
SOFTWARE

METAPAPER

ABSTRACT
The GTST package is a python package for performing graph sample testing. The test
infers whether two samples of graphs were generated from the same probability
distribution or not. It is a very general framework as it allows comparison between
binary, weighted, directed, node-labelled, node attributed and edge-labelled graphs.
Up until now, there is no package which offers graph sample testing even though
the problem is often encountered in various fields such as risk management, social
sciences and molecular science. The flexibility of the test comes from so-called graph
kernels which allow one to measure similarities between complex graph data. The
difference between the two samples is quantified using an empirical estimate of the
maximum mean discrepancy which is a distance on the space of probability measures.
Along with testing of graph samples, the package offers various graph kernels, some of
which have not been readily available before.

CORRESPONDING AUTHOR:
Ragnar L. Gudmundarson

Centre for Networks &
Enterprise Excellence,
Edinburgh Business School,
Heriot Watt University, UK

ragnarlevigud@gmail.com

KEYWORDS:
graph two sample testing;
MMD; graph kernel; kernel

TO CITE THIS ARTICLE:
Gudmundarson RL, Peters GW
2024 GTST: A Python Package
for Graph Two-Sample Testing.
Journal of Open Research
Software, 12: 6. DOI: https://
doi.org/10.5334/jors.478

RAGNAR L. GUDMUNDARSON

GARETH W. PETERS

*Author affiliations can be found in the back matter of this article

GTST: A Python Package for
Graph Two-Sample Testing

mailto:ragnarlevigud@gmail.com
https://doi.org/10.5334/jors.478
https://doi.org/10.5334/jors.478
https://orcid.org/0000-0002-5341-9206
https://orcid.org/0000-0003-2768-8979

2Gudmundarson and Peters Journal of Open Research Software DOI: 10.5334/jors.478

(1) OVERVIEW

INTRODUCTION
It is increasingly common to obtain sampled data in
the form of graph or network realisations. This is either
through construction of graph structures as summary
statistics for multivariate spatial-temporal data or
directly as a graph-network data set from say a social
network realisation or the like. In such settings in practice,
one often needs to draw inferences about two samples
of such graphs or networks. That is, to test whether
the collections of graphs/networks in one sample were
generated from the same distribution as the collection of
graphs/networks in the second sample.

Kernel methods have proven to be useful in pattern
recognition tasks such as classification and can be further
extended as an inference procedure to two-sample
hypothesis testing on structured data. The method
embeds the graphs into a reproducing kernel Hilbert
space (RKHS) via a feature map which is then extended
further to the embedding of a probability distribution.
The two-sample null hypothesis is that the generating
mechanism behind the two samples is the same and
the test statistic, which is called the maximum mean
discrepancy (MMD), is the largest distance between the
means of the two sample embeddings [7].

Graph kernels are already well established and widely
used for solving classification tasks on graphs and can
further be used to compare samples of graphs and
to perform graph screening [14]. They provide a very
flexible way of comparing graphs as they exist for a
wide range of different graph structures, for example,
weighted, directed, labelled, and attributed graphs. Their
performance depends on their expressiveness, that is,
their ability to distinguish non-isomorphic graphs. The
difficulty of distinguishing two samples of graphs varies
strongly based on the type of graphs.

Graph two-sample hypothesis testing is a problem
that frequently arises in various disciplines, for example
in bio informatics [1], community detection [6], and risk
management [3]. Graph two-sample hypothesis have
mostly been performed by using graph statistics such
has the degree centrality and shortest paths. Although
these methods can often give good performances they
fail to take into account various attributes that are often
present in real graphs such as node labels, edge labels,
node attributes and edge weights. When the kernel two-
sample hypothesis testing was introduced [7] a flood
gate opened to allow for testing of such attributes and
therefore providing a flexible way of performing two-
sample hypothesis testing. Luckily, there also exists a
vast literature on graph kernels [11, 14]. Until now, there
is no package which allows one to estimate graphs
from real valued data matrices and perform hypothesis
testing in a flexible manner. The package GTST provides
three functionalities

1. Functions to estimate the two-sample hypothesis
test statistic;

2. Functions to calculate different graph kernels; and
3. A function to estimate graphs from data matrices.

The package allows other network science researches
who may not be programmers to use the MMD testing
framework.

