
Gebbie-Rayet, J et al 2016 Longbow: A Lightweight Remote Job Submission Tool.
Journal of Open Research Software, 4: e1, DOI: http://dx.doi.org/10.5334/jors.95

Journal of
open research software

SOFTWARE METAPAPER

Longbow: A Lightweight Remote Job Submission Tool
James Gebbie-Rayet1,*, Gareth Shannon2,*, Hannes H. Loeffler1 and Charles A. Laughton2

1 Scientific Computing Department, STFC Daresbury Laboratory, Warrington WA4 4AD, UK
james.gebbie@stfc.ac.uk, hannes.loeffler@stfc.ac.uk

2 School of Pharmacy and Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
gareth.shannon@nottingham.ac.uk, charles.laughton@nottingham.ac.uk

* James Gebbie-Rayet and Gareth Shannon contributed equally to this work

We present Longbow, a lightweight console-based remote job submission tool and library. Longbow allows
the user to quickly and simply run jobs on high performance computing facilities without leaving their
familiar desktop environment. Not only does Longbow greatly simplify the management of compute-
intensive jobs for experienced researchers, it also lowers the technical barriers surrounding high perfor-
mance computation for the next generation of scientists and engineers. Longbow has already been used
to remotely submit jobs in a number of projects and has the potential to redefine the manner in which
high performance computers are used.

Keywords: Remote job submission; high performance computing; HPC; molecular dynamics; MD; biosimula-
tion; biomolecular simulation; longbow; hecbiosim; job management; automated job submission
Funding statement: Longbow was developed under EPSRC grant EP/L000253/1 as part of the HECBioSim
project (http://www.hecbiosim.ac.uk/).

(1) Overview
Introduction
Much of modern computational science and engineering
requires access to high performance compute resources.
Notable examples include climate modelling [1] which
underpins government environmental policy, jet engine
development [2] which increases passenger safety and
reduces environmental impact, and molecular dynamics
simulations which aid the understanding and treatment
of disease [3].

With computer power remaining faithful to Moore’s
law [4], the games industry delivering massively parallel
GPU processors [5] and quantum computing making
positive strides [6], society’s demand for computationally
expensive calculations can only be expected to escalate
with time.

Despite the ever-increasing importance of high
 performance resources, usability remains an issue.
HPC resources are typically a) remote; b) require famili-
arity with an operating environment that may differ
 significantly from that found on the user’s desktop; and
c) have job schedulers that differ significantly from one to
another. To use such facilities, the average user currently
has little option but to, interactively and step-by-step, get
through a workflow whose key steps are i) logging in to
the remote resource from their desktop, ii) transferring
the required input files to the remote resource, iii) writing a
job submission script, iv) submitting the job, v) monitoring
the job and vi) finally transferring files back to their

local workstation to analyse the results. For experienced
 practitioners this is time-consuming, but for potential
new adopters it may be a severe barrier to engagement
with HPC-enabled science altogether.

Here we present a software package, Longbow, as
a solution to this problem. Longbow is a lightweight
 console-based remote job submission tool and library that
greatly simplifies the process of running a compute job on
a high performance resource. It does so by automating the
laborious steps outlined above, without requiring the user
to leave their familiar desktop environment. Longbow
even writes the job submission script and retrieves the
results on behalf of the user.

There are a number of benefits of this simplification.
First of all, it reduces the time a researcher spends on job
managment. Secondly, it allows inexperienced computa-
tional researchers to access high performance comput-
ers with ease and become productive quickly. Thirdly, as
results files are automatically brought back to the local
resource, researchers using a number of different remote
resources within a single project can effortlessly central-
ise their results. Finally, operating details of the remote
resource are hidden away through a common interface.

