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ABSTRACT
The GTST package is a python package for performing graph sample testing. The test 
infers whether two samples of graphs were generated from the same probability 
distribution or not. It is a very general framework as it allows comparison between 
binary, weighted, directed, node-labelled, node attributed and edge-labelled graphs. 
Up until now, there is no package which offers graph sample testing even though 
the problem is often encountered in various fields such as risk management, social 
sciences and molecular science. The flexibility of the test comes from so-called graph 
kernels which allow one to measure similarities between complex graph data. The 
difference between the two samples is quantified using an empirical estimate of the 
maximum mean discrepancy which is a distance on the space of probability measures. 
Along with testing of graph samples, the package offers various graph kernels, some of 
which have not been readily available before.
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(1) OVERVIEW

INTRODUCTION
It is increasingly common to obtain sampled data in 
the form of graph or network realisations. This is either 
through construction of graph structures as summary 
statistics for multivariate spatial-temporal data or 
directly as a graph-network data set from say a social 
network realisation or the like. In such settings in practice, 
one often needs to draw inferences about two samples 
of such graphs or networks. That is, to test whether 
the collections of graphs/networks in one sample were 
generated from the same distribution as the collection of 
graphs/networks in the second sample.

Kernel methods have proven to be useful in pattern 
recognition tasks such as classification and can be further 
extended as an inference procedure to two-sample 
hypothesis testing on structured data. The method 
embeds the graphs into a reproducing kernel Hilbert 
space (RKHS) via a feature map which is then extended 
further to the embedding of a probability distribution. 
The two-sample null hypothesis is that the generating 
mechanism behind the two samples is the same and 
the test statistic, which is called the maximum mean 
discrepancy (MMD), is the largest distance between the 
means of the two sample embeddings [7].

Graph kernels are already well established and widely 
used for solving classification tasks on graphs and can 
further be used to compare samples of graphs and 
to perform graph screening [14]. They provide a very 
flexible way of comparing graphs as they exist for a 
wide range of different graph structures, for example, 
weighted, directed, labelled, and attributed graphs. Their 
performance depends on their expressiveness, that is, 
their ability to distinguish non-isomorphic graphs. The 
difficulty of distinguishing two samples of graphs varies 
strongly based on the type of graphs.

Graph two-sample hypothesis testing is a problem 
that frequently arises in various disciplines, for example 
in bio informatics [1], community detection [6], and risk 
management [3]. Graph two-sample hypothesis have 
mostly been performed by using graph statistics such 
has the degree centrality and shortest paths. Although 
these methods can often give good performances they 
fail to take into account various attributes that are often 
present in real graphs such as node labels, edge labels, 
node attributes and edge weights. When the kernel two-
sample hypothesis testing was introduced [7] a flood 
gate opened to allow for testing of such attributes and 
therefore providing a flexible way of performing two-
sample hypothesis testing. Luckily, there also exists a 
vast literature on graph kernels [11, 14]. Until now, there 
is no package which allows one to estimate graphs 
from real valued data matrices and perform hypothesis 
testing in a flexible manner. The package GTST provides 
three functionalities

1. Functions to estimate the two-sample hypothesis 
test statistic;

2. Functions to calculate different graph kernels; and
3. A function to estimate graphs from data matrices.

The package allows other network science researches 
who may not be programmers to use the MMD testing 
framework.

There exists a python package called GraKel [17] which 
is dedicated to calculating various graph kernels. The 
package is very user-friendly so the GTST user can use all 
graph kernels available in the Grakel package. The GTST 
package extends the choice of graph kernels available 
for use in graph two-sample testing, by also developing a 
collection of kernels not available in GraKel. Such as, the 
fast random walk kernels which is based on ideas from 
[10] along with an additional fast random walk kernel 
for edge-labelled graphs; The Wasserstein Weisfeiler-
Lehman Graph kernel [18] whose original code was 
adjusted for the package needs. The Deep Graph kernel 
[19], and the graph neural tangent kernel [4] whose 
original code was adjusted for the package needs. The 
MONK estimator, which is a robust estimator of the MMD, 
was developed by MONK [12] and they do provide the 
code online and in a packaged environment. However, 
we have adjusted the code slightly to allow for robust 
comparing of samples of different sizes. The MMDGraph 
then estimates the p-value of test by using a bootstrap 
or a permutation sampling scheme. The package also 
allows for estimating graphs using sklearn’s graphical 
lasso [2]. Additional preprocessing can be done by using 
the nonparanormal transform [13]. The best graph is 
found by using the EBIC criterion [15]. GTST assumes that 
the graphs passed are a networkx object [9]. One can 
additionally use pre-computed kernels to perform tests.

