
SOFTWARE

METAPAPER

MARIO: A Versatile and User-
Friendly Software for Building
Input-Output Models

MOHAMMAD AMIN TAHAVORI

NICOLÒ GOLINUCCI

LORENZO RINALDI

MATTEO VINCENZO ROCCO

EMANUELA COLOMBO

ABSTRACT
MARIO (Multi-Regional Analysis of Regions through Input-Output) is a Python-based
framework for building input-output models. It automates the parsing of well-known
databases (e.g. EXIOBASE, EORA, Eurostat) and of customized tables. With respect to
similar tools, like pymrio, it broadens the scope of application to supply-use tables and
handles both monetary and physical units. Employing an intuitive Excel-based API, it
facilitates advanced table manipulations and allows for modelling additional supply
chains through a hybrid LCA approach. It provides built-in functions for footprinting
and scenario analyses as well as for visualizations of model outcomes. Results are
exportable into various formats, possibly supplemented by a metadata file tracking
the full history of applied changes. MARIO comes with extensive documentation and is
available on Zenodo, GitHub, or installable via PyPI.

CORRESPONDING AUTHOR:
Mohammad Amin Tahavori

MARIO lead developer and
co-designer; eNextGen,
Via Principe Eugenio 9,
20155, Milan, Italy;
VITO NV – Hoofdkantoor,
Boeretang 200, 2400, Mol,
Belgium

amin.tahavori@enextgen.it

KEYWORDS:
Scenario analysis; Footprints;
MARIO; Input-output analysis;
Supply and use; hybrid-LCA;
Python

TO CITE THIS ARTICLE:
Tahavori MA, Golinucci N,
Rinaldi L, Rocco MV, Colombo
E 2023 MARIO: A Versatile and
User-Friendly Software for
Building Input-Output Models.
Journal of Open Research
Software, 11: 14. DOI: https://
doi.org/10.5334/jors.473

*Author affiliations can be found in the back matter of this article

mailto:amin.tahavori@enextgen.it
https://doi.org/10.5334/jors.473
https://doi.org/10.5334/jors.473
https://orcid.org/0000-0002-7753-0523
https://orcid.org/0000-0002-8735-499X
https://orcid.org/0000-0003-4667-8653
https://orcid.org/0000-0003-3129-3654
https://orcid.org/0000-0002-9747-5699

2Tahavori et al. Journal of Open Research Software DOI: 10.5334/jors.473

(1) OVERVIEW

INTRODUCTION
Input-Output (IO) analysis plays a crucial role in unravelling
the intricate interconnections between diverse economic
sectors [1]. By offering a numerical representation of the
flows of goods and services in an economy, these models
enable analysts to evaluate the effects of alterations in
demand or supply on a range of economic, social, and
environmental factors [2]. The growing emphasis on
sustainability in today’s world makes these models even
more indispensable, as policymakers and stakeholders in
every sector grapple with the challenges of the ongoing
sustainability transition. In this context, IO models offer a
valuable tool for understanding the impacts of economic
activities on sustainability and identifying opportunities
for enhancing it. However, despite the benefits of IO
modelling, practical impediments exist.

Despite the importance of IO models in assessing the
impacts of changes in demand or supply on economic,
social, and environmental aspects, the use of these
models can be challenging due to their complexity and
the mathematical operations involved. Moreover, the
available software tools for IO modelling are often limited
in flexibility and scalability, making building and modifying
IO models time-consuming and difficult. To achieve the
most accurate life-cycle assessment (LCA), researchers
can adopt process-based databases, IO databases, or a
hybrid approach combining the two. However, managing
the increasingly large databases required for these
approaches is a practical issue that must be addressed.
As database detail continues to expand, the need for
efficient and scalable software tools that can handle the
complexity of IO models becomes more pressing.

Open Science and Open-Source Software in
Industrial Ecology
Open Science is a movement toward more accessible,
transparent, and collaborative research practices that
can benefit the scientific community and society as a
whole [3]. By sharing knowledge and data openly and
promoting collaboration among researchers and other
stakeholders, Open Science can accelerate the pace
of scientific discovery, improve the quality of research,
and promote more inclusive and equitable access to
scientific information [4]. Transparency and accessibility
of models and their associated data are crucial for
producing higher-quality science, increasing productivity,
and improving the science-policy boundary in the energy
research community [5].

Widespread use of open-access software can, at
the same time, increase the quality, transparency,
and reproducibility of Industrial Ecology (IE) research
[6]. The growing data and computation intensity in IE
research has led to a greater need for the development
of scientific software, but this has also created challenges

related to transparency, reproducibility, reusability, and
collaboration. The authors of [6] propose a fourfold
response to this problem. Firstly, the authors propose
the implementation of existing general principles for the
development of good scientific software in IE and related
fields. Secondly, they argue that collaborating on open-
source software could make IE research more productive
and increase its quality and provide guidelines for the
development and distribution of such software. Thirdly,
the authors call for stricter requirements regarding general
access to the source code used to produce research results
and scientific claims published in the IE literature. Finally,
a set of open-source IE modelling tasks, which they hope
will turn their recommendations into practice.

As a result of these efforts, a Python toolbox for
industrial ecology has been introduced, which includes
a range of frameworks and modules such as Brightway2
[7], ecospold2matrix [8], pySUT [9], pymrio [10], and
others. Recently, other Python packages such as pycirk
[11, 12], and pyLCAIO [13] have also been developed
to enable modeling of Circular Economy scenarios and
streamline the hybridization of process-based Life
Cycle Assessment and Environmentally Extended IO
databases. Recently, unfold was released, a repository
that improves the packaging and sharing of data, making
it easier to reproduce life-cycle databases that are based
on proprietary data sources [14].