The philosophy behind the development of Longbow
has been to make the software as simple as possible to
use, install and extend. It has been written in “vanilla”
python (2.6, 2.7, 3.x) and can be installed without admin-
istrative privileges via the pip management system (pip
install longbow). Furthermore, it has no dependencies on

http://dx.doi.org/10.5334/jors.95
mailto:james.gebbie@stfc.ac.uk
mailto:hannes.loeffler@stfc.ac.uk
mailto:gareth.shannon@nottingham.ac.uk
mailto:charles.laughton@nottingham.ac.uk
http://www.hecbiosim.ac.uk/

Gebbie-Rayet et al: LongbowArt. e1, p.  2 of 8

other packages besides the standard Unix utilities ssh and
rsync, making installation much easier for the non-expert.
Although “out of the box”, Longbow currently only sup-
ports Molecular Dynamics packages. New software pack-
ages from any branch of computational science can be
simply incorporated into the Python code by creating a
single short script file as a plug-in. The result is a light-
weight, simple and intuitive tool that can be extended in
minutes to support the running of new software packages
and executables on remote resources.

There are other utilities that facilitate the submission of
compute-intensive jobs remotely, however none has quite
the same focus as Longbow. For example, the Radical
Cybertools suite [7] provides a very flexible and feature-
rich framework for running jobs on distributed resources.
However, this is best suited to advanced users with tech-
nical skills to install the sizeable package and its signifi-
cant dependencies, and to adapt the relatively low-level
interface the suite provides to the needs of their specific
research problem. Though Longbow is a simpler product,
its reduced learning curve means that for common usage
patterns, a user can become productive more quickly.

There are also web-based solutions such as the bioin-
formatics-focussed Galaxy [8] that allow the submission
of jobs through a web interface. Though such approaches
can provide a particularly rich and supportive user
interface, the challenges of integrating the web portal
with a particular HPC resource will typically require the
active support of the relevant computing center system
administration team, and may well require a relaxation
of the facility’s security policy that could be difficult to
negotiate.

To summarise, to the authors’ knowledge Longbow is
the only widely accessible console-based tool that allows
the remote submission of jobs in a simple fashion.

Use of Longbow in research
Longbow is a new tool that was only released as stable
software on 21/06/2015. Nevertheless this has not been
an obstacle to the uptake of Longbow by researchers
interested in utilising it in their research. Amongst the
most notable projects that have developed beyond a scop-
ing phase and into formal development are the following.

Use of Longbow in benchmarking HPCs
One of the functions of the HECBioSim consortium is
to provide assistance to members of the bio-molecular
simulation community with gaining access to HPC
facilities of national level (presently the UK national
supercomputer ARCHER). To encourage the most effi-
cient use of this massively parallel resource, the consor-
tium has generated and maintains a detailed database
of the weak and strong scaling behavior of the most
commonly-used Molecular Dynamics (MD) packages
(AMBER [9], CHARMM [10], GROMACS [11], LAMMPS [12]
and NAMD [13]).

The database is populated with the results from a wide-
ranging set of benchmarking simulations that cover the
range of most commonly encountered problem sizes and
types (refer to http://purl.org/net/epubs/work/50963
and http://www.hecbiosim.ac.uk/benchmark). Each

simulation must be run on a range of core counts, and
using each of the supported MD packages. Running this
suite is extremely time consuming and editing job sub-
mission scripts each time software versions change was
a laborious task. Applying Longbow to this task has
removed the need to continuously update hundreds of
job submission scripts when testing new software. The
Longbow-based version of the benchmark suite is also
completely portable and can be used to comprehensively
profile any supported HPC facility, with any release of sup-
ported software, in little more than the run time required
for the simulations.

Use of Longbow in FLEX-EM
Longbow has been incorporated into the developing
CCP-EM software suite for biological electron cryo-
microscopy [14]. Several steps in the interpretation of
micrographs require significant compute resources, such
as recent Bayesian methods for the 3D reconstruction of
molecular volumes, and Longbow provides the ability to
submit computationally intensive jobs to remote clusters
from a local instance of the CCP-EM graphical user inter-
face. Longbow has been incorporated as a generic utility,
but in the first instance has been tested on the FlexEM
application [15] which flexibly fits atomic models into low
resolution volumes.

