
SOFTWARE

METAPAPER

ABSTRACT
Internet Message Access Protocol (IMAP) clients are a common feature in several
programming languages. Despite having some packages for electronic message
retrieval, the R language, until recently, lacked a broader solution, capable of coping
with different mail providers along with a wide spectrum of features. mRpostman covers
most of the IMAP 4rev1 functionalities by implementing tools for message searching,
selective fetching of message attributes, mailbox management, attachment extraction,
and several other IMAP features that can be executed in virtually any mail provider. By
doing so, it enables users to perform data analysis based on email content. The goal of
this article is to showcase the toolkit provided with the mRpostman package, describe
its key features, and provide some application examples.

CORRESPONDING AUTHOR:
Allan V. C. Quadros

Kansas State University, US

quadros@ksu.edu

KEYWORDS:
IMAP; email; R

TO CITE THIS ARTICLE:
Quadros AVC 2024
mRpostman: An IMAP Client
for R. Journal of Open Research
Software, 12: 4. DOI: https://
doi.org/10.5334/jors.480

ALLAN V. C. QUADROS

mRpostman: An IMAP Client
for R

mailto:quadros@ksu.edu
https://doi.org/10.5334/jors.480
https://doi.org/10.5334/jors.480
https://orcid.org/0000-0003-3250-5380

2Quadros Journal of Open Research Software DOI: 10.5334/jors.480

(1) OVERVIEW

INTRODUCTION
The acknowledgment of the R programming language
[17] as having remarkable statistical capabilities is much
due to the excellence brought by its statistical and data
analysis packages. This reputation also stands on the
capabilities of a myriad of utility packages, which extends
the use of the language by facilitating the integration
of the steps involved in data collection, analysis, and
communication. With that in mind, and considering
the amount of data transmitted daily through email,
mRpostman was conceived to fill the gap of an Internet
Message Access Protocol (IMAP) client in the R statistical
environment; therefore, providing an appropriate toolkit
for electronic messages retrieval, and paving the way for
email data analysis in R.

The Comprehensive R Archive Network (CRAN) has
at least seven packages for sending emails (Table 1).
Whereas some of these packages aim to provide a
plain Simple Mail Transport Protocol (SMTP) client for
R (e.g. sendmailR and emayili), others focus on more
sophisticated implementations, using Application
Program Interfaces (API), or providing seamless
integration between SMTP and other R features such as
integration with rmarkdown [1]. However, despite the
surplus of available clients in R, the SMTP protocol is not
suitable for receiving emails. It only allows clients to
communicate with servers to deliver their messages.

For the purpose of message retrieval, there exists the
Post Office Protocol 3 (POP3) and the Internet Message
Access Protocol (IMAP). In comparison with IMAP, POP3
is a very limited protocol, working as a simple interface
for clients to download emails from servers. IMAP, on
the other hand, is a much more complex protocol and

can be considered as the evolution of POP3, with a very
different and broader set of functionalities. In contrast to
POP3, all the messages are kept on the IMAP server and
not locally. This means that a user can access the same
mail account using parallel connections from different
clients [7]. Besides the mail folder management,
the capability to issue complex search queries also
contributes to the higher level of sophistication of the
IMAP protocol.

Amid CRAN packages for email communication,
only gmailr has IMAP capabilities (Table 1). However,
those capabilities are restricted to Gmail accounts
and a few IMAP functionalities. Although gmailr
supports both protocols, the package is more SMTP-
focused, which explains its low count of IMAP features.
Therefore, R was clearly lacking a broader IMAP client
solution. It was in that mainstay that mRpostman was
implemented.

In this article, we present a brief view of the main
functionalities of the package and its applications.

IMPLEMENTATION AND ARCHITECTURE
mRpostman was conceived to be an easy-to-use session-
based IMAP client for R. The package implements
intuitive methods for executing the majority of the IMAP
commands described in the Request for Comments
3501,1 such as mailbox management, and selective
search and fetch of message attributes. The package
also implements complementary functions for decoding
quoted-printable and Base64 content,2 following the
MIME3 specification.