This paper introduces MARIO, a Python-based IO
modelling framework that builds upon and improves
many of the features of the previously cited pieces of
software. MARIO provides a scale- and database-agnostic
approach to IO modelling, allowing the user to adopt
any kind of IO table, ranging from a single- to multi-
region, monetary- or physical-units, and symmetric (or
IOTs) or supply-use (SUTs). MARIO’s key features include
automatic parsing of various well-known available
databases, an intuitive Application Program Interface
(API) for applying advanced modifications to an existing
database ranging from aggregation, creation of scenarios
for policies and processes economic and environmental
impact assessment, and extensions to new supply
chains by adopting a hybrid-LCA approach. Finally, by
standardizing the mathematical complexities of IO
models and being designed both for Python newcomers
and expert users, MARIO represents to modelers an
efficient tool to avoid recursive and time-consuming
operations while focusing on their analyses.

IMPLEMENTATION AND ARCHITECTURE
Underlying mathematics and nomenclature
A comprehensive reference text to deepen IO analysis
theory and application scopes is [1]. However, for the
sake of clarity, it is necessary to synthetically provide an
overview of the main concepts as well as to define the
nomenclature adopted in MARIO and along the paper
itself.

3Tahavori et al. Journal of Open Research Software DOI: 10.5334/jors.473

As mentioned, IO tables represent an insightful
instrument to inspect the economic transactions that
occurred during one year. Economic accounts are stored
in various matrices, specifically:

•	 Matrix Z includes the transactions of goods and
services occurring from one industrial activity to
another. In the case of a supply-use table (SUT),
activities are distinct from the commodities they
produce, therefore two sub-matrices can be identified
within Z, namely a supply matrix S, representing
the production of each commodity by the supplying
activities, and a use matrix U, characterizing the
inputs, in terms of commodities, required by each
activity.

•	 Matrix Y shows the consumption of goods and
services by those generally denominated as
consumption categories, such as households and
government. Also, information about changes in
valuables and investments is reported in Y.

•	 Matrix V complements Z by reporting the information
on the value added provided by each industrial
activity to its output in addition to the costs
sustained due to its input consumption (i.e. capital,
labor, taxes, and subsidies).

Multiregional tables introduce information on trades
by specifying the geographic origin of each economic
account. Moreover, IO tables are also often extended with
environmental transactions, tracking the interactions of
industrial activities (matrix E) and consumption categories
(matrix EY) with different environmental dimensions such
as emissions, primary energy, water, and land use.

Given any IO table, it is possible to calculate the
total production vector X, which reports the total
production of each industrial activity (and of each
commodity, in the case of a SUT), as described by Eq.
1 (i, in this case, is a vector with dimension equal to
the rows number of Z). It is possible to express any
of the above-mentioned matrices (except for Y) per
unit of total production, calculating the so-called
technical coefficients matrices by dividing the desired
matrix by the inverse of X. An example is provided by

calculating the intersectoral transactions coefficients
matrix z in Eq. 2. Please note that the “hat” symbol
indicates a diagonalized vector. The same equation,
applied to matrix E, leads to the derivation of matrix e
which can be identified as direct environmental impact
coefficients matrix, or production-based accounting
impact matrix.

Following Eq. 2, Eq. 1 can be re-arranged to derive
the Leontief production model (Eq. 3), expressing the
total production of each activity (and/or commodity)
represented in the IO table that is required to fulfil given
final demand yields; I, in this case, represents an identity
matrix and w is conventionally known as Leontief Inverse
matrix.
 = ⋅X Z i Y+ Eq. 1
 ˆ= ⋅z Z X −1 Eq. 2
 ()=X z X Y I z Y w Y−= ⋅ + − ⋅ = ⋅1

 Eq. 3

IO tables can also be used for consumption-based
impact accounting (or footprinting analysis), by adopting
the so-called Leontief impact model (Eq. 4). Unlike e,
matrix f, called specific footprint matrix, allocates to each
industrial activity not only its direct but also its indirect
environmental impact.

 = ⋅f e w Eq. 4

Furthermore, IO tables are often adopted to perform
scenario analyses, generally implemented by modelling
a perturbation (or shock) of the economic system and
by evaluating the difference between the new and
the original system. Eq. 5 describes how the matrices
of a new shocked economic system t + 1 can be seen
as the sum of the corresponding matrix of the original
system t and a matrix represented only the shock to be
implemented, indicated as (), , ,Δ z v e Y

 .

 () () (), , , , , , , , ,z v e Y z v e Y Δ z v e Y= +
t+1 t

 Eq. 5

Code Structure
Before deepening the code structure, a preliminary
glossary of the main terms and items is provided in Table
1 and adopted henceforth in the paper.

ITEM DEFINITION

Table Any input-output or supply-use table that can be parsed in MARIO.

Matrix Components of a table. In MARIO, each table is structured in a set of matrices, represented as Pandas MultiIndexed
DataFrames [15]

Sets Basic information characterizing each matrix. The combination of the appropriate sets defines the MultiIndex of the
DataFrame representing the matrix. For instance, the final demand matrix of an IOT is characterized by regions and sectors on
the rows, and by regions and consumption categories on the columns.

Scenario Any shocked version of the same table. In MARIO, by default, the first scenario is always called baseline.

Instance A MARIO Database object, characterized by all the matrices of all the scenarios.

Table 1 Glossary.

4Tahavori et al. Journal of Open Research Software DOI: 10.5334/jors.473

The core functionalities of MARIO are implemented
through an Object-Oriented programming paradigm,
specifically by means of two classes. These classes are
named CoreIO and Database.

The CoreIO class encompasses general methods
and functionalities for any IO model, including tasks like
calculating desired matrices and checking whether a table
is balanced. On the other hand, the Database class contains
additional methods and functionalities specifically tailored
for scenario analyses, such as shock analysis.

In MARIO, an IO table is structured as a set of matrices,
represented by MultiIndex Pandas DataFrames [15]. This
allows for a unified representation of various IO tables
by utilizing different levels of indexing. Regarding MARIO
scenario analysis, all the matrices for a particular scenario
are gathered into a nested Python dictionary after they
have been calculated. In practical terms, through this
dictionary, it is possible to compare multiple shocked
versions of the same table with the baseline one.