Implementation and architecture
Longbow consists of a standalone application and a gener-
ically written core library. Here we will give an overview
of the basic features and functionality of the application,
followed by a description of what is available within the
core library and plug-ins.

Longbow application
Executing Longbow
To run jobs on a high performance remote resource, a
Longbow job is run either interactively or in the back-
ground on the user’s desktop resource, or is submitted to
the user’s local batch queue system.

As mentioned previously, the Longbow application has
been designed to be as simple to run as possible. In many
instances, by simply placing the word “longbow” in front
of a command string that would run the desired job on the
local resource, the same job will execute on the remote
resource. The full format of the Longbow command is dis-
played in Figure 1.

Once executed, Longbow will create a job submission
script, copy this script along with required input files to
the remote resource, submit the job, keep track of the
progress of the job and periodically bring the output files
back to the local machine.

Source of the simplicity
A major reason submitting jobs is so simple is that much
of the extra information Longbow requires to describe
how and where to run the remote jobs is stored in one, or
optionally two, configuration files in .ini file format: the
hosts configuration file and the job configuration file. The
hosts configuration file is used primarily to store infor-
mation about the remote resource such as username and

http://purl.org/net/epubs/work/50963
http://www.hecbiosim.ac.uk/benchmark

Gebbie-Rayet et al: Longbow Art. e1, p.  3 of 8

account details, but can also provide default values for
parameters such as numbers of cores to be used or wall-
time limit. The job configuration file provides a mecha-
nism to override the default values of any parameter for
the current project, while these again may be overridden
by arguments specified on the command line to give job-
specific control.

Another reason submitting jobs is so simple is because
Longbow will automatically detect input files that should
be copied to the remote resource to be used by the execut-
able. The user does not have to provide a list.

Job types
The Longbow application supports three types of jobs
to be run on the remote resource: single, replicate and
multijobs.

Single jobs involve just one calculation: a single
 executable, a single set of input data, and all running
on a single compute resource. Replicate jobs involve the
more-or-less synchronous running of a single executable
against a variety of related input data sets, all on a single
resource.

A distinguishing feature of Longbow is its ability to
simultaneously initiate several jobs on different remote
resources at a single keystroke by running what is known
as a multijob. Multijobs can be easily set up by provid-
ing details of all the jobs to be run in separate sections
of a job configuration file. A good example of when this
would be useful is the aforementioned FLEX-EM project.
In this case, the multijobs feature allowed the simul-
taneous submission of many jobs that utilised several
different codes on several different resources. Without
Longbow, achieving this would have required a more
complex solution.

Longbow architecture
Longbow core library
The Longbow core library (corelibs) contains generically
written methods that provide the functionality behind
Longbow. The core library consists of procedurally written
code, which is categorised into distinct python modules
based upon the nature of the method. This ensures that
source files stay relatively short in length and that devel-
opers wishing to incorporate Longbow can choose which
aspects of the core library they wish to use.

The methods within the core library have been engi-
neered in such a way that only two main data structures
are required for them to operate. These main data struc-
tures consist of python dictionaries, which form a logical
distinction between data that describes a job and that
which describes a host (HPC resource). In the Longbow
application these structures are initialised within the
configuration methods of the core library. It is here that
developers can find the template structures and logic for
setting up such structures should they wish to produce a
custom solution.

The following outline gives a brief overview of which
methods can be found within the core library. However,
more in depth information can be gleaned from either
comments within the code or from the developer’s docu-
mentation on the HECBiosim wiki [16].

applications.py
 testapp() Checks that executables exist on the

HPC machine
 processjobs() Process jobs to extract a list of files for

staging and an execution command-
line. This method contains hooks
to call methods that are provided
via the plug-in framework (such as
 custom input file parsers).

configuration.py
 processconfigs() Processes configuration information

from sources such as command-line
and configuration files into the two
main Longbow data structures.

 loadconfigs() A method for loading configuration
files (ini format)

 saveconfigs() A method for saving configuration
files (ini format)

 exceptions.py Contains various custom exception
classes which are used in the error
handling within Longbow methods.