All these methods and functions play an important
role in facilitating email data analysis. We shall not
overlook the amount of data analyses daily performed
on email content. The package has proved to be very

PROTOCOL MAIL
PROVIDERS

FEATURES ACTIVE
DEVELOPMENT

SEARCH
QUERIES

MESSAGE
FETCH

ATTACHMENT
EXTRACTION

MAILBOX
MANAGEMENT

sendmailR [12] SMTP all – – – – yes

mailR [15] SMTP all – – – – yes

mail [9] SMTP all – – – – no

blatr [2] SMTP all – – – – no

blastula [10] SMTP all – – – – yes

emayili [5] SMTP all – – – – yes

gmailr [8] SMTP/IMAP Gmail no limited limited no yes

mRpostman IMAP all yes yes yes yes yes

Table 1 Comparison of the currently available CRAN packages for email communication. The following attributes are evaluated: protocol
– the supported protocol (SMTP or IMAP); mail providers – if the IMAP protocol is supported, which mail providers are supported by the
package; Features – which type of IMAP features are available in the package; active development – if the package is currently under
active development. If the package does not provide IMAP support, the remaining fields do not apply.

3Quadros Journal of Open Research Software DOI: 10.5334/jors.480

useful as an additional feature in this workflow by, for
instance, enabling the possibility of automating the
attachment retrieval step. Additionally, by fetching
other message contents, users can, for example, apply
statistical techniques to analyze the frequency of emails
by sender or subject, run sentiment analysis on email
content, etc.

Because mRpostman works as a session-based IMAP
client, one can think of the provided methods following a
natural order in which the steps shall be organized in the
event of an IMAP session (Figure 1). For instance, if the
goal is to search messages within a specific period and/
or containing a specific word, first we need to configure
the connection to the IMAP server; then, choose a mail
folder where the search is to be performed; and execute
the single criteria (left) or the custom multi-criteria
search (right). If the user intends to fetch the matched
message(s) or its parts, additional fetch steps can be
chained together to the described schema.

mRpostman is flexible in the sense that the
aforementioned steps can be used either under the tidy
framework, with pipes [3], or via the conventional base R
approach.

CONSTRAINTS AND FUTURE DEVELOPMENT
Because IMAP is such a complex protocol, this package
is in constant development, meaning that new features
described in the RFC 3501 are to be implemented in
future versions. As of version 1.1.0, mRpostman does
not have support for the following IMAP4rev1 client
commands: NOOP – used to reset any inactivity auto-
logout timer on the server; LSUB – returns a subset
of names from the set of names that the user has
declared as being “active” or “subscribed”; SUBSCRIBE/

UNSUBSCRIBE – adds/remove the specified mailbox
name to the server’s set of “active” or “subscribed”
mailboxes returned by the LSUB command; STATUS –
requests the status of the indicated mailbox; APPEND
– appends the literal argument as a new message to
the end of the specified destination mailbox; CHECK –
requests a checkpoint of the currently selected mailbox;
CLOSE – permanently removes all messages that have
the “\Deleted” flag set from the currently selected
mailbox, and returns to the authenticated state from
the selected state.

DEMONSTRATION OF FUNCTIONALITY
Configuring an IMAP connection
As we demonstrated in Figure 1, the first step when using
mRpostman is to configure an IMAP connection. It consists
of creating a connection-token object of class ImapCon
that will retain all the relevant information to issue
requests to the server. configure_imap is the function
used to configure and create a new IMAP connection.
There are three mandatory string arguments: url,
username, and password for plain authentication; or
url, username, and xoauth2_bearer for OAuth2.0
authentication.4 The following example illustrates how
to configure a connection to a Microsoft Exchange IMAP
4 server; more specifically, to an Office 365 Outlook
account using plain authentication.

