challenge if they want to define new plotting
functionality for their packages, e.g. if a package for
differential equations wishes to define a specialized
plotting method for differential equation solutions,
to make it easy for users to investigate them visually.
Furthermore, depending on a plotting package limits
users to plotting with that particular package. If
a project imports multiple packages that depend
on different plotting packages, this may lead to
conflicts and namespace clashes. As a consequence,
depending on a plotting package is rarely seen in the
Julia ecosystem. Plots.jl has solved this problem
by introducing the concept of plot recipes, which
allows package authors to define new types of plots
while only depending on a very lightweight package
RecipesBase.jl. For package developers this makes it
easy and unproblematic to define Plots.jl recipes for
any new types of objects they define in their package.
This recipe will automatically support any Plots.jl
backend without running the risk of package conflicts.
From the users point of view, the support for multiple
backends considerably lowers the threshold for use,
as learning syntax and concepts of a new plotting
framework is a significant time investment that
many users are reluctant to make. With Plots.jl,
the backend plotting package can be switched with a
single function call, while the syntax and usage stays
the same. Thus Plots.jl offers a unified and powerful
API with a convenient way for package authors to
support visualizations with multiple plotting packages,
without increasing the loading time of their package,
while at the same time offering users more choice
and less cognitive load. An example of the convenient

composability of Plots.jl and third party packages is
given in Listing 9.

DEVELOPMENT
Plots.jl was created by Tom Breloff between
September 2015 and 2017, with the stated goal of
creating a plotting API for the Julia [5] language that
was powerful, intuitive, concise, flexible, consistent,
lightweight and smart. In particular the recipe system
helped the package gain traction within the community,
as the latency of loading large dependencies was
generally recognized as one of the major factors limiting
the uptake of Julia.

With time Tom moved on, and the development
of Plots.jl was continued by Michael K. Borregaard,
Daniel Schwabeneder and Simon Christ (cf. Figures 6,
7 and Table 1). The maintenance of the project is now
a joint effort of the Julia community. The package has
reached a very high uptake in the ecosystem. In the
Julia Language Survey of both 2019 [35] and 2020 [34],
Plots.jl was identified as the Julia community’s favorite
package across the entire ecosystem with 47 percent of
all participants listing it among their favorite packages.

USAGE
Plots.jl is used for visualizations in scientific publications
from different fields, such as numerics [32, 4, 9, 11, 15,
24], mathematics [14], biology [3, 6], ecology [13] and
geology [10, 23] as well as for teaching purposes [8, 22].

Many packages in the Julia ecosystem as well as
non-packaged code (e.g. for scientific projects and
publications) contain Plots.jl recipes. According to
recent download statistics [27] Plots.jl has between
500 and 2000 downloads per day, and over 300
published packages in the general package registry of
Julia currently have recipes for Plots.jl defined.

COMPARISON
Plots.jl achieves its functionality by leveraging the
multiple dispatch paradigm of julia, which allows the user
to define multiple methods for the same function, with
the compiler selecting the appropriate method based on
the types of the input arguments. Because of the close
connection to Julia’s multiple dispatch paradigm its
approach to plotting is fairly unique.

In python, the library unified-plotting [39] shares the
aim of providing a unified API for multiple packages, in
this case matplotlib [21], pyplot and javascript libraries
including d3.js [7]. However, unified-plotting is still in the
beta phase and not widely used.

The authors are not aware of other package
ecosystems that have a recipe system akin to that of
Plots.jl, though a recipe system inspired by that of
Plots.jl is presently being implemented for the Julia
library Makie.jl [12].

3Christ et al. Journal of Open Research DOI: 10.5334/jors.431

IMPLEMENTATION AND ARCHITECTURE
One-function API
A central design goal of Plots.jl is that the user should
rarely have to consult the documentation while plotting.
This is achieved by having a tightly unified syntax that
has few function names to remember, and by having a
great deal of flexibility in the inputs of those functions
through aliases and redundancy.

Plots.jl’s main interface is simply the plot function,1
which creates a new plot object. Additionally, there is a plot!
function that modifies an existing plot object, e.g. by changing
axes limits or adding new elements. Any type of predefined
plot (e.g. a histogram, a bar plot, a scatter plot, a heatmap,
an image, a geographical map, etc.) may be created by a call
to plot. The exact type is defined by the keyword argument
seriestype and the input arguments (type and number).
New seriestypes can be created with recipes (see below).

For convenience, Plots.jl also exports shorthand
functions named after the seriestypes (see examples in
Listing 1).

All aspects of the plot are controlled by a set of plot
attributes, that are controlled by keyword arguments
[26]. Plots.jl distinguishes four hierarchical levels
of attributes: plot attributes, subplot attributes, axis
attributes and series attributes (cf. Figure 1). There is
one additional special type of attributes called magic
attributes. They allow to set multiple attributes that
belong to a common element in a single keyword.
E.g. plot(1:2; line = (5, :dash)) is equivalent to
plot(1:2; linewidth = 5, linestyle = :dash).

A series in the context of Plots.jl syntax is an
individual plot element, such as a continuous line or
a set of scatter points. For example, the left plot in
Figure 1 has three series, distinguished by different
types of markers. A plot may contain multiple series,
e.g. when adding a trend line to a scatter plot.
Multiple series may be added in the same plot call
by concatenating the data as columns in a row matrix
(see below), or added sequentially with the plot!
function.