Each instance is additionally associated with another
object called MARIOMetaData. This object serves as
metadata and tracks all the changes made to the
instance, as well as the analyses performed by the user.
The metadata keeps a record of the instance’s history,
which can be printed out as a JSON or TXT file, upon user
request. An essential representation of MARIO’s structure
is sketched in Figure 1.

Tables parsing
One of the main challenges associated with using IO
tables is the lack of a standardized approach for storing
and organizing the data. Each specific table follows its

structure, both in terms of data storage and labelling
conventions for elements within the database. For
example, Eora [16] stores all the matrices of a single-
region table in a unique TXT file, the monetary version
of EXIOBASE 3 [17] stores each matrix in a distinct TXT
file, while the hybrid version [18] adopts CSV files and
a significantly different manner to store environmental
transactions.

This challenge becomes even more complex when
working with SUTs or hybrid tables that incorporate
additional dimensions of information into the IO
framework. Additionally, non-structured tables, such
as those developed by specific groups or for particular
projects, add further inconsistencies. The lack of
standardized structure among different existing tables
hinders the reproducibility of IO modelling exercises,
as modellers constantly need to adapt to different
paradigms for reading and handling various types of
tables.

To overcome this issue, MARIO adopts its specific
structure. Regardless of the type or origin of the data, any
table read by MARIO is transformed into a standardized
format according to which each matrix is characterized
with specific indexing, as reported in Table 2.

MARIO incorporates a set of parsing functions tailored
to differently structured tables:

•	 Eora, namely Eora26, single-region IOTs and single-
region SUTs;

•	 EXIOBASE 3, including both IOTs and SUTs as well as
monetary and hybrid versions;

•	 Eurostat SUTs.

Figure 1 MARIO core classes and data properties.

5Tahavori et al. Journal of Open Research Software DOI: 10.5334/jors.473

When dealing with non-structured tables, MARIO is
capable of reading datasets from Excel (XLSX), CSV, or
TXT files provided that they have been firstly structured
in a pre-defined shape. Furthermore, with the release of
v.0.2.0, it is also possible to import data from a pymrio
object [10] (IOSystem class) and transform it into a
MARIO Database class. In version 0.2.2, MARIO can
also exploit the pymrio table downloading functions.
More about the tables available for download at pymrio
documentation: https://pymrio.readthedocs.io/en/latest/
notebooks/autodownload.html.

Calculating matrices
The CoreIO class includes a function called calc_all, which
enables users to calculate a specified list of matrices for
a given scenario within the model. If the calculation of
a particular matrix relies on another matrix that is not
yet present in the scenario, MARIO will determine the
appropriate order of calculations for different matrices to
generate the requested matrix.

In addition to the basic matrix calculations, MARIO
offers a query function that allows users to perform
more advanced automatic calculations across different
scenarios. This includes calculations such as determining
the absolute or relative changes of a matrix among
different scenarios.

Furthermore, all the mathematical calculations related
to IO analysis are programmed as separate functions.

This enables users to utilize these functions outside of
the main structure of a MARIO Database or CoreIO class,
providing greater flexibility in their calculations.

Modifying an instance
The Database class in MARIO offers several capabilities
to alter an existing instance, including the following
functionalities:

•	 Aggregating (or just renaming) the instance into
different dimensions of data by reducing the number
of regions, sectors, and so on.

•	 Adding new sectors in case of an IOT, or new
commodities and activities in case of a SUT.

•	 Adding or dropping satellite accounts to the existing
instance.

Excel-based interaction
To enhance the user experience for MARIO users, several
functionalities have been designed to be accessible
through automatically generated Excel files which
serve as an interface. These interfaces allow modellers
to provide the minimum required inputs to make their
changes. Furthermore, the users are supported by list
validation, to minimise input errors and typos.

For instance, to aggregate an instance, users can
utilize the get_aggregation_excel function, which
generates an Excel file with pre-filled indices related

MATRICES ROW INDEX
LEVELS

COLUMN INDEX
LEVELS

DESCRIPTION

Z (z) Region, Item(s),
Label

Region, Item(s),
Label

The intermediate transactions matrices always represent supplying and
consuming regions and items. Items can be alternatively “Sectors” in case
of symmetric input-output tables (IOTs) or “Commodities” and “Activities” in
case of supply-use tables (SUTs).

U (u) Region,
Commodity,
Label

Region, Activity,
Label

The use transactions matrices always represent the supplied commodities
and consuming activities by region of production and consumption. Use
matrices are calculated just in the case of SUTs.

S (S) Region, Activity,
Label

Region, Commodity,
Label

The supply transactions matrices always represent supplied commodities
by supplying activities by region of production and consumption. Supply
matrices are calculated just in the case of SUTs.

Y Region, Item(s),
Label

Region,
Consumption
category, Label

The final transactions matrix always represents the consumption of items
in different regions and by different consumption categories. Items can be
alternatively “Sectors” in case of symmetric input-output tables (IOTs) or

“Commodities” and “Activities” in case of supply-use tables (SUTs).

V (v) Factors of
production labels

Region, Item(s),
Label

The value added matrices always represent the consumption of factors
of production in different regions and by different items. Items can be
alternatively “Sectors” in case of symmetric input-output tables (IOTs) or

“Commodities” and “Activities” in case of supply-use tables (SUTs).

E (e) Satellite accounts
labels

Region, Item(s),
Label

The intermediate environmental transaction matrices always represent the
consumption of satellite accounts in different regions and by different items.
Items can be alternatively “Sectors” in case of symmetric input-output tables
(IOTs) or “Commodities” and “Activities” in case of supply-use tables (SUTs).

EY Satellite accounts
labels

Region,
Consumption
category, Label

The final environmental transaction matrix always represents the
consumption of satellite accounts in different regions and by different
consumption categories.