IMPLEMENTATION AND ARCHITECTURE
Let G(V, S) denote a graph with vertex set V and edge set 
S. In the two-sample testing of graph-valued data, we 
assume we are given two sets of samples/observations 
that comprise collections of graph-valued data {G1, …, 
Gn} and 1{ ,..., }nG G ′′ ′  where , , ,i jG G i j′ ∈Ω ∀ . The graphs 
in the two samples are all generated independently 
from two probability spaces ( , , )    and ( , , )   , and 
the goal is to infer whether  = Q. We note that in this 
general testing framework the vertex sets and edge-
sets do not have to be equal, but they can be common 
if it is desirable for the application. This is therefore a 
very general testing framework. In the simplest case, 
where we assume both sets of sample graphs come 
from a common set of vertices, then the sample space 
Ω contains all possible edges that can occur in a graph 
G, that is 1 2 1 2 1| | | | | | 1{( , ), ,( , ),( , ), ,( , )}V V Vv v v v v v v v −Ω = … … .1 As 
the sample space is discrete we can define the σ-algebra 
as the power set of Ω, namely, ( )= Ω  . The probability 
function : [0,1]  then defines the probability of 
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obtaining a certain graph in the sample set of graph-
valued data. As an example we can define for instance a 
population distribution to be uniform 

1
( ( , ))

| |
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where | |
2( )VM =  is the total number of possible edges and 

G(V, S) is a graph with |V| vertices and |S| number of 
edges. This setting is illustrated in Figure 1.

Now, returning to the concept of two-sample testing 
for graph-valued data. The goal is to infer whether the 
two samples of graphs are generated according to the 
same distribution. This involves developing a statistical 
test 1 1({ } ,{ } )n n

i iT G G ′
= =′  to determine from the population 

samples whether there is sufficient evidence to reject 
the null hypothesis that both population distributions 
generating the two samples of graphs are equivalent, 
where 1 1 1 1({ } ,{ } ) : { } { } {0,1}n n n n

i i i iT G G G G′ ′
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alternative hypothesis:

0

1

:

: .

H

H




 
 

The test statistic used in this case is the largest distance 
between the expectation of some function w.r.t. to the 
two probability distributions. Let B  be a class of functions 
:f RΩ→ . The maximum mean discrepancy (MMD) is 

defined as:

~ ~MMD[ , , ] : sup [ ( )] [ ( )] .( )
B
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Where the class of function, B , is the unit ball in a 
RKHS, then the squared population MMD becomes 
kernalized:

2
1 , , ,MMD [ , , ] [ ( , )] 2 [ ( , )] [ ( , )],E k G G E k G G E k G G           

where k is some graph kernel. The kernel matrix plays a 
central role and is defined as:

( , ),ij i jk G G=K

where 
2
1{ } n

i iG =  is the data. Note, both sampels are included 
in the data. In the context of two sample graph testing, 
we have two data sources, sample 1 of graphs assumed 
drawn from P and sample 2 of graphs assumed drawn 
from Q. It can be good to order the kernel matrix such 
that K has a block structured as follows:
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where KQ is the Kernel function evaluated at data points 
within the sample coming from the unknown distributions 
 and Q. K, KQ and KQQ are defined analogously. Note 

T=
  K K .
Different estimates of MMD2 are:

UNBIASED ESTIMATE
An unbiased estimate of MMD2 for n and n’ samples of 
graphs is given by:
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BIASED ESTIMATE
A biased estimate of MMD2 for n and n’ samples of graphs 
is given by:
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UNBIASED LINEAR TIME ESTIMATE
An unbiased can be computed in O(n) time. Assume that 
n = n’ and define n2 = n/2, where ∙ is the floor function, 
then the linear estimate is computed as:
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while 
2

MMDl  has higher variance than 
2

MMDu, it is 
computationally much more appealing.

Figure 1 The graph two sample testing scenario. Here we have observed 4 graphs from  and 3 graphs from Q. The sample space of 
 and Q is the same (( )52  possible edges).
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ROBUST ESTIMATE
Consider the partition 1:{ }q q QS ∈  of | | /qS n Q=  partitions. By 
the representer theorem [16] we can express a function f 
within the RKHS space as:

( , ) ( , ).x yi i i i
i i

f a k b k= ⋅ + ⋅∑ ∑

A robust MMD estimator is found by solving:

1:
: 1

1
max [ , ] ,

| |T q Q q q
q

med
S



  
 
 


K

K1 1
c c c

c

where 2 2 2[ , ] , [ , ; , ]n n n    K K K K Kc a b      , where 
K is the Kernel function evaluated at data points within 
the sample coming from the unknown distributions  
and Q, and n

q ∈1  is an indicator vector of block q. For 
more details see [12, 8].

The package includes graph kernels such as:

•	 Random walk kernels which can be used on 
weighted, directed, undirected, and bipartite graphs 
with node labels, node attributes, edge labels, and 
edge attributes.

•	 Deep graph kernels can be used on node labelled 
binary graphs.

•	 Graph neural tangent kernels can be used on binary 
graphs with node labels/attributes.