Listing 1 Examples of shorthands. Full list available at https://docs.juliaplots/stable/api/#Plot-specification.

Figure 1 Example plot of the iris dataset [37] to illustrate the use of different attribute types (cf. Listing 2).

https://docs.juliaplots/stable/api/#Plot-specification

4Christ et al. Journal of Open Research DOI: 10.5334/jors.431

Input arguments can have many different forms, such as:

Calling the plot function returns a Plot object. The Plot
object is essentially a big nested dictionary holding the
plot attributes for the layout, subplots, series, segments,
etc. and their associated data values. The Plot object is
automatically rendered in the surrounding context2 when
returned to an interactive session, or can be displayed
explicitly by calling the display function on the object.
This delayed rendering means that plot calls can be
combined without unnecessary intermediate rendering.

Pipeline
The plotting pipeline has two main stages (cf. Figure 2):
construction of the plot using plot/plot! calls and
creation of the output via savefig/display/gui calls.
These calls are often called implicitly in environments like
the Julia REPL, notebooks or IDEs.

The very first step upon construction is to convert all
inputs to form the list of plot attributes that constitute
the plot specification. As shown in Listing 3 Plots.jl is

Listing 2 Code corresponding to Figure 1.

5Christ et al. Journal of Open Research DOI: 10.5334/jors.431

Figure 2 Plotting pipeline in Plots.jl. The separation of construction and output production enables the flexible use of different

backends in the same session and helps to avoid unnecessary intermediate calculation. Created using mermaid [1].

Listing 3 Examples of input preprocessing steps in Plots.jl. All these calls are equivalent.

6Christ et al. Journal of Open Research DOI: 10.5334/jors.431

very flexible about possible input values. The conversion
step involves defining values for every attribute based on
the provided keyword arguments. This includes replacing
aliases of attributes (which are multiple alternatively
spelled keywords, such as ‘c’ or ‘color’, encoding the
same attribute), handling of missing and nothing values
in the input data and attribute values, and determining
the final values based on the set of defaults. The default
values are organized in a hierarchical framework, based
on the values of other attributes; e.g. linecolor,
fillcolor and markercolor will default to seriescolor
under most seriestypes. But, for instance, under the bar
seriestype, linecolor will default to :black, giving bars
a black border by default. This allows the construction of
appropriate plots with a minimum of user specification,
an input paradigm that contrasts with that of e.g.
matplotlib, where every aspect of the plot is usually
defined manually by the user. This paradigm allows for
quick and simple visualisation as part of e.g. data analysis.

After input and attribute conversion, recipes are applied
recursively and the Plot and Subplot objects are initialized.
Recipes will be explained in detail in the next section.

When an output is to be produced the layout will
be computed and the backend-specific code will be
executed to produce the result.

Recipes
As mentioned in the introduction, recipes are the key
mechanism in the Plots.jl pipeline to allow composable
definition of visualizations across Julia packages. A recipe
works as a template that allows the users and package
developers to define custom plotting routines while only
depending on the lightweight package RecipesBase.jl
(instead of on Plots.jl). Recipes are applied recursively,
which makes it easy to compose or combine multiple
recipes. This means that any recipe may call other recipes
until the plot consists of a seriestype defined internally in
Plots.jl. This composability, is a major improvement to
ecosystem support, as it gives a combinatory reduction
in the amount of code required for downstream libraries
to add native plotting support for their types.

Plots.jl distinguishes four types of recipes: user
recipes, type recipes, plot recipes and series recipes [20]
(cf. Listing 4). By far the most commonly used types are
User recipes, which define how to plot objects of a certain

type, and series recipes, which define a new seriestype.
All four types can be constructed with the @recipe
macro which acts on a function definition and creates
a new method for the RecipesBase.apply_recipe
function. The recipe type is determined by the signature
of the function definition, utilizing the multiple dispatch
capabilities of the Julia programming language.

It is sufficient to depend on the RecipesBase.jl
package, a small and lightweight dependency to
define a recipe. The aim of RecipesBase.jl is to make
specialized syntax available for the code author to define
visualizations; it has no effect until the package end user
loads Plots.jl directly.

How is this an improvement over other approaches to
defining new visualizations? In most plotting libraries such
as matplotlib [21], a downstream ODE solver library can
add a new function plotsolution that will plot an ODE
solution. However, the primary technological advance
of the Plots.jl recipe system is that the application of
recipes is recursive and extendable via multiple dispatch.
This solves a combinatory problem for downstream
support: it is possible to combine and chain recipes to
support plotting on new combinations of input types
without ever defining a recipe for that specific combination.

To illustrate this, consider the example of
combining recipes defined by the Julia packages
DifferentialEquations.jl [33] and Measurements.jl
[16] (cf. Figure 3 and Listing 9). In this example, a user
solves a differential equation with uncertain initial
conditions specified by Measurements.Measurement
objects. The uncertainty encoded in the Measurement
objects are automatically propagated through the
ODE solver, as multiple methods for this type have
been defined for arithmetic functions. The resulting
ODE solution Sol will then also be specified in terms of
Measurements.Measurements. When calling plot(sol),
the recipe for ODE solvers will transform the ODESolution
object into an array of arrays, each representing a time
series to plot, using techniques like dense output to
produce a continuous looking solution. This array of
arrays contains number types matching the state of
the solution, in this case Measurements.Measurements.
Successive applications of the user recipe defined in
Measurements.jl then take each state value and assign
the uncertainty part of the state to the yerror attribute

Listing 4 Recipe signatures.