There exists a python package called GraKel [17] which
is dedicated to calculating various graph kernels. The
package is very user-friendly so the GTST user can use all
graph kernels available in the Grakel package. The GTST
package extends the choice of graph kernels available
for use in graph two-sample testing, by also developing a
collection of kernels not available in GraKel. Such as, the
fast random walk kernels which is based on ideas from
[10] along with an additional fast random walk kernel
for edge-labelled graphs; The Wasserstein Weisfeiler-
Lehman Graph kernel [18] whose original code was
adjusted for the package needs. The Deep Graph kernel
[19], and the graph neural tangent kernel [4] whose
original code was adjusted for the package needs. The
MONK estimator, which is a robust estimator of the MMD,
was developed by MONK [12] and they do provide the
code online and in a packaged environment. However,
we have adjusted the code slightly to allow for robust
comparing of samples of different sizes. The MMDGraph
then estimates the p-value of test by using a bootstrap
or a permutation sampling scheme. The package also
allows for estimating graphs using sklearn’s graphical
lasso [2]. Additional preprocessing can be done by using
the nonparanormal transform [13]. The best graph is
found by using the EBIC criterion [15]. GTST assumes that
the graphs passed are a networkx object [9]. One can
additionally use pre-computed kernels to perform tests.

IMPLEMENTATION AND ARCHITECTURE
Let G(V, S) denote a graph with vertex set V and edge set
S. In the two-sample testing of graph-valued data, we
assume we are given two sets of samples/observations
that comprise collections of graph-valued data {G1, …,
Gn} and 1{ ,..., }nG G ′′ ′ where , , ,i jG G i j′ ∈Ω ∀ . The graphs
in the two samples are all generated independently
from two probability spaces (, ,) and (, ,) , and
the goal is to infer whether = Q. We note that in this
general testing framework the vertex sets and edge-
sets do not have to be equal, but they can be common
if it is desirable for the application. This is therefore a
very general testing framework. In the simplest case,
where we assume both sets of sample graphs come
from a common set of vertices, then the sample space
Ω contains all possible edges that can occur in a graph
G, that is 1 2 1 2 1| | | | | | 1{(,), ,(,),(,), ,(,)}V V Vv v v v v v v v −Ω = … … .1 As
the sample space is discrete we can define the σ-algebra
as the power set of Ω, namely, ()= Ω . The probability
function : [0,1] then defines the probability of

3Gudmundarson and Peters Journal of Open Research Software DOI: 10.5334/jors.478

obtaining a certain graph in the sample set of graph-
valued data. As an example we can define for instance a
population distribution to be uniform

1
((,))

| |

G V S
M

S

where | |
2()VM = is the total number of possible edges and

G(V, S) is a graph with |V| vertices and |S| number of
edges. This setting is illustrated in Figure 1.

Now, returning to the concept of two-sample testing
for graph-valued data. The goal is to infer whether the
two samples of graphs are generated according to the
same distribution. This involves developing a statistical
test 1 1({ } ,{ })n n

i iT G G ′
= =′ to determine from the population

samples whether there is sufficient evidence to reject
the null hypothesis that both population distributions
generating the two samples of graphs are equivalent,
where 1 1 1 1({ } ,{ }) : { } { } {0,1}n n n n

i i i iT G G G G′ ′
= = = =′ ′× is a function

that distinguishes between the null hypothesis and the
alternative hypothesis:

0

1

:

: .

H

H

The test statistic used in this case is the largest distance
between the expectation of some function w.r.t. to the
two probability distributions. Let B be a class of functions
:f RΩ→ . The maximum mean discrepancy (MMD) is

defined as:

~ ~MMD[, ,] : sup [()] [()] .()
B

B G G
f

E f G E f G

Where the class of function, B , is the unit ball in a
RKHS, then the squared population MMD becomes
kernalized:

2
1 , , ,MMD [, ,] [(,)] 2 [(,)] [(,)],E k G G E k G G E k G G

where k is some graph kernel. The kernel matrix plays a
central role and is defined as:

(,),ij i jk G G=K

where
2
1{ } n

i iG = is the data. Note, both sampels are included
in the data. In the context of two sample graph testing,
we have two data sources, sample 1 of graphs assumed
drawn from P and sample 2 of graphs assumed drawn
from Q. It can be good to order the kernel matrix such
that K has a block structured as follows:

 ,

K K
K

K K

 (1)

where KQ is the Kernel function evaluated at data points
within the sample coming from the unknown distributions
 and Q. K, KQ and KQQ are defined analogously. Note

T=
 K K .
Different estimates of MMD2 are:

UNBIASED ESTIMATE
An unbiased estimate of MMD2 for n and n’ samples of
graphs is given by:

2

1 1

1 1

1 1
MMD [, ,] (,) (,)

(1) (1)

2
(,).

n n n n

u B i j i j
i j i i j i

n n

i j
i j

k G G k G G
n n n n

k G G
nn

′ ′

= ≠ = ≠

′

= =

′ ′= +
′ ′− −

′−
′

∑∑ ∑∑

∑∑

 (2)

BIASED ESTIMATE
A biased estimate of MMD2 for n and n’ samples of graphs
is given by:

2

2 2
1 1 1 1

1 1

1 1
MMD [, ,] (,) (,)

2
(,).

n n n n

b B i j i j
i j i j

n n

i j
i j

k G G k G G
n n

k G G
nn

′ ′

= = = =

′

= =

′ ′= +
′

′−
′

∑∑ ∑∑

∑∑

 (3)

UNBIASED LINEAR TIME ESTIMATE
An unbiased can be computed in O(n) time. Assume that
n = n’ and define n2 = n/2, where ∙ is the floor function,
then the linear estimate is computed as:

22

2 1 2 2 1 2 2 1 2
12

2 2 1

1
MMD [, ,] (,) (,) (,)

(,) ,

(

)

n

l B i i i i i i
i

i i

k G G k G G k G G
n

k G G

− − −
=

−

′ ′ ′= + −

′−

∑

while
2

MMDl has higher variance than
2

MMDu, it is
computationally much more appealing.

Figure 1 The graph two sample testing scenario. Here we have observed 4 graphs from and 3 graphs from Q. The sample space of
 and Q is the same (()52 possible edges).

4Gudmundarson and Peters Journal of Open Research Software DOI: 10.5334/jors.478

ROBUST ESTIMATE
Consider the partition 1:{ }q q QS ∈ of | | /qS n Q= partitions. By
the representer theorem [16] we can express a function f
within the RKHS space as:

(,) (,).x yi i i i
i i

f a k b k= ⋅ + ⋅∑ ∑

A robust MMD estimator is found by solving:

1:
: 1

1
max [,] ,

| |T q Q q q
q

med
S

K

K1 1
c c c

c

where 2 2 2[,] , [, ; ,]n n n K K K K Kc a b , where
K is the Kernel function evaluated at data points within
the sample coming from the unknown distributions
and Q, and n

q ∈1 is an indicator vector of block q. For
more details see [12, 8].

The package includes graph kernels such as:

•	 Random walk kernels which can be used on
weighted, directed, undirected, and bipartite graphs
with node labels, node attributes, edge labels, and
edge attributes.

•	 Deep graph kernels can be used on node labelled
binary graphs.

•	 Graph neural tangent kernels can be used on binary
graphs with node labels/attributes.

•	 Wasserstein Weisfeiler-Lehman graph kernels can
be used on undirected graphs with node labels and
can be used on node-attributed graphs with the right
embedding scheme as well.

Other graph kernels can be utilized via the graph kernel
library GraKel [17] which is dedicated to calculating
various graph kernels. The package is very user-friendly
so the GTST user can use all graph kernels available in the
Grakel package. For more details on various graph kernels
see [8, 17, 14].

EXAMPLE
The workflow is as follows: 1) Use two data arrays
to estimate two sequences/samples of graphs using
the graphical lasso [5]. This step can be skipped if the
practitioner already has the samples of graphs in a
networkx format [9]. 2) Select a graph kernel. 3) Select
an estimator of the MMD or try multiple estimators to
obtain a p-value. A quick example for the random walk
kernel is:

import numpy as np
import networkx as nx
import GTST

Generate random samples
n1 = n2 = 50 # sample sizes
generate two samples

g1 = [nx.fast_gnp_random_graph (30,0.3) for
_ in range (n1)]
g2 = [nx.fast_gnp_random_graph (30,0.4) for
_ in range (n2)]

Random Walk, r is number of eigen-pairs, c
is the discount constant
MMD_out = GTST.MMD()
MMD_out.fit(G1 = g1,

G2 = g2,
kernel = 'RW_ARKU_PLUS',
mmd_estimators = 'MMD_u',
r = 6,
c = 0.001)

print (f" RW_ARKU_plus {MMD_out.p_values}")

For more exampels please see https://github.com/
ragnarlevi/GTST.