logger.py
 setuplogger() A method that sets the correct log-

ging mode.
 standardlogger() The standard logger method, config-

ures python logger to log standard
events to specified file only.

 verboselogger() The verbose logger method, config-
ures python logger to log standard
events to the specified file and con-
sole output.

 debuglogger() The debug logger method, configures
python logger to log an enhanced set
of log messages to the log file and
console output.

scheduling.py
 testenv() This method will check the schedul-

ing environment for all hosts refer-
enced in jobs if not already set by
user, and make an attempt to auto
determine if it is not.

 delete() A generic job delete method, this
method makes a call to the environ-
ment specific delete method that are
provided via plug-ins.

 monitor() The generic method for monitoring
jobs after submission, this method

Figure 1: The simple format of the Longbow command.

Gebbie-Rayet et al: LongbowArt. e1, p.  4 of 8

contains a loop that continues until
all jobs have ended. This method
contains the logic for persistent stag-
ing should this have been config-
ured. Calls are made to environment
specific methods that are provided
via plug-ins.

 prepare() The generic method for writing the
job submission file, this method
makes calls to the environment spe-
cific method provided via the plug-in
framework.

 submit() The generic method for submit-
ting jobs, this method makes calls
to environment specific submit
methods provided via the plug-in
framework.

shellwrappers.py
 testconnections() A method for testing that SSH con-

nections can be established with
each HPC host listed under jobs.

 sendtoshell() A method for assembling commands
to be sent to the shell via python sub-
process calls.

 sendtossh() A method for assembling commands
to be sent to the shell which will uti-
lise SSH.

 sendtorsync() A method for assembling commands
to be sent to the shell which will
 utilise rsync.

 localcopy() A method for copying files/directories
between local paths.

 localdelete() A method for deleting files/directories
from local paths.

 locallist() A method for listing the contents of
local paths.

 remotecopy() A method for copying files/directo-
ries between locations on a remote
host.

 remotedelete() A method for deleting files/directories
from a remote host.

 remotelist() A method for listing the contents of
paths on a remote host.

 upload() A method for uploading files from a
local path to a path on a remote host.

 download() A method for downloading files from
a path on a remote host to a local
path.

staging.py
 stage_upstream() Method for staging all files from

a set of jobs to their respective
HPC hosts.

 stage_downstream() Method for staging all files for a
particular job from the HPC host
back to the local machine.

 cleanup() Method for cleaning up the work-
ing directories of each HPC host
listed in completed jobs.

An example of how the core library should be utilised
can be seen in Figure 2, this diagram outlines how the
core library is used within the Longbow application
executable.

Longbow plug-ins
Longbow plug-ins contain code that interfaces with the
core library to support both the executables to be run on
the remote resource and the schedulers to which the jobs
are submitted. As such the code is housed in two libraries:
apps and schedulers.

plugins.schedulers
Each supported scheduler is defined in a python file
named after the scheduler. For example, PBS is supported
by Longbow in file pbs.py.

The following outline gives a brief overview of which
methods can be found within each supported scheduler
file. In every case the plug-ins methods are called by the
methods of the same name in scheduling.py in the core
library. More in depth information can be gleaned from
either comments within the code or from the developer’s
documentation on the HECBiosim wiki [16].

 prepare() This method writes the job sub-
mission file to be submitted to the
scheduler.

 delete() This method will delete a job that has
been submitted to the scheduler in
question on the remote resource.

 submit() This method submits the job submis-
sion file to the scheduler in question
on the remote resource.

 status() This method will query the status of
jobs that have been submitted to the
scheduler.

plugins.apps
Each supported app (executable) is defined in a python
file named after the software. For example, molecular
dynamics software CHARMM is supported by Longbow in
file charmm.py.

The following outline gives a brief overview of which
methods and dictionaries that may be found within
each the supported app file. Those that are required vary
depending on the requirements of the software package.
More in depth information can be gleaned from either
comments within the code or from the developer’s docu-
mentation on the HECBiosim wiki [16].