7Christ et al. Journal of Open Research DOI: 10.5334/jors.431

and pass the value part of the state to the next recipe.
When used with the initial seriestype :scatter this results
in a scatter plot with proper error bars as seen in Figure 3.

Notably, the two packages have not been developed
to work together and are not aware of each other.
Yet, multiple dispatch allows to efficiently combine
functionality from both packages, and the Plots.jl
recipe system allows the combined visualization to work
automatically.

The recipe of Measurements.jl is an example of a particu-
larly short recipe (cf. Listing 5). A Measurements.Measurement
is represented as a type with two fields: value and
uncertainty. It can be conveniently constructed with
the Unicode infix operator ±. Thus, the object a ± b has
a as the value and b as the uncertainty. An array of
measurement values can be converted into an array
of floating point values to plot, along with having the
uncertainties as error bars, via the recipe defined in
Listing 5:

Structure and interfaces
The code for Plots.jl is not located in one repository,
but split into a few packages, to enhance reuse of more

general parts of the code by other packages (cf. Figure 4).
In the following the different packages and their use
cases will be described.

Plots.jl: The main user facing package; Defines all default
values and holds the code for layouting, conversion of
input arguments, output generation, all backend code
and the default recipes. This is the repository with the
highest rate of change.

StatsPlots.jl: A drop-in replacement for Plots.jl, meaning
it loads and reexports all of Plots.jl and adds recipes that
are specially targeted at visualisation of statistical data;
It aims to be integrated with Julia’s statistical package
ecosystem under the JuliaStats organisation. Therefore it
has more dependencies than Plots.jl, which increases
the loading time. Since not all Plots.jl users need this
functionality it is separated in its own repository.

PlotUtils.jl: Provides general utility routines, such as
handling colors, optimizing ticks or function sampling;
This package is also used by e.g. the newer plotting
package Makie.jl.

Listing 5 Measurements.jl recipe.

Figure 3 Showcase of composing recipes. Plotting a ODESolution object from DifferentialEquations.jl containing
Measurements from Measurements.jl will apply the recipe of DifferentialEquations.jl which will return vectors of
Measurements, which will apply the recipe from Measurements.jl; yielding the solutions of the Lotka-Volterra system [2] with
correct error bounds without the user having to change the callsite. Neither of these packages has code in their recipes for handling
types of the other package. Full code available in Listing 9.

8Christ et al. Journal of Open Research DOI: 10.5334/jors.431

RecipesBase.jl: A package with zero 3rd-party
dependencies, that can be used by other packages to
define recipes for their own types without needing to
depend on Plots.jl.

RecipesPipeline.jl: Another lightweight package that
defines an API such that other plotting packages can
consume recipes from RecipesBase.jl without needing
to become a backend of Plots.jl.

GraphRecipes.jl: A package that provides recipes for
visualisation of graphs in the sense of graph theory; These are
also split out because they have some heavy dependencies.

PlotThemes.jl: Provides different themes for Plots.jl.

PlotDocs.jl: Hosts the documentation of Plots.jl.

Backends
Plots.jl currently supports seven plotting frameworks
as backends. These backends are the libraries that do
the actual rendering, either on the screen or to a file. The
code in Plots.jl translates the user code to backend
code (cf. Listings 6 to 8 and Figure 5).

The backend packages are independently developed by
different people and organizations. Typically these plotting
frameworks themselves have different graphic libraries as

Figure 4 Overview of the Plots.jl ecosystem and its interfaces with other Julia packages. The numbers of dependents are taken
from juliahub [30].

Figure 5 An example figure generated from the code shown in Listing 6. Listings 7 and 8 illustrate how the generated backend code could
look like for different backends. The actual backend code is more verbose and likely uses more low-level functions. These listings also

show how Plots.jl provides a unified API for its backend packages, since the translation between Listings 7 and 8 is not straightforward.

9Christ et al. Journal of Open Research DOI: 10.5334/jors.431

backends to support different output types. They differ in
their area of expertise and have different trade-offs.

GR: The default backend; It uses the GR framework [18]
and is among the fastest backends with a good coverage
of functionality.

Plotly/PlotlyJS: The backend with the most interactivity
and best web support using the plotly javascript
library [29]; One use case is to create interactive plots in
documentation [31] or notebooks. The Plotly backend
is a version with minimal dependencies, which doesn’t
require the user to load any other Julia package and
displays its graphics in the browser, while PlotlyJS

requires the user to load PlotlyJS.jl, but offers display
of plots in a standalone window.

PyPlot: PyPlot.jl is the Julia wrapper of matplotlib
[21] and covers a lot of functionality at moderate
speed.

PGFPlotsX: Uses the pgfplots LaTeXpackage [28]; Thus,
it is the slowest of the backends, but integrates very good
with LaTeXdocuments.

InspectDR: Fast backend with GUI and some interactivity;
It does good for 2D and handles large datasets and high
refresh rates [25].

Listing 6 Plots.jl code corresponding to Figure 5.

Listing 7 PyPlot.jl code roughly corresponding to using Plots; pyplot() in line 4 of Listing 6.

10Christ et al. Journal of Open Research DOI: 10.5334/jors.431

UnicodePlots: A backend that allows plotting in the
terminal with unicode characters; It can be used in a
terminal also on headless machines [38]. Therefore
it lacks a lot of functionality compared to the other
backends.