Table 2 Matrices indexing logic. Such logic is applied to any parsed table independently of the original formatting.

https://pymrio.readthedocs.io/en/latest/notebooks/autodownload.html
https://pymrio.readthedocs.io/en/latest/notebooks/autodownload.html

6Tahavori et al. Journal of Open Research Software DOI: 10.5334/jors.473

to the instance sets such as the list of regions, sectors,
satellite accounts… This Excel file enables easily defining
the desired aggregation and then it is enough to read
back the file to execute the aggregation process.
Similarly, tasks such as adding a new sector, or satellite
account, or implementing a shock can be accomplished
using automatically generated Excel files within MARIO.

Surely, however, every task which is simplified through
Excel interfaces can be also performed directly in Python,
in case of more advanced necessities.

Example application
In this section, we show a simple yet comprehensive
tutorial on the main novel features of the MARIO
modelling framework. Check the “Software location:
Emulator environment” section below to get access to
the Jupiter Notebook related to this example, along with
all the supporting Excel files.

For further information and tutorials, we developed an
online video-course available at Polimi Open Knowledge
platform [19]. You can also visit the Zenodo repository
dedicated to our “Input-Output analysis and modelling
with MARIO” online course [20].

The following example requires the user to first
download the EXIOBASE hybrid supply-use table referred
to the year 2011 [18]. The downloaded folder can be
stored in any directory. The path to this folder is indicated
henceforth with exio_path.

To start parsing the downloaded table, it is necessary
to have MARIO installed (link to the installation in the
documentation [21]), to import it, and to call the save a
MARIO Database object called world by using the parse_
exiobase function, indicating the type of table and the
type of units. Also, it is possible to filter over the desired
environmental extensions. Any of the sheets stored in the
“MR_HSUTs_2011_v3_3_18_extensions.xlsx” provided in
[18], files can be provided, as a list. In this case, we are
going to use only the Emiss extensions, referring to the
emissions transactions.

import mario
world = mario.parse_exiobase(path=exio_
path, table=’SUT’, unit=”Hybrid”,
extensions=[‘Emiss’])

To investigate the parsed table, it is often useful to get
the list of labels of a desired set or to extract the list of
labels containing a determined string within a set. These
two features are allowed by using the get_index and
the search functions respectively. Examples of getting a
list of all the labels included in the “Activity” set and of
getting a list of all the activities including the “gas” string
among the same set are reported as follows:

world.get_index(‘Activity’)
world.search(‘Activity’,’gas’)

It is also possible to calculate new matrices, indirectly
using the above-mentioned calc_all function. To get
a new, or an already calculated matrix in the baseline
scenario, it is enough to use the matrix property as
shown for the case of the footprint coefficient matrix f
(already described in Eq. 4).

world.f

The first advanced table modification we perform in this
tutorial is aggregation. It is possible to export an empty
Excel template by calling the get_aggregation_excel
function and by providing a path aggr_path.

world.get_aggregation_excel(aggr_path)

The Excel file must be filled in at least one of its sheets.
Each sheet presents the list of labels of the sets it is
dedicated to and the user is required to map the original
labels with new desired labels to reduce the numerosity
of the desired sets.

Figure 2 shows the aggregation of the commodities of
the raw EXIOBASE table into a new configuration.

It is worth noting that in the case of a hybrid-units
table, like the one in this example, the user must pay
attention to the homogeneity of the units relative to the
commodities that are going to be aggregated. A specific
error is raised in case this rule is neglected.

To aggregate the Database, it is just required to read
back the filled Excel file by using the aggregate function.
It is finally possible to check the new dimension of the
Database by printing it. The aggregated database has
now 5 regions, 50 activities, 44 commodities, and just 1
satellite account, instead of the original 48 regions, 164
activities, 200 commodities, and 66 satellite accounts.

world.aggregate(aggr_path)
print(world)

The second modification to the table would be the
extension of the newly obtained aggregated table to a
new supply chain. In this example, we will display how
to model a new industrial activity, namely the European
supply chain of battery manufacturing. A new activity
called “Manufacture of batteries” as well as a new
commodity called “Batteries” need to be added to the
table. Also in this case, the user can be supported by an
integration with dedicated Excel files. In the case of a
SUT, two files are requested, one to add the “Batteries”
commodity and a second to add the new “Manufacture
of batteries” activity. It is first necessary to create a list
of new_activities including the label of the new activity
to be modelled, then the user shall provide a path add_
activity_path where the template Excel file would be
exported. The get_add_sectors_excel function can finally
be executed, by specifying also that the item which will

7Tahavori et al. Journal of Open Research Software DOI: 10.5334/jors.473

be modelled in this template is an activity and in which
regions this activity will be implemented.

new_activities = [‘Manufacture of
batteries’]
world.get_add_sectors_excel(
 new_sectors=new_activities,
 regions=world.get_index(“Region”),
 item=’Activity’,
 path=add_activity_path,
)

To properly model a new activity, it is necessary to
provide a characterization of the input structure of the
new activity in the “input_from” sheet (Figure 3), the unit
of measure of its output (“units” sheet), and possibly the
related satellite transactions (“Satellite account” sheet).
The characterization of the input structure is intended to
be performed in the form of a life-cycle inventory [22]
and therefore needs to be supported by appropriate
data collection as well as by a harmonization process to
correctly map the collected literature data with the sets
of the adopted table.