 EXECDATA This dictionary defines the names of
the supported executables for the
package and the command line flags
the software requires. This dictionary
is required in all app files.

 file_parser() This method recursively searches
through input files to the executable
for references to other required input
files. All filenames found are added
to the list of files to be staged to the

Gebbie-Rayet et al: Longbow Art. e1, p.  5 of 8

Figure 2: A schematic showing how the flowchart for the Longbow executable (right) maps onto the relationship
 diagram of the core library and plug-in framework. The colour coding is simply for clarity.

remote resource. Only executables
that can depend on input files that
are not explicitly provided on the
command line require this method.

 sub_dict() This method detects command-
line parameter substitutions to be
applied in input files. Only packages
that support such substitutions and

users that wish to implement such a
feature require this method.

 defaultfilename() This method will automatically add
the file extension specified in the
method onto the name of an input
file provided without the extension.
This method is to support the atypi-
cal case that a package might expect

Gebbie-Rayet et al: LongbowArt. e1, p.  6 of 8

the name of an input file to be pro-
vided without the extension.

For Longbow to support a new package, often just a
python dictionary needs to be provided which highlights
the extensibility of the software. If necessary or desired,
the methods outlined above can also be provided to use a
given software package in a more complex fashion.

Quality control
To ensure that Longbow conformed to good quality con-
trol standards we conducted alpha and beta testing as well
as developing a suite of tests.

Alpha and beta testing
Alpha and beta testing: Alpha testing was done in-house
using colleagues ranging from junior PhD students to
experienced postdoctoral workers with a range of aca-
demic backgrounds and technical expertise. Both ease of
installation and use of the Longbow package were tested.
Following this round of testing, an open beta release was
made available to the UK academic community and feed-
back was collected over a period of 3 months.

Test suite
The test suite has been designed to probe all of the
functions within the core library as well as the perfor-
mance of the standalone Longbow application. The tests
are applied to the release code prior to tagging a new
release version on the code repository and subsequently
publishing a new release. The following types of tests are
performed:

Unit Tests: These use the PyUnit testing framework, and
are designed to test that changes to methods within the
core library have not broken the basic functionality.

Functional Tests: These are designed to test that the
standalone Longbow application functions for a stand-
ard set of configurations. There are also tests within this
suite that force failure to make sure error handling occurs
correctly.

Operation Tests: These are designed to probe the basic
operation of Longbow. These tests are made up of jobs
that run using different MD packages, job types, job con-
figurations, scheduling environment and HPC facilities.
These test that Longbow will run to completion full jobs
across all supported schedulers and software packages
(plug-ins supplied out of the box) and will perform all
desired functions a user may request.

(2) Availability
Operating system
Longbow is designed to work best on Linux or Unix based
operating systems. It is possible to run Longbow under
the Windows operating system using a Unix emulation
environment, such as Cygwin or MinGW to bring the SSH
and rsync utilities to Windows.

Programming language
Longbow is written in Python and will run natively with
versions 2.6, 2.7 and 3.x.

Additional system requirements
Longbow only requires that the machine it is run on
has SSH-type connectivity to the HPC facility that is the
intended target of use, and that password-less login to
that resource can be established. The local machine must
also have the standard unix rsync utility.

Dependencies
Longbow has no dependencies outside of the standard
Python libraries.

List of contributors
James. T. Gebbie-Rayet, acted as co-principal developer
having designed the software and contributed a sub-
stantial amount of code, documentation and user-
 support.

Gareth. Shannon, acted as co-principal developer having
contributed a substantial amount of code, documentation
and user-support.

Hannes H. Loeffler, designed the software, provided
valuable technical guidance throughout the project and
contributed many ideas.

Charles. A. Laughton, acted as principal investigator by
steering the overall direction of the software and contrib-
uting numerous ideas as well as code to the codebase.