QUALITY CONTROL
The requirements for running test for GTST is listed in the
requirements_dev.txt in the Github page. The tests involve
testing if kernels matrices are positive semi definite and
whether the kernels, test statistic, and permutation
method for the p-value are able to reject the null when the
null is “extremely” false using known random data sets.
Once the required testing packages have been installed,
the tests can be performed by running the command:

pytest

in the root folder, which will take around 15 minutes. This
will generate a coverage report which can be found in the
htmlcov directory. To view it run:

cd htmlcov python - m http.server

and open the localhost link (something like http://
localhost:8000/) in a browser.

To test GTST in a clean environment for all python
versions from 3.7–3.10, we use Tox. This can be achieved
by running

tox

in the root directory. Note that this takes significantly
longer to run, so is best performed as a final check.
Whenever the code is pushed to the remote repository,
the Tox test suite is automatically run using GitHub
actions. To investigate this process, consult the file found
at .github/workflows/tests.yml on the github page. The
output of the report can be found in the github actions
tab.

A coverage report was made by using coveralls locally,
but can be found by clicking the coverage shield on the
github page.

https://github.com/ragnarlevi/GTST
https://github.com/ragnarlevi/GTST
http://localhost:8000/
http://localhost:8000/

5Gudmundarson and Peters Journal of Open Research Software DOI: 10.5334/jors.478

(2) AVAILABILITY

OPERATING SYSTEM
This package can be run on any operating system where
python can be run (GNU/Linux, Mac OSX, Windows).

PROGRAMMING LANGUAGE
python 3.7+

ADDITIONAL SYSTEM REQUIREMENTS
None

DEPENDENCIES
Packages that are required are scipy>=1.6.1, scikit-
learn>=1.0.2, tqdm>=4.59.0, numpy>=1.20.1,
networkx>=2.5, POT>= 0.8.2.

The Grakel package is optional but is recommended to
be installed so an extra suite of graph kernels can be used.

SOFTWARE LOCATION
Archive
 Name: Zenodo
 Persistent identifier: https://doi.org/10.5281/

zenodo.8037197
 Licence: MIT
 Publisher: Ragnar Leví Guðmundarson
 Version published: 0.0.6
 Date published: 14/06/23
Code repository
 Name: Github
 Persistent identifier: https://github.com/

ragnarlevi/GTST
 Licence: MIT
 Date published: 11/11/22

LANGUAGE
English

(3) REUSE POTENTIAL

The code was originally used in the paper [8] to compare
pairwise asset return process relationships to study and
understand risk and return in portfolio management
practice. This allows one to statistically test for
significance of any detected differences in portfolio
diversification between any portfolio investment strategy
when applying differing investment screening criteria or
optimal investment strategies. We further remark that
this package can further be used in other fields other
than portfolio comparison. For example, the package
allows, in a straight forwards manner, to compare
different community structures, to detect changes in
communities, to detect change-point events, to test
for differences in traffic networks, and to compare ego-
networks of entities.

Every function has docstrings to ensure clarity.
Examples for all graph kernels, some Grakel kernels and
estimators can be found on the Github page, along with
an example of the graph estimation functionality. GTST
is released under the MIT license and welcomes any
contributions. We encourage users to submit feedback
using GitHub issue tracker, or by emailing Ragnar.

NOTE
1 We are assuming that a node can not be connected to itself.

ACKNOWLEDGEMENTS

We acknowledge the support from Professor Dimitris
Christopoulos and Dr. George Tzougas. This work was
supported by Edinburgh Business School, Heriot-Watt.
We would also like to thank the reviewers for valuable
feedback.

COMPETING INTERESTS

The authors have no competing interests to declare.

LIST OF CONTRIBUTORS

RLG wrote the software package, developed the
methodology, wrote the paper, and tested the software.
GWP guided the problem formulations and solutions
conceptually.