HDF5: A backend that can be used to save the Plot
object along with the data in a hdf5-file using HDF5.jl
[19], such that it can be recovered with any backend; It
potentially allows interfacing with Plots.jl from other
programming languages.

Furthermore, there are six deprecated backends that
were used in the earlier stages of Plots.jl, but which are
no longer maintained as well as the Gaston.jl backend
which is in an early experimental stage. Gaston.jl
is a Julia interface for gnuplot [17]. This shows that
Plots.jl can be sustained even if a maintainer

of backend code leaves. Either the backend will be
maintained by the community or it will be replaced by
another backend.

The backend code of these backends, that is the glue
code that translates Plots.jl objects and attributes
into calls and objects of the backend library, is located
in the src/backends folder and, apart from the default
backend, are only loaded when the backend gets
activated.

A shortcoming of the backend design is that, in terms
of maintenance, this part of the codebase is the biggest
challenge, since it requires knowledge of Plots.jl as
well as of the target backend library. Maintainers of
those libraries are usually working to capacity on their
library, while users of Plots.jl are often using Plots.jl
because they don’t want to learn the usage of one or
even several different backends. That is why feature
coverage between backends typically varies, though a

Listing 8 PGFPlotsX.jl code roughly corresponding to using Plots; pgfplotsx() in line 4 of Listing 6.

11Christ et al. Journal of Open Research DOI: 10.5334/jors.431

good amount of these holes can be covered by recipes.
Sometimes these even provide features that the backend
library is missing or gives at least easier access in terms
of syntax. On the other hand there are some features
that are present in one backend library, but not in others.
Some examples are layouts, information on hover, shared
or split legends, hexagonal bins and more. In these cases
one either has to find workarounds leveraging other
aspects of the backend code, not support that feature at
all, or only support it partially.

QUALITY CONTROL
Plots.jl runs unit tests of all backends, as well as
visual regression tests of the default backend, against
the latest version of macOS, Ubuntu and Windows,
using the current stable version of Julia, the long
term support version and the nightly version, on
every pull request and pushes to the default branch
of Plots.jl. Furthermore, benchmarks are run to
detect performance regressions. Lastly, building the
documentation creates a suite of example plots for
every backend, which also sometimes highlight hard-
to-detect errors.

However, the size and flexibility of this project also
creates a large surface area that is hard to cover by
tests in its entirety. And while it is continually worked
on to increase the coverage, there is probably always
something missing.

(2) AVAILABILITY

OPERATING SYSTEM
Plots.jl is tested on Windows, Linux and macOS.

PROGRAMMING LANGUAGE
Plots.jl v1.13.2 runs on Julia 1.5 and later.

ADDITIONAL SYSTEM REQUIREMENTS
Dependencies
Plots.jl has the following direct dependencies:

Contour.jl v0.5
FFMPEG.jl v0.2 – v0.4
FixedPointNumbers v0.6 – v0.8
GR.jl v0.46 – v0.55, v0.57
GeometryBasics.jl v0.2, v0.3.1 – v0.3
JSON.jl v0.21, v1
Latexify.jl v0.14 – v0.15
Measures.jl v0.3
NaNMath.jl v0.3
PlotThemes.jl v2
PlotUtils.jl v1
RecipesBase.jl v1
RecipesPipeline.jl v0.3
Reexport.jl v0.2, v1
Requires.jl v1
Scratch.jl v1
Showoff.jl v0.3.1 – v0.3, v1
StatsBase.jl v0.32 – v0.33

In addition, Plots.jl has 125 indirect dependencies all
of which can be seen at JuliaHub [30]. Thanks to Julia’s
excellent package manager Pkg.jl, BinaryBuilder.jl,
semantic versioning and required upper bounds for the
general registry, handling of dependencies is relatively
painless for users.

LIST OF CONTRIBUTORS
The Plots.jl project lives from the many contsibutions
of its community. Table 1 lists all contributors of Plots.jl
and Figures 6 and 7 illustrate the distribution of code
over the different contributors. The code for creating
Table 1 and figures is publicly available at https://gitlab.
uni-hannover.de/comp-bio/manuscripts/plots-paper.

Figure 6 Lines of code alive of the top ten contributors of the Plots.jl repository over time. Data created with hercules [36].

https://gitlab.uni-hannover.de/comp-bio/manuscripts/plots-paper
https://gitlab.uni-hannover.de/comp-bio/manuscripts/plots-paper

12Christ et al. Journal of Open Research DOI: 10.5334/jors.431

Figure 7 Lines of code alive of the top ten contributors of the Plots.jl ecosystem (Figure 4) over time. Data created with hercules [36].

NAME AFFILIATION ROLE ORCID

Tom Breloff Headlands Technologies Creator missing

Daniel Schwabeneder TU Wien ProjectLeader 0000-0002-0412-0777

Michael Krabbe Borregaard GLOBE Institute, University of Copenhagen ProjectLeader 0000-0002-8146-8435

Simon Christ Leibniz Universität Hannover ProjectLeader 0000-0002-5866-1472

Josef Heinen Forschungszentrum Jülich ProjectMember 0000-0001-6509-1925

Yuval missing Other missing

Andrew Palugniok missing ProjectMember missing

Simon Danisch @beacon-biosignals Other missing

Pietro Vertechi Veos Digital (https://veos.digital/) ProjectMember missing

Zhanibek Omarov Korea Advanced Inst. of Science and Technology (KAIST) ProjectMember 0000-0002-8783-8791