Once the template to add the activity is filled, the
add_sectors function shall be called to add the new
activity. It is possible to notice that the Database now
has 51 activities by printing the Database object.

world.add_sectors(
 new_sectors=new_activities,
 regions=world.get_index(“Region”),
 item=’Activity’,
 io=add_activity_path
)
print(world)

The same procedure needs to be followed for the addition
of the new commodity: it is required, therefore, to provide
a list of new_commodities including “Batteries”, and to
generate another Excel template (add_commodity_path).

new_commodities = [‘Batteries’]
world.get_add_sectors_excel(
 new_sectors=new_commodities,
 regions=world.get_index(“Region”),
 item=’Activity’,
 path=add_commodity_path,
)

When filling the file, in this case, it is necessary to indicate
that the “Batteries” commodity is produced by the new
activity in the “output from” sheet (Figure 4) and that the
only consumption of batteries is in the European final
demand (“Final consumption” sheet). The “Batteries”
commodity is measured in “kWh” (“units” sheet).

Once the template Excel to add the commodities is
filled it is necessary to call the add_sectors function once
more. Afterward, it is possible to notice that the Database
now has 45 commodities by printing the Database object.

world.add_sectors(
 new_sectors=new_commodities,
 regions=world.get_index(“Region”),
 item=’Commodity,
 io=add_commodity_path
)
print(world)

The tutorial analysis is finalized by implementing a
scenario analysis, therefore a shock would be modelled
into the table. MARIO allows exporting an empty Excel

Figure 2 Aggregation Excel file. Example of commodities aggregation.

8Tahavori et al. Journal of Open Research Software DOI: 10.5334/jors.473

template to be filled with the information regarding the
desired modifications to be applied to the original table. It
is enough to call the get_shock_excel function and provide
a path (shock_path). In this example, the environmental
impact of the increase in European final consumption of
domestic batteries up to 1 TWh is evaluated.

world.get_shock_excel(shock_path)

To implement such shock, the user would need to
navigate to the Y sheet and provide the instructions to

update the final consumption of the European “Batteries”
commodity in Europe (Figure 5).

Once the shock template is filled, the shock_calc
function implements the shock in the Database object.
It is necessary to provide which matrices are intended
to be modified (just Y for this particular shock) and
the name of the new scenario which will be created
(“increased batteries demand” in this case). It is
possible to print the Database object to check that
two scenarios are present in the instance after this
operation.

Figure 3 Characterization of the input structure of the new activity.

Figure 4 Characterization of the supply of the European “Batteries” commodity by the new European “Manufacture of batteries” activity.

9Tahavori et al. Journal of Open Research Software DOI: 10.5334/jors.473

world.shock_calc(
 io=shock_path,
 Y=True,
 scenario=’increased batteries demand,
)
print(world)

To conclude, it is possible to visualize the results, for
example, the impact caused by the implemented shock
on the consumption of commodities required for the

production of batteries. Such impact can be provided
with respect to the baseline scenario. To do so, we can
use the plot_matrix function, which is based on the Plotly
library [23], and apply a set of desired filters.

world.plot_matrix(
 matrix = ‘U’,
 item = ‘Commodity’,
 facet_col=’Commodity_from’,
 x = ‘Activity_to’,

Figure 5 Shock implementation on the Y matrix.

Figure 6 Built-in visualization of selected results. It is worth noting that the values of each commodity are represented following its
unit of measure.

10Tahavori et al. Journal of Open Research Software DOI: 10.5334/jors.473

 color=’Region_from’,
 path= plot_path,
 base_scenario = “baseline”,
 filter_Activity_to= [‘Manufacture of

batteries’],
 filter_Region_

from=[‘China’,’EU27+UK’,’RoW’],
 filter_Region_to=[‘EU27+UK’],
 filter_Commodity_

from=[‘Chemicals’,’Non-ferrous metal
ores’,’Electricity’, ‘Natural gas’],

)

The resulting plot is an interactive HTML file, as shown
in Figure 6, which reports the consumption of the
new “Manufacture of batteries” activity of selected
commodities (one per subplot, each expressed in its
specific unit of measure) coming from different regions
(legend colors). The values are expressed as a variation
with respect to the baseline scenario.

QUALITY CONTROL
The current version of MARIO has achieved a test coverage
of 49%. This coverage includes a comprehensive 100%
assessment of the fundamental mathematical engine.
Additional tests are currently in active development.

For the unit test process, pytest is used (https://docs.
pytest.org/en/7.4.x/). Moreover, there are two sample
cases embedded in the software which allows the user
to test the main functionalities of MARIO for two types of
tables that can be handled, namely SUTs and IOTs. The
two examples can be loaded using the load_example
function:

from mario import load_example
IOT = load_example(“IOT”)
SUT = load_example(“SUT”)

The MARIO source code follows the PEP 8 specifications
as implemented by the Black code formatting library
(https://github.com/psf/black).

The MARIO documentation is built using the Sphinx
Python Documentation Generator and hosted on
readthedocs (https://mario-suite.readthedocs.io/). It
includes all the API references, information on the
requirements, and the installation guide, a full section
is dedicated to the terminology, and two others are
devoted to database parsing and examples.

(2) AVAILABILITY

OPERATING SYSTEM
Windows, Mac OS, GNU/Linux, and any other operating
systems running Python.

PROGRAMMING LANGUAGE
Python 3.7 or higher.

ADDITIONAL SYSTEM REQUIREMENTS
No specific requirements. Please note that memory
usage is strongly affected by the dimension of the parsed
input-output table.