AUTHOR AFFILIATIONS

Ragnar L. Gudmundarson orcid.org/0000-0002-5341-9206

Centre for Networks & Enterprise Excellence, Edinburgh

Business School, Heriot Watt University, UK

Gareth W. Peters orcid.org/0000-0003-2768-8979

Department of Statistics & Applied Probability, University of

California, Santa Barbara, US

REFERENCES

1. Bassett DS, Bullmore E, Verchinski BA, Mattay VS,

Weinberger DR, Meyer-Lindenberg A. Hierarchical

organization of human cortical networks in health

and schizophrenia. The Journal of Neuroscience. 2008;

28(37): 9239–9248. DOI: https://doi.org/10.1523/

JNEUROSCI.1929-08.2008

2. Buitinck L, Louppe G, Blondel M, Pedregosa F, Mueller A,

Grisel O, Niculae V, Prettenhofer P, Gramfort A, Grobler

J, Layton R, VanderPlas J, Joly A, Holt B, Varoquaux G.

https://doi.org/10.5281/zenodo.8037197
https://doi.org/10.5281/zenodo.8037197
https://github.com/ragnarlevi/GTST
https://github.com/ragnarlevi/GTST
https://orcid.org/0000-0002-5341-9206
https://orcid.org/0000-0002-5341-9206
https://orcid.org/0000-0003-2768-8979
https://orcid.org/0000-0003-2768-8979
https://doi.org/10.1523/JNEUROSCI.1929-08.2008
https://doi.org/10.1523/JNEUROSCI.1929-08.2008

6Gudmundarson and Peters Journal of Open Research Software DOI: 10.5334/jors.478

API design for machine learning software: experiences

from the scikit-learn project. In ECML PKDD Workshop:

Languages for Data Mining and Machine Learning. 2013;

108–122. URL: https://scikit-learn.org/.

3. Carreno JG, Cifuentes R. Identifying complex core-

periphery structures in the interbank market. Journal

Of Network Theory In Finance; 2017. DOI: https://doi.

org/10.21314/JNTF.2017.035

4. Du SS, Hou K, Salakhutdinov RR, Poczos B, Wang R,

Xu K. Graph neural tangent kernel: Fusing graph neural

networks with graph kernels. In: Wallach H, Larochelle

H, Beygelzimer A, dAlché-Buc F, Fox E, Garnett R, (eds.),

Advances in Neural Information Processing Systems. 2019;

32: Curran Associates, Inc. URL: https://proceedings.

neurips.cc/paper_files/paper/2019/file/663fd3c5144fd10b

d5ca6611a9a5b92d-Paper.pdf.

5. Friedman J, Hastie T, Tibshirani R. Sparse inverse

covariance estimation with the graphical lasso.

Biostatistics. 2007; 9(3): 432–441. DOI: https://doi.

org/10.1093/biostatistics/kxm045

6. Girvan M, Newman MEJ. Community structure in social

and biological networks. Proceedings of the National

Academy of Sciences. 2002; 99(12): 7821–7826. DOI:

https://doi.org/10.1073/pnas.122653799

7. Gretton A, Borgwardt KM, Rasch MJ, Schölkopf B, Smola

A. A kernel two-sample test. Journal of Machine Learning

Research. 2012; 13(25): 723–773. URL: http://jmlr.org/

papers/v13/gretton12a.html.

8. Gudmundarson RL, Peters G. Assessing portfolio

diversification via two-sample graph kernel inference.

a case study on the inuence of ESG screening. SSRN

Electronic Journal; 2023. DOI: https://doi.org/10.2139/

ssrn.4348306

9. Hagberg A, Conway D. Networkx: Network analysis with

python; 2020. URL: https://networkx.github.io.

10. Kang U, Tong H, Sun J. Fast random walk graph

kernel. In Proceedings of the 2012 SIAM International

Conference on Data Mining. Society for Industrial

and Applied Mathematics; 2012. DOI: https://doi.

org/10.1137/1.9781611972825.71

11. Kriege NM, Johansson FD, Morris C. A survey on graph

kernels. 2020; 5. DOI: https://doi.org/10.1007/s41109-019-

0195-3

12. Lerasle M, Szabo Z, Mathieu T, Lecue G. {MONK} outlier-

robust mean embedding estimation by median-of-means.

PMLR. 2019; 97: 3782–37. URL: http://proceedings.mlr.

press/v97/lerasle19a.html.