Thatcher Chamberlin missing Other missing

@ma-laforge missing ProjectMember missing

Christopher Rackauckas Massachusetts Institute of Technology Other 0000-0001-5850-0663

Oliver Schulz Max Planck Institute for Physics Other missing

Sebastian Pfitzner @JuliaComputing Other missing

Takafumi Arakaki missing Other missing

Amin Yahyaabadi University of Manitoba Other missing

Jack Devine missing Other missing

Sebastian Pech missing Other missing

Patrick Kofod Mogensen @JuliaComputing Other 0000-0002-4910-1932

Samuel S. Watson missing Other missing

Naoki Saito UC Davis Other 0000-0001-5234-4719

Benoit Pasquier University of Southern California (USC) Other 0000-0002-3838-5976

Ronny Bergmann NTNU Trondheim Other 0000-0001-8342-7218

Andy Nowacki University of Leeds Other 0000-0001-7669-7383

Ian Butterworth missing Other missing

David Gustavsson Lund University Other 0000-0002-0195-475X

Anshul Singhvi Columbia University Other 0000-0001-6055-1291

(Contd.)

https://veos.digital/

13Christ et al. Journal of Open Research DOI: 10.5334/jors.431

NAME AFFILIATION ROLE ORCID

david-macmahon missing Other missing

Fredrik Ekre missing Other missing

Maaz Bin Tahir Saeed missing Other missing

Kristoffer Carlsson missing Other missing

Will Kearney missing Other missing

Niklas Korsbo missing Other missing

Miles Lucas missing Other missing

@Godisemo missing Other missing

Florian Oswald missing Other missing

Diego Javier Zea missing Other missing

@WillRam missing Other missing

Fedor Bezrukov missing Other missing

Spencer Lyon missing Other missing

Darwin Darakananda missing Other missing

Lukas Hauertmann missing Other missing

Huckleberry Febbo missing Other missing

@H-M-H missing Other missing

Josh Day missing Other missing

@wfgra missing Other missing

Sheehan Olver missing Other missing

Jerry Ling missing Other missing

Jks Liu missing Other missing

Seth Axen missing Other missing

@o01eg missing Other missing

Sebastian Micluța-Câmpeanu missing Other missing

Tim Holy missing Other missing

Tony Kelman missing Other missing

Antoine Levitt missing Other missing

Iblis Lin missing Other missing

Harry Scholes missing Other missing

@djsegal missing Other missing

Goran Nakerst missing Other missing

Felix Hagemann missing Other missing

Matthieu Gomez missing Other missing

@biggsbiggsby missing Other missing

Jonathan Anderson missing Other missing

Michael Kraus missing Other missing

Carlo Lucibello missing Other missing

Robin Deits missing Other missing

Misha Mkhasenko missing Other missing

Benoît Legat missing Other missing

Steven G. Johnson missing Other missing

John Verzani missing Other missing

(Contd.)

14Christ et al. Journal of Open Research DOI: 10.5334/jors.431

NAME AFFILIATION ROLE ORCID

Mattias Fält missing Other missing

Rashika Karki missing Other missing

Morten Piibeleht missing Other missing

Filippo Vicentini missing Other missing

David Anthoff missing Other missing

Leon Wabeke missing Other missing

Yusuke Kominami missing Other missing

Oscar Dowson missing Other missing

Max G missing Other missing

Fabian Greimel missing Other missing

Jérémy missing Other missing

Pearl Li missing Other missing

David P. Sanders missing Other missing

Asbjørn Nilsen Riseth missing Other missing

Jan Weidner missing Other missing

@jakkor2 missing Other missing

Pablo Zubieta missing Other missing

Hamza Yusuf Çakır missing Other missing

John Rinehart missing Other missing

Martin Biel missing Other missing

Moritz Schauer missing Other missing

Mosè Giodano missing Other missing

@olegshtch missing Other missing

Leon Shen missing Other missing

Jeff Fessler missing Other missing

@hustf missing Other missing

Asim H Dar missing Other missing

@8uurg missing Other missing

Abel Siqueira missing Other missing

Adrian Dawid missing Other missing

Alberto Lusiani missing Other missing

Balázs Mezei missing Other missing

Ben Ide missing Other missing

Benjamin Lungwitz missing Other missing

Bernd Riederer University of Graz Other 0000-0001-8390-0087

Christina Lee missing Other missing

Christof Stocker missing Other missing

Christoph Finkensiep missing Other missing

@Cornelius-G missing Other missing

Daniel Høegh missing Other missing

Denny Biasiolli missing Other missing

Dieter Castel missing Other missing

Elliot Saba missing Other missing

(Contd.)