We opted for using an Outlook Office 365 account as an
example to highlight the difference between mRpostman

Figure 1 Basic schema for fetching the full content of a message or its parts after a search query.

con <- configure imap(...)

con$select folder(...)

con$fetch *(...)

con$search *(...) con$search(...)

a connection
object is configured

a mailbox
is

selected

a mailbox
is

selected

return message ids return message ids

library("mRpostman")

con <- configure_imap(url = "imaps://outlook.office365.com",

username = "user@agency.gov",

password = rstudioapi::askForPassword())

4Quadros Journal of Open Research Software DOI: 10.5334/jors.480

and the other two CRAN packages which, although
also capable of receiving emails, are restricted to Gmail
accounts and have fewer IMAP functionalities. Although
mRpostman can theoretically connect to any mail
provider,5 the Outlook Office 365 service is broadly used
by universities and companies. This enriches the range of
data analysis applications of this package, thus justifying
our choice.

In a hypothetical situation where the user needs to
simultaneously connect to more than one email account
(in different providers or not) in the same R session, this can
be easily attained by creating and configuring multiple
connection tokens, such as con1, con2, and so on.

SELECTING A MAIL FOLDER
Mailboxes are structured as folders in the IMAP protocol.
This allows us to mimic many of the operations executed
in a local directory such as creating, renaming, or
deleting folders. As messages are kept inside the mail
folders, users need to select one of the folders whenever
they intend to execute a search, fetch, or other message-
related operation, as presented in Figure 1.

In this sense, the select_folder method is one of the
key features of this package. It selects a mail folder for
the current IMAP section. The mandatory argument is a
character string containing the name of the folder to be
selected.

Assuming we want to select the “INBOX” folder
and considering that we are going to use the same
connection object (con) that has been previously created,
the command would be:

Further details on mailbox management features are
provided with the package’s official documentation (16).

MESSAGE SEARCH
The IMAP protocol is designed to allow single or
multi-criteria queries on the mailboxes. This package
implements a vast range of IMAP search commands,
which consists of a critical feature for performing data
analysis on email content.

As of its version 1.1.0, mRpostman has five types of
single-criterion search methods implemented: by date;
string; flag, size; and time span (WITHIN extension).6
The custom search, on the other hand, enables the
execution of multi-criteria queries by allowing the
combination of two or more types of search. However,
in this article, we will focus on the single-criterion
search-by-string type.

The search_string method searches for messages
containing a specific string or expression. One or more
specific sections of a message, such as the TEXT section
or the TO header field, for example, must be specified.

In the following code snippet, we search for messages
from senders whose mail domain is “@ksu.edu”.

The resulting object is a vector containing the matched
unique IDs (UID) or the message sequence numbers7
such as presented below:

Further details on the other single-search methods and
the custom-search method available in this package are
provided in [16].

MESSAGE FETCH
After executing a search query, users may be interested
in fetching the full content or some part of the messages
indicated in the search result. In this regard, the package
implements six types of fetching features:

•	 fetch_body – fetches the message body (message’s
full content) or a specified MIME level, which can refer
to the text or the attachments if there are any.

•	 fetch_header – fetches the message header, which
comprises all the components of the HEADER section
of a message. Besides the traditional ones (from, to,
cc, subject), it may include several more fields.

•	 fetch_metadata – fetches the message metadata,
which consists of some message attributes such as
the internal date, and the envelope (from, to, cc, and
subject fields).

•	 fetch_text – fetches the message text section,
which can comprise attachment MIME levels if
applicable.

Each of these methods can be seamlessly integrated into
a previous search operation so that the returned IDs are
used as input for the fetch method.

Above all, these methods consist of a powerful tool
of information retrieval for performing data analysis on
email content. Here, we mimic the extraction of the TEXT
portion of a message. Although there is a fetch_text
method, the recommended approach is to use fetch_
body(…, mime_level = 1L) because the former may
collect attachment parts along with the message text in
some situations.