Software location
Archive (e.g. institutional repository, general repository)
(required)

Name: pypi
�Persistent� identifier: http://dx.doi.org/10.6084/m9.
figshare.1545562
Licence: GNU GPLv2
Publisher: Gareth Shannon
Date published: 21/06/2015

Code repository (e.g. SourceForge, GitHub etc.) (optional)
Name: Bitbucket
Identifier: https://bitbucket.org/jimboid/longbow
Licence: GNU GPLv2
Date published: 21/06/2015

Language
The language used throughout the documentation, code
repository, support forums and naming and comments
within the code-base is English.

(3) Reuse Potential
Longbow has been designed to be highly re-usable both
as a standalone application or by directly integrating the
Longbow core library into other software projects.

Users, groups or consortia can easily tailor Longbow for
use with software specific to their field of interest simply
by providing Longbow with plug-ins for the software they
wish to support. Developers can make use of Longbow as
a job submission layer embedded within their software.
Developers have the freedom to do anything from simply
wrapping Longbow as a standalone application through
to incorporating the very core library into their own
software.

http://dx.doi.org/10.6084/m9.figshare.1545562
http://dx.doi.org/10.6084/m9.figshare.1545562

Gebbie-Rayet et al: Longbow Art. e1, p.  7 of 8

Support
Support for users and developers of all abilities is provided
through the forums within the HECBioSim website. We
also encourage the reporting of bugs and feature requests
through this channel.

Contributing to Longbow
We encourage contributions to the Longbow code base.
However, developers wishing to contribute code should
discuss this with the Longbow development team prior
to submitting any source code. This is to ensure any code
submitted conforms to the Longbow mission statement
and code reviewing policies.

Competing Interests
The authors declare that they have no competing interests.

Acknowledgements
The authors would like to acknowledge Martyn Winn
who is head of Computational Biology at the Science and
Technology Facilities Council, UK for his feedback and
assistance in writing this manuscript.

References
1. Palmer, T 2014 Build high-resolution global climate

models. Nature, 515(7527): 338–9. DOI: http://dx.doi.
org/10.1038/515338a

2. Sanghi, V, Lakshmanan, B K and Sundararajan, V
2000 Survey of advancements in jet-engine thermody-
namic simulation. Journal of Propulsion and Power, 16(5):
797–807. DOI: http://dx.doi.org/10.2514/2.5644

3. Karplus, M and McCammon, J A 2002 Molecular
dynamics simulations of biomolecules. NatureStructural
Biology, 9(9): 646–52. DOI: http://dx.doi.org/10.1038/
nsb0902-646

4. Moore, G E 1998 Cramming more components onto
integrated circuits (Reprinted from Electronics,
pp. 114–117, April 19, 1965). Proceedings of the Ieee,
86(1): 82–5. DOI: http://dx.doi.org/10.1109/JPROC.
1998.658762

5. Bernaschi, M, Bisson, M and Fatica, M 2015
Colloquium: Large scale simulations on GPU clusters.
European Physical Journal B, 88(6): 10. DOI: http://
dx.doi.org/10.1140/epjb/e2015-60180-8

6. Gibney, E 2014 Quantum Computer Quest. Nature,
516(7529): 24–6. DOI: http://dx.doi.org/10.1038/
516024a

7. Goodale, T, Jha, S, Kaiser, H, Kielmann, T, Leijer,
P K, von Laszewski, G, Lee, C, Merzky, A, Rajic, H

and Shalf, J 2006 SAGA: A Simple API for Grid
 applications, High-Level Application Programming
on the Grid. Computational Methods in Science and
Technology, 12(1).