15Christ et al. Journal of Open Research DOI: 10.5334/jors.431

NAME AFFILIATION ROLE ORCID

Fengyang Wang missing Other missing

Fons van der Plas missing Other missing

Fredrik Bagge Carlson missing Other missing

Graham Smith missing Other missing

Hayato Ikoma missing Other missing

Hessam Mehr missing Other missing

@InfiniteChai missing Other missing

Jack Dunn missing Other missing

Jeff Bezanson missing Other missing

Jeff Eldredge missing Other missing

Jinay Jain missing Other missing

Johan Blåbäck missing Other missing

@jmert missing Other missing

Lakshya Khatri missing Other missing

Lia Siegelmann missing Other missing

@marekkukan-tw missing Other missing

Mauro Werder ETH Zurich Other 0000-0003-0137-9377

Maxim Grechkin missing Other missing

Michael Cawte missing Other missing

@milesfrain missing Other missing

Nicholas Bauer missing Other missing

Nicolau Leal Werneck missing Other missing

@nilshg missing Other missing

Oliver Evans missing Other missing

Peter Gagarinov missing Other missing

Páll Haraldsson missing Other missing

Rik Huijzer missing Other missing

Romain Franconville missing Other missing

Ronan Pigott missing Other missing

Roshan Shariff missing Other missing

Scott Thomas missing Other missing

Sebastian Rollén missing Other missing

Seth Bromberger missing Other missing

Siva Swaminathan missing Other missing

Tim DuBois missing Other missing

Travis DePrato missing Other missing

Will Thompson missing Other missing

Yakir Luc Gagnon missing Other missing

Benjamin Chislett missing Other missing

@hhaensel missing Other missing

@improbable22 missing Other missing

Johannes Fleck missing Other missing

Peter Czaban missing Other missing

(Contd.)

16Christ et al. Journal of Open Research DOI: 10.5334/jors.431

SOFTWARE LOCATION
Code repository Github

Name: JuliaPlots/Plots.jl
 Persistent identifier: https://doi.org/10.5281/zenodo.
4725318
Licence: MIT
Version published: 1.13.2
Date published: 28/04/2021

The first version of Plots.jl was published on github at
11/09/2015.

LANGUAGE
julia

(3) REUSE POTENTIAL

Plots.jl can be used by people working in all fields for
data visualization. In particular, it is possible to define

backend agnostic recipes for their domain specific data
structures with minimal dependencies. These can be
shared, reused and extended by peers with ease by
including these recipes in their packages or published
scripts. Moreover, it is possible for other plotting software
with Julia bindings to take advantage of the recipe
system either by contributing backend code to Plots.jl
or by using RecipesPipeline.jl to become an
independent consumer of RecipesBase.jl’s recipes.
Plotting software without Julia bindings could potentially
use the HDF5 backend to consume fully processed and
serialized recipe data.

People interested in modifying, extending or
maintaining Plots.jl can get in contact either via the
github issue tracker, the Julia discourse forum or the Julia
slack and zulip spaces. There are quarterly maintenance
calls that can be joined on request.

CODE EXAMPLES

NAME AFFILIATION ROLE ORCID

@innerlee missing Other missing

Mats Cronqvist missing Other missing

Shi Pengcheng missing Other missing

@wg030 missing Other missing

Will Tebbutt University of Cambridge Other missing

@t-bltg missing Other missing

Fred Callaway missing Other missing

Jan Thorben Schneider missing Other missing

Lee Phillips Alogus Research Corporation Other 0000-0003-4102-2460

Tom Gillam missing Other missing

Table 1 Contributors sorted by number of commits.

Listing 9 Recipes showcase.

https://doi.org/10.5281/zenodo.4725318
https://doi.org/10.5281/zenodo.4725318

17Christ et al. Journal of Open Research DOI: 10.5334/jors.431

NOTES
1 Technically the API consists of more than one function, but the

vast majority is plot/plot! and aliases thereof.

2 That is an external window when using a plain terminal, a plot
pane in an IDE or the output area in a notebook environment.

ACKNOWLEDGEMENTS

We like to acknowledge the support of the Julia
community and the numerous contributors that keep
this project alive.

FUNDING INFORMATION

Michael K. Borregaard was supported by grant number
CF19-0695 from the Carlsberg Foundation.

COMPETING INTERESTS

The authors have no competing interests to declare.

AUTHOR AFFILIATIONS

Simon Christ orcid.org/0000-0002-5866-1472
Leibniz Universität Hannover, DE

Daniel Schwabeneder orcid.org/0000-0002-0412-0777
TU Wien, AT

Christopher Rackauckas orcid.org/0000-0001-5850-0663
Massachusetts Institute of Technology, US

Michael Krabbe Borregaard orcid.org/0000-0002-8146-8435
Center for Macroecology, Evolution and Climate, Globe
Institute, University of Copenhagen, DK

Thomas Breloff
Headlands Technologies, US

REFERENCES

1. About Mermaid. url: https://mermaid-js.github.io/

mermaid/#/README (visited on 03/02/2022).

2. Lotka AJ. Elements of Physical Biology. In collab. with

Indian Institute Of Science, IISc Library, and Jiju. Williams

and Wilkins Company. 1925; 495 pp. url: http://archive.

org/details/elementsofphysic017171mbp (visited on

05/31/2022).

3. Angevaare A, Feng Z, Deardon R. Infectious Disease

Transmission Network Modelling with Julia; Feb. 13, 2020.

4. Carlson FB. MonteCarloMeasurements.Jl: Propagation of

Distributions by Monte-Carlo Sampling: Real Number Types

with Uncertainty Represented by Particle Clouds. 2019.

url: http://lup.lub.lu.se/record/8ff6a743-0ad6-4d98-bbb3-

5d549c698bc1 (visited on 05/03/2021).

5. Bezanson J, et al. Julia: A Fresh Approach to

Numerical Computing. In: SIAM Rev. Jan. 2017; 59(1):

65–98. issn: 0036-1445, 1095-7200. DOI: https://doi.

org/10.1137/141000671

6. Bonham KS, et al. Microbiome.Jl and BiobakeryUtils.

Jl – Julia Packages for Working with Microbial Community

Data. In: Journal of Open Source Software. Nov. 17,

2021; 6(67): 3876. issn: 2475-9066. DOI: https://doi.

org/10.21105/joss.03876

7. Bostock M. D3.Js – Data-Driven Documents. url: https://

d3js.org/ (visited on 03/02/2022).