Once the messages’ content is fetched, the text can be
cleaned and decoded with the clean_msg_text helper
function. A subsequent call to the base R function
writeLines produces a neat printing of the fetched text.

con$select_folder(name = "INBOX")

ids <- con$search_string(expr = "@ksu.edu", where = "FROM")

[1] 60 145 147 159 332 333 336 338 341 428

out <- ids %>%

fetch_body(mime_level = 1L)

5Quadros Journal of Open Research Software DOI: 10.5334/jors.480

Besides other applications, the exported function
clean_msg_text can be used to decode hexadecimal
and Base64 characters in the text and other parts of
the message. In some locales such as French, German,
or Portuguese-speaking countries, message parts
may contain non-ASCII characters. SMTP servers,
then, encode it using the RFC 2047 specifications
when sending the email. In these cases, clean_msg_
text is capable of correctly decoding the non-ASCII
characters.

ATTACHMENT EXTRACTION
In its pretension to be an IMAP client for R, mRpostman
provides methods that enable users to list and download
message payloads. This feature can be particularly
critical for automating the analysis of attachment data
files, for example.

Attachments can be downloaded using two different
approaches in this package: extending the fetch_
text/fetch_body operation by adding an attachment

extraction step at the end of the workflow with get_
attachments; or directly fetching attachment parts via
the fetch_attachments method. In this article, we focus
on the first type of attachment method, adding a step to
our previous workflow.

The get_attachments method extracts attachment
files from the fetched messages and saves these files
to the disk. In the following code excerpt, we extract
attachments in a unique pipeline that gathers fetching
and search steps.

During the execution, the software locally saves the
extracted attachments into sub-folders inside the
user’s working directory. These sub-folders are named
following the messages’ IDs. The attachments are
placed into the respective message sub-folders as
demonstrated in Figure 2. Note that the parent levels are

Figure 2 Local directory tree for the extracted attachment files.

. (working directory)

user@company.com

INBOX

141

final.zip

prob plot.svg

staa2072.pdf

144

app.R

image001.png

recording.mp4

con$search_string(expr = "@ksu.edu", where = "FROM") %>%

con$fetch_text() %>%

con$get_attachments()

cleaned_text <- clean_msg_text(msg_list = out)

writeLines(cleaned_text[[1]])

Receipt Number: XXXXXXX
Customer: Vieira de Castro Quadros, Allan
Kansas State University
Current Date: 04/15/2020
Description Amount
--
HOUSING & DINING $30.00

User Number: XXXXXXXXX
Total $30.00

Payments Received Amount
--
07 CREDIT CARD PAYMENTS $30.00

Visa XXXXXXXXXXXX8437
Authorization # XXXXXX

Total $30.00
Thank you for the payment.

6Quadros Journal of Open Research Software DOI: 10.5334/jors.480

named after the informed username and the selected
mail folder.

For more information on other attachment-related
methods, the reader should refer to the package’s official
documentation in [16].

QUALITY CONTROL
Tests for mRpostman should be performed on the user’s
real email data, where the existent messages on the
mail provider webpage or app can be compared with the
results returned by the package’s functions and methods.
Development-wise, new tests on real email data are
performed with each software update and on different
mail providers, such as GMail, Yandex, AOL, Hotmail,
Outlook/Office 365, and Yahoo. These tests check for all
the available package functionalities, when applicable.8

One of the critical aspects to make sure that the
package works correctly is to establish a connection with
the IMAP server successfully. For this reason, practical
reproducible tests are not available, given that mimicking
a connection to an IMAP server to simulate searching or
fetching of fake message content would be innocuous
for testing purposes. Nonetheless, the use of the GitHub
Actions continuous integration (CI) platform allows
automatic building and compilation testing after each
change of the source code uploaded to mRpostman’s
main repository. The tests on GitHub Actions have been
performed using different platforms, such as MacOS,
Ubuntu, and Windows with different R versions (old,
release, and development).

As for the package support, users may raise issues on
GitHub or StackOverflow for additional assistance on the
package functionalities.

LANGUAGE
English

(2) REUSE POTENTIAL

To demonstrate the capabilities of the proposed software,
we explore two use cases of this package in support of data
analysis tasks: a simple study of the frequency of emails
grouped by senders and filtered by date; and a sentiment
analysis that was run on a set of emails also filtered by
a specific period. The R scripts needed for reproducing
these examples are provided in the following subsections.
Although the results cannot be exactly reproduced once
they reflect the author’s mailbox contents, they can be
easily adapted to the reader’s context.