DEPENDENCIES
For the current MARIO version 0.2.0

•	 pandas 1.3.5
•	 numpy 1.21.6
•	 plotly 5.14.1
•	 tabulate 0.9.0

SOFTWARE LOCATION:
Archive
 Name: Zenodo
 Persistent identifier: https://doi.org/10.5281/

zenodo.5879382
 Licence: GPL v3
 Publisher: Mohammad Amin Tahavori
 Version published: 0.2.2 and earlier versions.
 Date published: 16/09/23 (version 0.2.2)

Code repository
 Name: Github (also hosted on PyPI)
 Identifier: https://github.com/it-is-me-mario/MARIO
 Licence: GPL v3
 Date published: 16/09/23 (version 0.2.2)

Emulation environment
 Name: Jupiter Notebook of the displayed example

application
 Identifier: https://github.com/it-is-me-mario/Tuto

rials/blob/main/JORS%20paper/Tutorial.ipynb
 Licence: GPL v2
 Date published: 22/05/23

LANGUAGE
English

(3) REUSE POTENTIAL

MARIO’s target users are manyfold.
It was primarily designed for academic and other IO

professionals in need of a user-friendly, flexible, and all-
around comprehensive tool to perform economic and
environmental analyses. The software has been currently

https://docs.pytest.org/en/7.4.x/
https://docs.pytest.org/en/7.4.x/
https://github.com/psf/black
https://mario-suite.readthedocs.io/
https://doi.org/10.5281/zenodo.5879382
https://doi.org/10.5281/zenodo.5879382
https://github.com/it-is-me-mario/MARIO
https://github.com/it-is-me-mario/Tutorials/blob/main/JORS%20paper/Tutorial.ipynb
https://github.com/it-is-me-mario/Tutorials/blob/main/JORS%20paper/Tutorial.ipynb

11Tahavori et al. Journal of Open Research Software DOI: 10.5334/jors.473

adopted in various peer-reviewed scientific publications
[24–27] as well as in Horizon [28] and private consultancy
projects. In particular, the scope of the applications may
range from policy impact assessment to commodities
as well as industrial processes footprint evaluation, or
to compare environmental or economic repercussions
caused by different technological alternatives. As
stated in the Introduction section, we believe MARIO’s
real added value with respect to other available tools
is that it collects many features of most of such tools
in one unique package, such as parsing SUTs, parsing
hybrid-units tables, generating scenarios, and allowing
to extend IO tables by implementing new supply-chain/
processes. It is finally the intention of the authors to
propose MARIO as a bridge among other tools, leaving
the users to decide to adopt their preferred tools for
some specific features while allowing them to expand
their analyses into MARIO in case some other features
are absent in their preferred tool. For instance, from
version 0.2.0, MARIO allows parsing tables that have
been firstly manipulated with pymrio directly importing
a pymrio IOSystem object.

The other noticeable added value provided by MARIO
is related to its Excel-based API, thanks to which MARIO
is easily exploitable for teaching and training activities,
in particular, if such activities aim to develop new
capacities in the field of Industrial Ecology and/or Life-
Cycle Assessment. MARIO has been successfully used in
different courses ranging from the ICTP Joint Summer
School on Modelling Tools for Sustainable Development
[29], to a MOOC course available on the Open Knowledge
platform of Politecnico di Milano [30] as well as for a
Master of Science degree course [31] and in various
other professionals-oriented courses provided by the
Department of Energy in Politecnico di Milano.

Regarding communications, updates, and contributions,
the preferred channel is the GitHub organization (link
available in the Software location section): developers and
contributors are invited to adopt the GitHub issues tracking
system to report bugs and propose enhancements to the
code. Direct emails to the authors of this paper are also
welcome in case of any other request.

ACKNOWLEDGEMENTS

The authors want to thank Prof. Maria Cristina Rulli, who
unintentionally inspired MARIO’s name. A special thanks
to all the thesis students and MSc students from the
Advanced Thermodynamics and Thermoeconomics and
Energy Accounting and Impact Assessment Modelling
courses of Politecnico di Milano, who in the last three
years used MARIO since the very early stages and helped
us reporting bugs, feedbacks and ideas.

COMPETING INTERESTS

The authors have no competing interests to declare.

AUTHOR AFFILIATIONS

Mohammad Amin Tahavori orcid.org/0000-0002-7753-0523

MARIO lead developer and co-designer; eNextGen, Via Principe

Eugenio 9, 20155, Milan, Italy; VITO NV – Hoofdkantoor,

Boeretang 200, 2400, Mol, Belgium

Nicolò Golinucci orcid.org/0000-0002-8735-499X

MARIO co-developer and lead designer; Department of Energy,

Politecnico di Milano, Via Lambruschini 4, 20156, Milan, Italy

Lorenzo Rinaldi orcid.org/0000-0003-4667-8653

MARIO co-developer and co-designer; Department of Energy,

Politecnico di Milano, Via Lambruschini 4, 20156, Milan, Italy

Matteo Vincenzo Rocco orcid.org/0000-0003-3129-3654

Scientific coordination and supervision; Department of Energy,

Politecnico di Milano, Via Lambruschini 4, 20156, Milan, Italy

Emanuela Colombo orcid.org/0000-0002-9747-5699

Scientific coordination and supervision; Department of Energy,

Politecnico di Milano, Via Lambruschini 4, 20156, Milan, Italy

REFERENCES

1. Miller RE, Blair PD. “Input-Output Analysis – Foundations

and Extensions.” Cambridge University Press; 2012. DOI:

https://doi.org/10.1017/CBO9780511626982

2. Duchin F. “Structural economics : measuring change in

technology, lifestyles, and the environment.” Washington,

DC: Island Press; 1998.

3. Vicente-Saez R, Martinez-Fuentes C. “Open Science

now: A systematic literature review for an integrated

definition.” J Bus Res. 2018; 88: 428–436. DOI: https://doi.

org/10.1016/j.jbusres.2017.12.043

4. Pfenninger S, et al. “Opening the black box of energy

modelling: Strategies and lessons learned.” Energy

Strategy Reviews. 2018; 19. 63–71. DOI: https://doi.

org/10.1016/j.esr.2017.12.002

5. Pfenninger S, DeCarolis J, Hirth L, Quoilin S, Staffell I.

“The importance of open data and software: Is energy

research lagging behind?” Energy Policy. 2017; 101:

211–215. DOI: https://doi.org/10.1016/j.enpol.2016.11.046

6. Pauliuk S, Majeau-Bettez G, Mutel CL, Steubing B,

Stadler K. “Lifting Industrial Ecology Modeling to a

New Level of Quality and Transparency: A Call for More

Transparent Publications and a Collaborative Open Source

Software Framework.” J Ind Ecol. 2015; 19(6): 937–949.