8. Boyd S, Vandenberghe L. Introduction to Applied Linear

Algebra: Vectors, Matrices, and Least Squares. 1st ed.

Cambridge University Press; June 7, 2018. isbn: 978-

1-316-51896-0 978-1-108-58366-4. DOI: https://doi.

org/10.1017/9781108583664

9. Caldwell A, et al. BAT.Jl Upgrading the Bayesian

Analysis Toolkit. In: EPJ Web Conf. 2020; 245: 06001.

issn: 2100-014X. DOI: https://doi.org/10.1051/

epjconf/202024506001

10. Constantinou N, et al. GeophysicalFlows.Jl: Solvers for

Geophysical Fluid Dynamics Problems in Periodic Domains

on CPUs GPUs. In: JOSS. Apr. 21, 2021; 6(60): 3053. issn:

2475-9066. DOI: https://doi.org/10.21105/joss.03053

11. Čufar M. Ripserer.Jl: Flexible and Efficient Persistent

Homology Computation in Julia. In: JOSS. Oct. 19,

2020; 5(54): 2614. issn: 2475-9066. DOI: https://doi.

org/10.21105/joss.02614

12. Danisch S, Krumbiegel J. Makie.Jl: Flexible High-

Performance Data Visualization for Julia. In: Journal of

Open Source Software. Sept. 1, 2021; 6(65): 3349. issn:

2475-9066. DOI: https://doi.org/10.21105/joss.03349

13. Dansereau G, Poisot T. SimpleSDMLayers.Jl and GBIF.Jl:

A Framework for Species Distribution Modeling in Julia.

In: JOSS. Jan. 27, 2021; 6(57): 2872. issn: 2475-9066. DOI:

https://doi.org/10.21105/joss.02872

14. Driscoll T. ComplexRegions.Jl: A Julia Package for Regions

in the Complex Plane. In: JOSS. Dec. 2, 2019; 4(44):

1811. issn: 2475-9066. DOI: https://doi.org/10.21105/

joss.01811

15. Fairbrother J, et al. GaussianProcesses.Jl: A Nonparametric

Bayes Package for the Julia Language; June 30, 2019. url:

http://arxiv.org/abs/1812.09064 (visited on 05/03/2021).

16. Giordano M. Uncertainty Propagation with Functionally

Correlated Quantities. In: ArXiv e-prints; Oct. 2016. arXiv:

1610.08716 [physics.data-an].

17. Gnuplot Homepage. url: http://www.gnuplot.info/ (visited

on 05/31/2022).

18. Heinen J. GR Framework — GR Framework 0.64.0

Documentation. url: https://gr-framework.org/index.html

(visited on 03/03/2022).

19. Home · HDF5.Jl. url: https://juliaio.github.io/HDF5.jl/stable/

(visited on 03/03/2022).

20. How Do Recipes Actually Work? url: https://daschw.github.

io/recipes/#what_are_recipes (visited on 03/02/2022).

21. Hunter JD. Matplotlib: A 2D Graphics Environment. In:

Computing in Science & Engineering. 2007; 9(3): 90–95.

DOI: https://doi.org/10.1109/MCSE.2007.55

https://orcid.org/0000-0002-5866-1472
https://orcid.org/0000-0002-5866-1472
https://orcid.org/0000-0002-0412-0777
https://orcid.org/0000-0002-0412-0777
https://orcid.org/0000-0001-5850-0663
https://orcid.org/0000-0001-5850-0663
https://orcid.org/0000-0002-8146-8435
https://orcid.org/0000-0002-8146-8435
https://mermaid-js.github.io/mermaid/#/README
https://mermaid-js.github.io/mermaid/#/README
http://archive.org/details/elementsofphysic017171mbp
http://archive.org/details/elementsofphysic017171mbp
http://lup.lub.lu.se/record/8ff6a743-0ad6-4d98-bbb3-5d549c698bc1
http://lup.lub.lu.se/record/8ff6a743-0ad6-4d98-bbb3-5d549c698bc1
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
https://doi.org/10.21105/joss.03876
https://doi.org/10.21105/joss.03876
https://d3js.org/
https://d3js.org/
https://doi.org/10.1017/9781108583664
https://doi.org/10.1017/9781108583664
https://doi.org/10.1051/epjconf/202024506001
https://doi.org/10.1051/epjconf/202024506001
https://doi.org/10.21105/joss.03053
https://doi.org/10.21105/joss.02614
https://doi.org/10.21105/joss.02614
https://doi.org/10.21105/joss.03349
https://doi.org/10.21105/joss.02872
https://doi.org/10.21105/joss.01811
https://doi.org/10.21105/joss.01811
http://arxiv.org/abs/1812.09064
http://www.gnuplot.info/
https://gr-framework.org/index.html
https://juliaio.github.io/HDF5.jl/stable/
https://daschw.github.io/recipes/#what_are_recipes
https://daschw.github.io/recipes/#what_are_recipes
https://doi.org/10.1109/MCSE.2007.55

18Christ et al. Journal of Open Research DOI: 10.5334/jors.431

22. Introduction to Computational Thinking. url: https://

computationalthinking.mit.edu/Spring21/newton_

method/ (visited on 05/27/2021).