FREQUENCY ANALYSIS OF EMAIL DATA
In the first example, we run a simple analysis of the email
frequency by senders. This can be especially useful in areas
such as marketing and customer service departments.
A period of analysis was defined, and a search-by-date
was performed using the search_period method. Then,
senders’ information for the returned IDs is fetched via
fetch_metadata, using the ENVELOPE attribute. After
some basic manipulation with regular expressions, the
data is ready to be plotted as shown in Figure 3.

The same kind of analysis can be replicated for
message subjects with only a few modifications in the
regular expression code chunks. Considering that some
companies/users deal with subject-standardized emails,
this approach can be useful in analyzing the frequency of
emails regarding different categories of subjects.

Figure 3 An example of email frequency analysis grouped by sender. Some of the names and emails were anonymized for privacy reasons.

omitted@tbs-education.fr

omitted@lsbu.ac.uk

omitted@gmail.com

cortana@microsoft.com

no-reply@researchgatemail.net

Email frequency by sender

count

0 2 4 6 8 10 12

ResearchGate
Cortana
C. P.
D. C.
A. M.

Period: 01-Nov to 01-Dec-2020

7Quadros Journal of Open Research Software DOI: 10.5334/jors.480

SENTIMENT ANALYSIS ON EMAIL DATA
For the sentiment analysis example, we also define a
period of analysis and run a search_period query. Then,
we retrieve the text part of the messages by fetching the
first MIME level with fetch_body(…, mime_level = 1L).
The texts go through a first cleaning step with a call to the
clean_msg_text function. After a few additional cleaning

procedures, we use a lexicon [13] via the syuzhet [11]
package to evaluate the sentiment of each email. The
output below is a subset of the resulting data frame.
The last two columns indicate, respectively, the counts
of negative and positive words for each message. The
other columns provide counts related to more specific
emotions, which are not necessarily positive or negative.

library(mRpostman)
con <- configure_imap(
url="imaps://outlook.office365.com",
username="user@company.com",
password=rstudioapi::askForPassword()

)
con$select_folder(name = "INBOX")
meta_res <- con$search_period(since_date_char = "01-Nov-2020",

before_date_char = "01-Dec-2020") %>%
con$fetch_metadata(attribute = "ENVELOPE")

cleaning
step 1
clean_meta <- lapply(meta_res, function(x){
regmatches(x, regexpr(pattern = "\\(\\(.*\"(.*?)\"\\)\\)", x, perl = TRUE))

})
step 2
cleaning Ccs
senders1 <- lapply(clean_meta, function(x){
gsub(")) NIL .*$|)) .*$|))$", "", x)

})
step 3
senders1 <- lapply(senders1, function(x){
gsub(’^\\(\\(|\"+’, "", x)

})
splitting
name <- c()
email <- c()
for (i in seq_along(senders1)){
i = 1
out <- unlist(strsplit(senders1[[i]], " NIL "))
name <- c(name, out[1])
email <- c(email, gsub(" ", "@", out[2]))

}
df <- data.frame(name, email)
df$name <- decode_mime_header(string = as.character(df$name))
df2 <- as.data.frame(table(df$email))
colnames(df2) <- c("email", "count")
df2 <- df2[order(-df2[,2]),][1:5,]
df2$name <- unique(df$name[df$email %in% df2$email])
par(mar=c(5,13,4,1)+.1)
pal_cols <- rev(c("#e6ab02", "#7570b3", "#e7298a", "#d95f02", "#66a61e"))
barplot(rev(df2$count),

main = "Email frequency by sender",
xlab = "count",
names.arg = rev(df2$email),
las = 1,
col = pal_cols,
horiz = TRUE)

mysubtitle <- "Period: 01-Nov to 01-Dec-2020"
legend(x = "bottomright", legend = df2$name, fill = rev(pal_cols), bty = "n",

y.intersp = 1)
mtext(side=3, line=0.3, at=-0.07, adj=0, cex=0.9, mysubtitle)

library(mRpostman)
con <- configure_imap(url="imaps://outlook.office365.com",

username="user@company.com",
password=rstudioapi::askForPassword(),
timeout_ms = 20000