DOI: https://doi.org/10.1111/jiec.12316

7. Mutel C. “Brightway: An open source framework for Life

Cycle Assessment.” The Journal of Open Source Software.

2017; 2(12): 236. DOI: https://doi.org/10.21105/joss.00236

https://orcid.org/0000-0002-7753-0523
https://orcid.org/0000-0002-7753-0523
https://orcid.org/0000-0002-8735-499X
https://orcid.org/0000-0002-8735-499X
https://orcid.org/0000-0003-4667-8653
https://orcid.org/0000-0003-4667-8653
https://orcid.org/0000-0003-3129-3654
https://orcid.org/0000-0003-3129-3654
https://orcid.org/0000-0002-9747-5699
https://orcid.org/0000-0002-9747-5699
https://doi.org/10.1017/CBO9780511626982
https://doi.org/10.1016/j.jbusres.2017.12.043
https://doi.org/10.1016/j.jbusres.2017.12.043
https://doi.org/10.1016/j.esr.2017.12.002
https://doi.org/10.1016/j.esr.2017.12.002
https://doi.org/10.1016/j.enpol.2016.11.046
https://doi.org/10.1111/jiec.12316
https://doi.org/10.21105/joss.00236

12Tahavori et al. Journal of Open Research Software DOI: 10.5334/jors.473

8. Majeau-Bettez G, Agez M. “ecospold2matrix.” https://

github.com/majeau-bettez/ecospold2matrix (accessed

May 14, 2023).

9. Majeau-Bettez G, Pauliuk S, Mutel C, Stadler K. “pySUT.”

10. Stadler K. “Pymrio – A Python Based Multi-Regional Input-

Output Analysis Toolbox.” J Open Res Softw. 2021; 9(1): 8.

DOI: https://doi.org/10.5334/jors.251

11. Donati F, Aguilar-Hernandez GA, Sigüenza-Sánchez CP,

de Koning A, Rodrigues JFD, Tukker A. “Modeling the

circular economy in environmentally extended input-

output tables: Methods, software and case study.” Resour

Conserv Recycl. 2020; 152; 104508. DOI: https://doi.

org/10.1016/j.resconrec.2019.104508

12. Donati F, et al. “Modeling the circular economy in

environmentally extended input–output: A web

application.” J Ind Ecol. 2020; 25(1): 36–50. DOI: https://

doi.org/10.1111/jiec.13046

13. Agez M, Wood R, Margni M, Strømman AH, Samson R,

Majeau-Bettez G. “Hybridization of complete PLCA and

MRIO databases for a comprehensive product system

coverage.” J Ind Ecol. 2020; 24(4): 774–790. DOI: https://

doi.org/10.1111/jiec.12979

14. Sacchi R. “unfold: removing the barriers to sharing and

reproducing prospective life-cycle assessment databases.”

J Open Source Softw. 2023; 8(83): 5198. DOI: https://doi.

org/10.21105/joss.05198

15. “Pandas Official Webpage.”

16. Lenzen M, Moran D, Kanemoto K, Geschke A. “BUILDING

EORA: A GLOBAL MULTI-REGION INPUT–OUTPUT DATABASE

AT HIGH COUNTRY AND SECTOR RESOLUTION.” Economic

Systems Research. 2013; 25(1): 20–49. DOI: https://doi.org/

10.1080/09535314.2013.769938

17. Stadler K, et al. “EXIOBASE 3.” Oct. 2021. DOI: https://doi.

org/10.5281/ZENODO.5589597

18. Merciai S, Schmidt J. “EXIOBASE HYBRID v3 – 2011.” May

2021. DOI: https://doi.org/10.5281/ZENODO.7244919

19. Rocco MV, Golinucci N, Rinaldi L, Tonini F. “Measuring

the impact of the Energy transition.” POLIMI Open

Knowledge; 2023. https://www.pok.polimi.it/courses/course-

v1:Polimi+MET102+2023_M7/about (accessed Sep. 17, 2023).

20. Rinaldi L, Golinucci N, Rocco MV, Colombo E. “Input-

Output analysis and modelling with MARIO.” Zenodo; Sep.

2023. DOI: https://doi.org/10.5281/zenodo.8308515

21. Tahavori MA, Golinucci N, Rinaldi L. “MARIO –

Documentation.”

22. International Standard Organization. “ISO 14040:

Environmental Management-Life Cycle Assessment-

Principles and Framework.” 1997.

23. Plotly. “Plotly Python Graphing Library.” 2023. https://

plotly.com/python/ (accessed May 23, 2023).

24. Conte M, et al. “Investigating the economic and

environmental impacts of a technological shift towards

hydrogen-based solutions for steel manufacture in

high-renewable electricity mix scenarios for Italy.”

in IOP Conference Series: Earth and Environmental

Science; 2022. DOI: https://doi.org/10.1088/1755-

1315/1106/1/012008

25. Falchetta G, Golinucci N, Rocco MV. “Environmental and

energy implications of meat consumption pathways in

sub-saharan africa.” Sustainability (Switzerland). 2021;

13(13). DOI: https://doi.org/10.3390/su13137075

26. Golinucci N, et al. “Comprehensive and Integrated

Impact Assessment Framework for Development Policies

Evaluation: Definition and Application to Kenyan Coffee

Sector.” Energies (Basel). 2022; 15(9). DOI: https://doi.

org/10.3390/en15093071

27. Rinaldi L, Rocco MV, Colombo E. “Assessing critical

materials demand in global energy transition scenarios

based on the Dynamic Extraction and Recycling Input-

Output framework (DYNERIO).” Resour Conserv Recycl.

2023; 191: 106900. DOI: https://doi.org/10.1016/j.

resconrec.2023.106900

28. Nikas A, et al. “Three responses to the energy crisis – the

co-benefits of energy efficiency.” IAM COMPACT; 2023.