23. Keller CB, Harrison TM. Constraining Crustal Silica on

Ancient Earth. In: Proceedings of the National Academy of

Sciences. Sept. 2020; 117(35): 21101–21107. DOI: https://

doi.org/10.1073/pnas.2009431117

24. Lindner M, et al. NetworkDynamics.Jl – Composing and

Simulating Complex Networks in Julia; Mar. 26, 2021. url:

http://arxiv.org/abs/2012.12696 (visited on 05/03/2021).

25. ma-laforge. InspectDR.Jl: Fast, Interactive Plots; Mar. 3,

2022. url: https://github.com/ma-laforge/InspectDR.jl

(visited on 03/03/2022).

26. Overview · Plots. url: https://docs.juliaplots.org/latest/

attributes/ (visited on 05/11/2021).

27. Package Download Stats for Julia. url: https://pkgs.

genieframework.com/ (visited on 03/02/2022).

28. PGFPlots – A LaTeX Package to Create Plots. url: http://

pgfplots.sourceforge.net/ (visited on 03/03/2022).

29. Plotly JavaScript Graphing Library. url: https://plotly.com/

javascript/ (visited on 03/03/2022).

30. Plots · JuliaHub. url: https://juliahub.com/ui/Packages/Plots/

ld3vC/1.13.2?t=1 (visited on 05/11/2021).

31. Plotting · SpectralDistances. url: https://baggepinnen.github. io/

SpectralDistances.jl/latest/plotting/ (visited on 05/27/2021).

32. Rackauckas C, Nie Q. DifferentialEquations.Jl – A

Performant and Feature-Rich Ecosystem for Solving

Differential Equations in Julia. In: Journal of Open Research

Software. 1 May 25, 2017; 5(1): 15. issn: 2049-9647. DOI:

https://doi.org/10.5334/jors.151

33. Rackauckas C, et al. SciML/DifferentialEquations.Jl: V7.1.0.

Zenodo; Jan. 11, 2022. DOI: https://doi.org/10.5281/

zenodo.5837925

34. Shah VB, Claster A. 2020 Julia User and Developer

Survey. url: https://julialang.org/blog/2020/08/202

0-julia-user-anddeveloper-survey/ (visited on 05/30/

2022).

35. Shah VB, Claster A, Abhijith C. Julia User – Developer

Survey 2019. url: https://julialang.org/blog/2019/08/2019-

julia-survey/(visited on 05/30/2022).

36. Src-d/Hercules. source{d}, May 19, 2021. url: https://github.

com/srcd/hercules (visited on 05/19/2021).

37. UCI Machine Learning Repository: Iris Data Set. url:

https://archive.ics.uci.edu/ml/datasets/Iris/ (visited on

04/07/2022).

38. UnicodePlots. JuliaPlots; Mar. 3, 2022. url: https://github.

com/JuliaPlots/UnicodePlots.jl (visited on 03/03/2022).

39. Unified Plotting — Unified-Plotting 0.5.0rc4 Documentation.

url: https://robert-haas.github.io/unified-plotting-docs/

(visited on 08/04/2021).

TO CITE THIS ARTICLE:

Christ S, Schwabeneder D, Rackauckas C, Borregaard MK, Breloff T 2023 Plots.jl – A User Extendable Plotting API for the Julia
Programming Language. Journal of Open Research Software, 11: 5. DOI: https://doi.org/10.5334/jors.431

Submitted: 01 June 2022 Accepted: 25 January 2023 Published: 14 February 2023

COPYRIGHT:
© 2023 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0
International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original
author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by Ubiquity Press.

https://computationalthinking.mit.edu/Spring21/newton_method/
https://computationalthinking.mit.edu/Spring21/newton_method/
https://computationalthinking.mit.edu/Spring21/newton_method/
https://doi.org/10.1073/pnas.2009431117
https://doi.org/10.1073/pnas.2009431117
http://arxiv.org/abs/2012.12696
https://github.com/ma-laforge/InspectDR.jl
https://docs.juliaplots.org/latest/attributes/
https://docs.juliaplots.org/latest/attributes/
https://pkgs.genieframework.com/
https://pkgs.genieframework.com/
http://pgfplots.sourceforge.net/
http://pgfplots.sourceforge.net/
https://plotly.com/javascript/
https://plotly.com/javascript/
https://juliahub.com/ui/Packages/Plots/ld3vC/1.13.2?t=1
https://juliahub.com/ui/Packages/Plots/ld3vC/1.13.2?t=1
https://baggepinnen.github.io/SpectralDistances.jl/latest/plotting/
https://baggepinnen.github.io/SpectralDistances.jl/latest/plotting/
https://doi.org/10.5334/jors.151
https://doi.org/10.5281/zenodo.5837925
https://doi.org/10.5281/zenodo.5837925
https://julialang.org/blog/2020/08/2020-julia-user-anddeveloper-survey/
https://julialang.org/blog/2020/08/2020-julia-user-anddeveloper-survey/
https://julialang.org/blog/2019/08/2019-julia-survey/(visited
https://julialang.org/blog/2019/08/2019-julia-survey/(visited
https://github.com/srcd/hercules
https://github.com/srcd/hercules
https://archive.ics.uci.edu/ml/datasets/Iris/
https://github.com/JuliaPlots/UnicodePlots.jl
https://github.com/JuliaPlots/UnicodePlots.jl
https://robert-haas.github.io/unified-plotting-docs/
https://doi.org/10.5334/jors.431
http://creativecommons.org/licenses/by/4.0/