)
con$select_folder("INBOX")
ids <- con$search_period(since_date_char = "10-Oct-2020",

before_date_char = "20-Dec-2020")
fetch_res2 <- ids %>%

con$fetch_body(mime_level = 1L)
cleaned_text_list <- clean_msg_text(msg_list = fetch_res2)
cleaned_text_list[[4]]
for (i in seq_along(cleaned_text_list)) {

clean_text <- gsub("\r\n", " ", cleaned_text_list[[i]])
clean_text <- unlist(strsplit(clean_text, " "))
words <- clean_text[!grepl("\\d|_|http|www|nbsp|@|(?<=[[:lower:]])(?=[[:upper:]])",

8Quadros Journal of Open Research Software DOI: 10.5334/jors.480

CONCLUSIONS

mRpostman aims to provide an easy-to-use IMAP client for
R. Its object-oriented design [4] allows efficient, elegant,
and intuitive execution of several IMAP commands on a
wide range of mail providers. As a result, users cannot
only manage their mailboxes but also conduct email
data analysis from inside R seamlessly integrating all the
steps involved.

(3) AVAILABILITY

OPERATING SYSTEM
MacOS (≥13.10), Ubunutu (≥18.04), Windows (≥8.0).

PROGRAMMING LANGUAGE
R (≥3.1.0)

ADDITIONAL SYSTEM REQUIREMENTS
None

DEPENDENCIES
libcurl (≥ 7.65) [19].

LIST OF CONTRIBUTORS
None

SOFTWARE LOCATION
Archive

Name: CRAN
 Persistent identifier: https://cran.r-project.org/
package=mRpostman
Licence: GPL-3
Publisher: Allan V. C. Quadros
Version published: 1.1.0
Date published: 27/10/2022

Code repository GitHub
Name: mRpostman
 Persistent identifier: https://github.com/allanvc/
mRpostman
Licence: GPL-3
Date published: 27/07/2023

NOTES
1 The RFC 3501 [6] is a formal document from the Internet

Engineering Task Force (IETF) specifying standards for the IMAP,
Version 4rev1 (IMAP4rev1).

2 The RFC 2047 [14] specifies rules for encoding and decoding
non-ASCII characters in electronic messages.

3 The Multiple Internet Mail Extensions (MIME) is an internet
standard defined by the IETF in a series of Requests for
Comments manuals, the RFCs 2045, 2046, 2047, 2048, 4288,
4289, and 2049. The so-called MIME standard “specifies a
standard format for encapsulating multiple pieces of data into a
single Internet message” [20]. This standard comprises all parts
of an email message, ranging from the header to attachment
files.

4 Please refer to the “IMAP OAuth2.0 authentication in
mRpostman” vignette in [16].

5 Besides Outlook Office 365, the package has been successfully
tested with Gmail, Yahoo, Yandex, AOL, and Hotmail accounts.

6 The WITHIN extension is not supported by all IMAP servers. A
call to the list_server_capabilities method will present all the
IMAP extensions supported by the mail provider [16].

7 Further details on the message identification methodology
deployed by the IMAP protocol are provided in [18, 6, 16].

8 IMAP capabilities may vary among mail providers. Users can list
all the IMAP4rev1 capabilities supported by the server using the
list_server_capabilities method.