8. Goecks, J, Nekrutenko, A, Taylor, J and Galaxy, T
2010 Galaxy: a comprehensive approach for support-
ing accessible, reproducible, and transparent compu-
tational research in the life sciences. Genome Biology,
11(R86). DOI: http://dx.doi.org/10.1186/gb-2010-11-
8-r86

9. Pearlman, D A, Case, D A, Caldwell, J W, Ross, W S,
Cheatham, T E, Debolt, S, et al. 1995 AMBER, a
package of computer-programs for applying molecular
mechanics, normal-mode analysis, molecular dynam-
ics and free energy calculations to simulate the struc-
tural and energetic properties of molecules. Computer
Physics Communications, 91(1–3): 1–41. DOI: http://
dx.doi.org/10.1016/0010-4655(95)00041-D

10. Brooks, B R, Brooks, C L, Mackerell, A D,
Nilsson, L, Petrella, R J, Roux, B, et al. 2009
CHARMM: The Biomolecular Simulation Program.
Journal of Computational Chemistry, 30(10): 1545–614.
DOI: http://dx.doi.org/10.1002/jcc.21287

11. Pronk, S, Pall, S, Schulz, R, Larsson, P, Bjelkmar, P,
Apostolov, R, et al. 2013 GROMACS 4.5: a high-
throughput and highly parallel open source molecular
simulation toolkit. Bioinformatics, 29(7): 845–54. DOI:
http://dx.doi.org/10.1093/bioinformatics/btt055

12. Plimpton, S 1995 Fast parallel algorithms for
 short-range molecular dynamics. Journal of
 Computational Physics, 117(1): 1–19. DOI: http://
dx.doi.org/10.1006/jcph.1995.1039

13. Phillips, JC, Braun, R, Wang, W, Gumbart, J,
Tajkhorshid, E, Villa, E, et al. 2005 Scalable molecular
dynamics with NAMD. Journal of Computational
Chemistry, 26(16): 1781–802. DOI: http://dx.doi.
org/10.1002/jcc.20289

14. Wood, C, Burnley, T, Patwardhan, A, Scheres, S,
Topf, M, Roseman, A, et al. 2015 Collaborative
Computational Project for Electron cryo-Microscopy.
Acta Crystallographica Section D-Biological Crystal-
lography, 71: 123–6. DOI: http://dx.doi.org/10.1107/
S1399004714018070

15. Topf, M, Lasker, K, Webb, B, Wolfson, H, Chiu, W and
Sali, A 2008 Protein structure fitting and refinement
guided by cryo-EM density. Structure, 16(2): 295–307.
DOI: http://dx.doi.org/10.1016/j.str.2007.11.016

16. HECBioSim wiki 2015 Available at http://www.
hecbiosim.ac.uk/wikis/index.php/Main_Page.

http://dx.doi.org/10.1038/515338a
http://dx.doi.org/10.1038/515338a
http://dx.doi.org/10.1038/nsb0902-646
http://dx.doi.org/10.1038/nsb0902-646
http://dx.doi.org/10.1109/JPROC.1998.658762
http://dx.doi.org/10.1109/JPROC.1998.658762
http://dx.doi.org/10.1038/516024a
http://dx.doi.org/10.1038/516024a
http://dx.doi.org/10.1016/0010-4655(95)00041-D
http://dx.doi.org/10.1016/0010-4655(95)00041-D
http://dx.doi.org/10.1002/jcc.20289
http://dx.doi.org/10.1002/jcc.20289
http://dx.doi.org/10.1107/S1399004714018070
http://dx.doi.org/10.1107/S1399004714018070
http://dx.doi.org/10.1016/j.str.2007.11.016
http://www.hecbiosim.ac.uk/wikis/index.php/Main_Page
http://www.hecbiosim.ac.uk/wikis/index.php/Main_Page

Gebbie-Rayet et al: LongbowArt. e1, p.  8 of 8

How to cite this article: Gebbie-Rayet, J, Shannon, G, Loeffler, H H and Laughton, C A 2016 Longbow: A Lightweight Remote
Job Submission Tool. Journal of Open Research Software, 4: e1, DOI: http://dx.doi.org/10.5334/jors.95

Submitted: 16 September 2015 Accecpted: 06 January 2016 Published: 27 January 2016

Copyright: © 2016 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

http://dx.doi.org/10.5334/jors.95
http://creativecommons.org/licenses/by/4.0/