•	 Wasserstein Weisfeiler-Lehman graph kernels can 
be used on undirected graphs with node labels and 
can be used on node-attributed graphs with the right 
embedding scheme as well.

Other graph kernels can be utilized via the graph kernel 
library GraKel [17] which is dedicated to calculating 
various graph kernels. The package is very user-friendly 
so the GTST user can use all graph kernels available in the 
Grakel package. For more details on various graph kernels 
see [8, 17, 14].

EXAMPLE
The workflow is as follows: 1) Use two data arrays 
to estimate two sequences/samples of graphs using 
the graphical lasso [5]. This step can be skipped if the 
practitioner already has the samples of graphs in a 
networkx format [9]. 2) Select a graph kernel. 3) Select 
an estimator of the MMD or try multiple estimators to 
obtain a p-value. A quick example for the random walk 
kernel is:

import numpy as np
import networkx as nx
import GTST

# Generate random samples
n1 = n2 = 50 # sample sizes
# generate two samples

g1 = [nx.fast_gnp_random_graph (30,0.3) for 
_ in range (n1)]
g2 = [nx.fast_gnp_random_graph (30,0.4) for 
_ in range (n2)]

# Random Walk, r is number of eigen-pairs, c 
is the discount constant
MMD_out = GTST.MMD()
MMD_out.fit(G1 = g1,

G2 = g2,
kernel = 'RW_ARKU_PLUS',
mmd_estimators = 'MMD_u',
r = 6,
c = 0.001)

print (f" RW_ARKU_plus {MMD_out.p_values}")

For more exampels please see https://github.com/
ragnarlevi/GTST.

QUALITY CONTROL
The requirements for running test for GTST is listed in the 
requirements_dev.txt in the Github page. The tests involve 
testing if kernels matrices are positive semi definite and 
whether the kernels, test statistic, and permutation 
method for the p-value are able to reject the null when the 
null is “extremely” false using known random data sets. 
Once the required testing packages have been installed, 
the tests can be performed by running the command:

pytest

in the root folder, which will take around 15 minutes. This 
will generate a coverage report which can be found in the 
htmlcov directory. To view it run:

cd htmlcov python - m http.server

and open the localhost link (something like http://
localhost:8000/) in a browser.

To test GTST in a clean environment for all python 
versions from 3.7–3.10, we use Tox. This can be achieved 
by running

tox

in the root directory. Note that this takes significantly 
longer to run, so is best performed as a final check. 
Whenever the code is pushed to the remote repository, 
the Tox test suite is automatically run using GitHub 
actions. To investigate this process, consult the file found 
at .github/workflows/tests.yml on the github page. The 
output of the report can be found in the github actions 
tab.

A coverage report was made by using coveralls locally, 
but can be found by clicking the coverage shield on the 
github page.

https://github.com/ragnarlevi/GTST
https://github.com/ragnarlevi/GTST
http://localhost:8000/
http://localhost:8000/
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(2) AVAILABILITY

OPERATING SYSTEM
This package can be run on any operating system where 
python can be run (GNU/Linux, Mac OSX, Windows).

PROGRAMMING LANGUAGE
python 3.7+

ADDITIONAL SYSTEM REQUIREMENTS
None

DEPENDENCIES
Packages that are required are scipy>=1.6.1, scikit-
learn>=1.0.2, tqdm>=4.59.0, numpy>=1.20.1, 
networkx>=2.5, POT>= 0.8.2.

The Grakel package is optional but is recommended to 
be installed so an extra suite of graph kernels can be used.

SOFTWARE LOCATION
Archive
 Name: Zenodo
  Persistent identifier: https://doi.org/10.5281/

zenodo.8037197
 Licence: MIT
 Publisher: Ragnar Leví Guðmundarson
 Version published: 0.0.6
 Date published: 14/06/23
Code repository
 Name: Github
  Persistent identifier: https://github.com/

ragnarlevi/GTST
 Licence: MIT
 Date published: 11/11/22

LANGUAGE
English

(3) REUSE POTENTIAL

The code was originally used in the paper [8] to compare 
pairwise asset return process relationships to study and 
understand risk and return in portfolio management 
practice. This allows one to statistically test for 
significance of any detected differences in portfolio 
diversification between any portfolio investment strategy 
when applying differing investment screening criteria or 
optimal investment strategies. We further remark that 
this package can further be used in other fields other 
than portfolio comparison. For example, the package 
allows, in a straight forwards manner, to compare 
different community structures,  to detect changes in 
communities, to detect change-point events, to test 
for differences in traffic networks, and to compare ego-
networks of entities.

Every function has docstrings to ensure clarity. 
Examples for all graph kernels, some Grakel kernels and 
estimators can be found on the Github page, along with 
an example of the graph estimation functionality. GTST 
is released under the MIT license and welcomes any 
contributions. We encourage users to submit feedback 
using GitHub issue tracker, or by emailing Ragnar.

NOTE
1 We are assuming that a node can not be connected to itself.
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