ACKNOWLEDGEMENTS

The author would like to acknowledge the Department
of Statistics at Kansas State University (K-State) for his
doctoral studies scholarship. He wants to especially
thank Dr. Michael Higgins, Dr. Christopher Vahl, Dr. Perla
Reyes, and Dr. Brian Silverstein for their mentorship and
academic support. The author also acknowledges the

clean_text, perl = TRUE)]
words <- tolower(gsub("\\W+", "", words))
words <- gsub(’[^a-zA-Z|[:blank:]]’, "", words)
cleaned_text_list[[i]] <- paste(words, collapse = " ")

}
cleaned_text_df <- do.call("rbind", cleaned_text_list)
library(syuzhet)
email_sentiment_df <-get_nrc_sentiment(cleaned_text_df)
rownames(email_sentiment_df) <- rownames(cleaned_text_df)
head(email_sentiment_df,10)

anger anticipation disgust fear joy sadness surprise trust negative positive
body91 1 5 1 1 2 2 0 9 1 13
body92 0 1 0 0 1 0 0 3 0 1
body93 0 3 0 2 0 1 2 2 1 3
body94 0 1 0 1 0 0 1 4 1 4
body95 0 5 0 0 3 0 2 8 0 13
body96 0 0 0 0 0 0 0 0 0 0
body97 4 20 4 11 13 11 4 25 16 51
body98 0 3 0 0 2 0 1 4 0 6
body99 3 9 1 6 1 5 2 16 14 24
body100 4 15 1 13 6 7 6 15 16 31

https://cran.r-project.org/package=mRpostman
https://cran.r-project.org/package=mRpostman
https://github.com/allanvc/mRpostman
https://github.com/allanvc/mRpostman

9Quadros Journal of Open Research Software DOI: 10.5334/jors.480

intellectual guidance of Dr. George von Borries and Dr.
André Cançado at Universidade de Brasilia (UnB). The
contents of this article are the responsibility of the author
and do not reflect the views of K-State or UnB.

COMPETING INTERESTS

The author has no competing interests to declare.

AUTHOR AFFILIATIONS
Allan V. C. Quadros orcid.org/0000-0003-3250-5380
Kansas State University, US

REFERENCES

1. Allaire J, Xie Y, McPherson J, Luraschi J, Ushey K, Atkins

A, Wickham H, Cheng J, Chang W, Iannone R. rmarkdown:

Dynamic Documents for R. R package version 2.5; 2020.

URL: https://CRAN.R-project.org/package=rmarkdown.

2. Bache SM. blatr: Send Emails Using ‘Blat’ for Windows. R

package version 1.0.1; 2015. URL: https://CRAN.R-project.

org/package=blatr.

3. Bache SM, Wickham H. magrittr: A Forward-Pipe Operator

for R. R package version 1.5; 2014. URL: https://CRAN.R-

project.org/package=magrittr.

4. Chang W. 2020. R6: Encapsulated Classes with Reference

Semantics. R package version 2.5.0; 2020. URL: https://

CRAN.R-project.org/package=R6.

5. Collier AB. emayili: Send Email Messages. R package version

0.4.4; 2020. URL: https://CRAN.R-project.org/package=emayili.

6. Crispin M. ‘Internet message access protocol – version

4rev1’. Request for Comments 3501 (RFC 3501), Internet

Engineering Task Force (IETF); 2003. URL: https://tools.ietf.

org/html/rfc3501.

7. Heinlein P, Hartleben P. The Book of IMAP: Building a Mail

Server with Courier and Cyrus, No Starch Press; 2008.

8. Hester J. gmailr: Access the ‘Gmail’ ‘RESTful’ API. R package

version 1.0.0; 2019. URL: https://CRAN.R-project.org/

package=gmailr.

9. Himmelmann L. mail: Sending Email Notifications from R.

R package version 1.0; 2011. URL: https://CRAN.R-project.

org/package=mail.

10. Iannone R, Cheng J. blastula: Easily Send HTML Email

Messages. R package version 0.3.2; 2020. URL: https://

CRAN.R-project.org/package=blastula.

11. Jockers ML. Syuzhet: Extract Sentiment and Plot Arcs from

Text. R package version 1.0.4; 2015. URL: https://CRAN.R-

project.org/package=syuzhet.

12. Mersmann O. sendmailR: send email using R. R package

version 1.2–1; 2014. URL: https://CRAN.R-project.org/

package=sendmailR.