13. Liu H, Lafferty J, Wasserman L. The nonparanormal:

Semiparametric estimation of high dimensional undirected

graphs. Journal of Machine Learning Research. 2009; 10(80):

2295–2328. URL: http://jmlr.org/papers/v10/liu09a.html.

14. Nikolentzos G, Siglidis G, Vazirgiannis M. Graph kernels: A

survey. J. Artif. Int. Res. 2022; 72: 943–1027. DOI: https://

doi.org/10.1613/jair.1.13225

15. Orzechowski P, Moore JH. Ebic: A scalable biclustering

method for large scale data analysis. GECCO 2019

Companion – Proceedings of the 2019 Genetic and

Evolutionary Computation Conference Companion. 2019;

31–32. DOI: https://doi.org/10.1145/3319619.3326762

16. Schölkopf B, Herbrich R, Smola AJ. A generalized

representer theorem. In: Helmbold D, Williamson B (eds.),

Computational Learning Theory. Springer Berlin Heidelberg,

Berlin, Heidelberg. 2001; 416–426. DOI: https://doi.

org/10.1007/3-540-44581-1_27

17. Siglidis G, Nikolentzos G, Limnios S, Giatsidis C, Skianis

K, Vazirgiannis M. Grakel: A graph kernel library in python.

Journal of Machine Learning Research. 2020; 21(54): 1–5.

URL: https://github.com/ysig/GraKeL.

18. Togninalli M, Ghisu E, Llinares-López F, Rieck B,

Borgwardt K. Wasserstein Weisfeiler-Lehman Graph Kernels.

NIPS ‘19, Curran Associates Inc., Red Hook, NY, USA; 2019.

URL: https://proceedings.neurips.cc/paper/2019/file/73fed7

fd472e502d8908794430511f4d-Paper.pdf.

19. Yanardag P, Vishwanathan SVN. Deep graph kernels.

Association for Computing Machinery. 2015; 1365–1374.

DOI: https://doi.org/10.1145/2783258.2783417

TO CITE THIS ARTICLE:
Gudmundarson RL, Peters GW 2024 GTST: A Python Package for Graph Two-Sample Testing. Journal of Open Research Software, 12: 6.
DOI: https://doi.org/10.5334/jors.478

Submitted: 23 July 2023 Accepted: 21 February 2024 Published: 18 March 2024

COPYRIGHT:
© 2024 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0
International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original
author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by Ubiquity Press.

https://scikit-learn.org/
https://doi.org/10.21314/JNTF.2017.035
https://doi.org/10.21314/JNTF.2017.035
https://proceedings.neurips.cc/paper_files/paper/2019/file/663fd3c5144fd10bd5ca6611a9a5b92d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/663fd3c5144fd10bd5ca6611a9a5b92d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/663fd3c5144fd10bd5ca6611a9a5b92d-Paper.pdf
https://doi.org/10.1093/biostatistics/kxm045
https://doi.org/10.1093/biostatistics/kxm045
https://doi.org/10.1073/pnas.122653799
http://jmlr.org/papers/v13/gretton12a.html
http://jmlr.org/papers/v13/gretton12a.html
https://doi.org/10.2139/ssrn.4348306
https://doi.org/10.2139/ssrn.4348306
https://networkx.github.io
https://doi.org/10.1137/1.9781611972825.71
https://doi.org/10.1137/1.9781611972825.71
https://doi.org/10.1007/s41109-019-0195-3
https://doi.org/10.1007/s41109-019-0195-3
http://proceedings.mlr.press/v97/lerasle19a.html
http://proceedings.mlr.press/v97/lerasle19a.html
http://jmlr.org/papers/v10/liu09a.html
https://doi.org/10.1613/jair.1.13225
https://doi.org/10.1613/jair.1.13225
https://doi.org/10.1145/3319619.3326762
https://doi.org/10.1007/3-540-44581-1_27
https://doi.org/10.1007/3-540-44581-1_27
https://github.com/ysig/GraKeL
https://proceedings.neurips.cc/paper/2019/file/73fed7fd472e502d8908794430511f4d-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/73fed7fd472e502d8908794430511f4d-Paper.pdf
https://doi.org/10.1145/2783258.2783417
https://doi.org/10.5334/jors.478
http://creativecommons.org/licenses/by/4.0/