[Online]. Available: https://www.iam-compact.eu/sites/

default/files/2023-05/%5BIAM%20COMPACT%5D%20

Three%20responses%20to%20the%20energy%20crisis.

pdf.

29. Climate Compatible Growth. “Joint Summer School

on Modelling Tools for Sustainable Development.”

International Centre for Theoretical Physics; 2023. https://

indico.ictp.it/event/10186#:~:text=The%20Joint%20

Summer%20School%20on,from%203rd%20July%20

to%2014th (accessed May 22, 2023).

30. Rocco MV, Golinucci N, Rinaldi L, Tonini F. “MOOC course:

Measuring the impact of the Energy Transition.” Polimi

Open Knowledge; 2023. https://www.pok.polimi.it/courses/

course-v1:Polimi+MET102+2023_M1/about (accessed May

22, 2023).

31. Rocco MV. “MSc course: Energy Accounting and Impact

Assessment Methods.” Manifesto degli Studi, Politecnico di

Milano; 2022. https://www11.ceda.polimi.it/schedaincarico/

schedaincarico/controller/scheda_pubblica/SchedaPublic.

do?&evn_default=evento&c_classe=809952&__pj0=0&__

pj1=5efc1a54cde03c4b8a27a02dee9547b2 (accessed May

22, 2023).

https://github.com/majeau-bettez/ecospold2matrix
https://github.com/majeau-bettez/ecospold2matrix
https://doi.org/10.5334/jors.251
https://doi.org/10.1016/j.resconrec.2019.104508
https://doi.org/10.1016/j.resconrec.2019.104508
https://doi.org/10.1111/jiec.13046
https://doi.org/10.1111/jiec.13046
https://doi.org/10.1111/jiec.12979
https://doi.org/10.1111/jiec.12979
https://doi.org/10.21105/joss.05198
https://doi.org/10.21105/joss.05198
https://doi.org/10.1080/09535314.2013.769938
https://doi.org/10.1080/09535314.2013.769938
https://doi.org/10.5281/ZENODO.5589597
https://doi.org/10.5281/ZENODO.5589597
https://doi.org/10.5281/ZENODO.7244919
https://www.pok.polimi.it/courses/course-v1:Polimi+MET102+2023_M7/about
https://www.pok.polimi.it/courses/course-v1:Polimi+MET102+2023_M7/about
https://doi.org/10.5281/zenodo.8308515
https://plotly.com/python/
https://plotly.com/python/
https://doi.org/10.1088/1755-1315/1106/1/012008
https://doi.org/10.1088/1755-1315/1106/1/012008
https://doi.org/10.3390/su13137075
https://doi.org/10.3390/en15093071
https://doi.org/10.3390/en15093071
https://doi.org/10.1016/j.resconrec.2023.106900
https://doi.org/10.1016/j.resconrec.2023.106900
https://www.iam-compact.eu/sites/default/files/2023-05/%5BIAM%20COMPACT%5D%20Three%20responses%20to%20the%20energy%20crisis.pdf
https://www.iam-compact.eu/sites/default/files/2023-05/%5BIAM%20COMPACT%5D%20Three%20responses%20to%20the%20energy%20crisis.pdf
https://www.iam-compact.eu/sites/default/files/2023-05/%5BIAM%20COMPACT%5D%20Three%20responses%20to%20the%20energy%20crisis.pdf
https://www.iam-compact.eu/sites/default/files/2023-05/%5BIAM%20COMPACT%5D%20Three%20responses%20to%20the%20energy%20crisis.pdf
https://indico.ictp.it/event/10186#:~:text=The%20Joint%20Summer%20School%20on,from%203rd%20July%20to%2014th
https://indico.ictp.it/event/10186#:~:text=The%20Joint%20Summer%20School%20on,from%203rd%20July%20to%2014th
https://indico.ictp.it/event/10186#:~:text=The%20Joint%20Summer%20School%20on,from%203rd%20July%20to%2014th
https://indico.ictp.it/event/10186#:~:text=The%20Joint%20Summer%20School%20on,from%203rd%20July%20to%2014th
https://www.pok.polimi.it/courses/course-v1:Polimi+MET102+2023_M1/about
https://www.pok.polimi.it/courses/course-v1:Polimi+MET102+2023_M1/about
https://www11.ceda.polimi.it/schedaincarico/schedaincarico/controller/scheda_pubblica/SchedaPublic.do?&evn_default=evento&c_classe=809952&__pj0=0&__pj1=5efc1a54cde03c4b8a27a02dee9547b2
https://www11.ceda.polimi.it/schedaincarico/schedaincarico/controller/scheda_pubblica/SchedaPublic.do?&evn_default=evento&c_classe=809952&__pj0=0&__pj1=5efc1a54cde03c4b8a27a02dee9547b2
https://www11.ceda.polimi.it/schedaincarico/schedaincarico/controller/scheda_pubblica/SchedaPublic.do?&evn_default=evento&c_classe=809952&__pj0=0&__pj1=5efc1a54cde03c4b8a27a02dee9547b2
https://www11.ceda.polimi.it/schedaincarico/schedaincarico/controller/scheda_pubblica/SchedaPublic.do?&evn_default=evento&c_classe=809952&__pj0=0&__pj1=5efc1a54cde03c4b8a27a02dee9547b2

13Tahavori et al. Journal of Open Research Software DOI: 10.5334/jors.473

TO CITE THIS ARTICLE:
Tahavori MA, Golinucci N, Rinaldi L, Rocco MV, Colombo E 2023 MARIO: A Versatile and User-Friendly Software for Building Input-
Output Models. Journal of Open Research Software, 11: 14. DOI: https://doi.org/10.5334/jors.473

Submitted: 27 May 2023 Accepted: 11 October 2023 Published: 27 October 2023

COPYRIGHT:
© 2023 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0
International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original
author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by Ubiquity Press.

https://doi.org/10.5334/jors.473
http://creativecommons.org/licenses/by/4.0/