13. Mohammad S, Turney P. Emotions evoked by common

words and phrases: Using mechanical turk to create

an emotion lexicon. In: ‘CAAGET ’10: Proceedings of the

NAACL HLT 2010 Workshop on Computational Approaches

to Analysis and Generation of Emotion in Text’, Los

Angeles, California; 2010: 26–34. June, 2010. URL: http://

saifmohammad.com/WebPages/lexicons.html.

14. Moore K. ‘Multipurpose Internet Mail Extensions (MIME),

part three: Message header extensions for non-ascii

text’. Request for Comments 2047 (RFC 2047), Internet

Engineering Task Force (IETF); 1996. URL: https://tools.ietf.

org/html/rfc2047.

15. Premraj R. mailR: A Utility to Send Emails from R. R package

version 0.4.1; 2015. URL: https://CRAN.R-project.org/

package=mailR.

16. Quadros A. mRpostman: An IMAP Client for R. R package

version 1.1.0; 2022. URL: https://CRAN.R-project.org/package=

mrpostman.

17. R Core Team. R: A Language and Environment for Statistical

Computing. Vienna, Austria: R Foundation for Statistical

Computing; 2020. URL: https://www.R-project.org/.

18. Resnick P. ‘Internet message format’. Request for

Comments 5322 (RFC 5322). Internet Engineering Task

Force (IETF); 2008. URL: https://tools.ietf.org/html/rfc5322.

19. Stenberg D. ‘libcurl – the multiprotocol file transfer library’.

version 7.69.1; 2020. URL: https://curl.haxx.se/.

20. Troost R, Dooner S, Moore K. ‘Internet message format’.

Request for Comments 2183 (RFC 2183). Internet

Engineering Task Force (IETF); 1997. URL: https://tools.ietf.

org/html/rfc2183.

https://orcid.org/0000-0003-3250-5380
https://orcid.org/0000-0003-3250-5380
https://CRAN.R-project.org/package=rmarkdown
https://CRAN.R-project.org/package=blatr
https://CRAN.R-project.org/package=blatr
https://CRAN.R-project.org/package=magrittr
https://CRAN.R-project.org/package=magrittr
https://CRAN.R-project.org/package=R6
https://CRAN.R-project.org/package=R6
https://CRAN.R-project.org/package=emayili
https://tools.ietf.org/html/rfc3501
https://tools.ietf.org/html/rfc3501
https://CRAN.R-project.org/package=gmailr
https://CRAN.R-project.org/package=gmailr
https://CRAN.R-project.org/package=mail
https://CRAN.R-project.org/package=mail
https://CRAN.R-project.org/package=blastula
https://CRAN.R-project.org/package=blastula
https://CRAN.R-project.org/package=syuzhet
https://CRAN.R-project.org/package=syuzhet
https://CRAN.R-project.org/package=sendmailR
https://CRAN.R-project.org/package=sendmailR
http://saifmohammad.com/WebPages/lexicons.html
http://saifmohammad.com/WebPages/lexicons.html
https://tools.ietf.org/html/rfc2047
https://tools.ietf.org/html/rfc2047
https://CRAN.R-project.org/package=mailR
https://CRAN.R-project.org/package=mailR
https://CRAN.R-project.org/package=mrpostman
https://CRAN.R-project.org/package=mrpostman
https://www.R-project.org/
https://tools.ietf.org/html/rfc5322
https://curl.haxx.se/
https://tools.ietf.org/html/rfc2183
https://tools.ietf.org/html/rfc2183

10Quadros Journal of Open Research Software DOI: 10.5334/jors.480

TO CITE THIS ARTICLE:
Quadros AVC 2024 mRpostman: An IMAP Client for R. Journal of Open Research Software, 12: 4. DOI: https://doi.org/10.5334/jors.480

Submitted: 28 July 2023 Accepted: 21 February 2024 Published: 07 March 2024

COPYRIGHT:
© 2024 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0
International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original
author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by Ubiquity Press.

https://doi.org/10.5334/jors.480
http://creativecommons.org/licenses/by/4.0/

