
(1) Overview

Introduction
Well-established academic disciplines emerged from
practices without focusing on the underlying theory1.
In time, however, general and advanced scientific theo-
ries have been developed as they are essential for the
advancement of scientific fields2. Software engineering
is notably a young discipline3. As such, it is not yet overly
concerned with a core, general theory; thus, the risk is
to be limited to trial-and-error practices4. A lack of theo-
retical foundation inhibits the growth of a research tradi-
tion. A research tradition is essential to secure scientific
beliefs but also to cause paradigm shifts2. Software engi-
neering is missing such tradition. Software engineering
suffers from gaps in the knowledge for understanding
software development processes and their impact on
each other5.

The SEMAT initiative was born in order to “support a
process to refound software engineering based on a solid
theory, proven principles and best practices. […][What will
enable this is a] kernel of widely-agreed elements [...] sup-
ported by industry, academia, researchers and users”6. The
outcome of the SEMAT initiative is the Essence Theory of
Software Engineering7, 8. Strictly speaking, Essence docu-
ments the “things to work with” in software engineer-
ing8, the relationship they have with each other, and the
actions that involve such “things”.

Essence is claimed to provide a common basis for defin-
ing software development practices, by using widely
agreed elements that are present in every software engi-
neering endeavor8. These elements are called Alphas. As
of today, the core Alphas of Essence kernel are Opportu-
nity, Stakeholders, Requirements, Software System, Work,
Team, and Way-of-working. Alphas change in their States,
thus enabling a representation of the progress and health
of the endeavor. For example, the Requirements can be
Conceived, Bounded, Coherent, Acceptable, Addressed,
or Fulfilled. Finally, Essence Alphas are organized in three
areas of Concern. Each Concern focuses on a single aspect
of software engineering. They are called Customer, Solu-
tion, and Endeavor. As opposed to other attempts to cre-
ate a general theory of software engineering – e.g. the
Software Engineering Body of Knowledge9 – Essence aims
to generalize software engineering by identifying its uni-
versal elements and actions, and to develop a universal
language to describe them. The theory was submitted to
the Object Management Group (OMG) and is currently
undergoing the necessary steps to become an OMG stand-
ard [8]. A simple introduction to Essence is available in the
material of a special lecture held at the Free University of
Bozen-Bolzano by one of the authors of this paper10].

As of today, there is a lack of consensus of Essence as an
accepted model. For example, notable practitioners and
researchers of Agile methodologies expressed negative
comments on the SEMAT initiative (e.g.,11, 12, 13). Reasons

SOFTWARE METAPAPER

A Web-based modeling tool for the SEMAT Essence
theory of software engineering
Daniel Graziotin1 and Pekka Abrahamsson1

1 Free University of Bozen-Bolzano, Bolzano, Italy

As opposed to more mature subjects, software engineering lacks general theories that establish
its foundations as a discipline. The Essence Theory of software engineering (Essence) has been
proposed by the Software Engineering Methods and Theory (SEMAT) initiative. The goal of Essence
is to develop a theoretically sound basis for software engineering practice and its wide adoption.
However, Essence is far from reaching academic- and industry-wide adoption. The reasons for this
include a struggle to foresee its utilization potential and a lack of tools for implementation. SEMAT
Accelerator (SematAcc) is a Web-positioning tool for a software engineering endeavor, which imple-
ments the SEMAT’s Essence kernel. SematAcc permits the use of Essence, thus helping to under-
stand it. The tool enables the teaching, adoption, and research of Essence in controlled experiments
and case studies.

Keywords: software engineering, general theory, web positioning system, SEMAT Essence Theory, project management

Funding statement
This project is financially supported by the PhD grant of Free University of Bozen Bolzano.

Graziotin, D and Abrahamsson, P 2013 A Web-based modeling tool for the SEMAT Essence
theory of software engineering. Journal of Open Research Software 1:e4, DOI: http://
dx.doi.org/10.5334/jors.ad

Journal of
open research software

Graziotin and AbrahamssonArt. e4, p.  2 of 7

include a difficulty to see Essence’s utilization potential
and a lack of tools for implementation. It is challenging to
understand Essence before even evaluating it. As software
engineering heavily relies on empirical research14, there
is the need to produce the empirical data when applying
Essence, in order to understand its theoretical and practi-
cal implications and to evaluate it scientifically.

This paper describes the SEMAT Accelerator (SematAcc),
which is a Web-based modeling system for software engi-
neering processes as depicted by the SEMAT’s Essence ker-
nel. SematAcc has been developed as a way to produce
such needed empirical data for evaluating Essence. It helps
in using and understanding the Essence theory under a
practical viewpoint. SematAcc lets users model a software
development process with Essence elements. A software
engineering endeavor (called project in SematAcc) has
an associated Essence kernel. The kernel has been imple-
mented using the OMG submission of Essence8 as a ref-
erence. A software engineering endeavor is represented
using graphs of the Concerns’ and Alphas’ completions.

SematAcc is developed in JavaScript both on the client
side and on the server side, on top of the recently born
Meteor15. Meteor is an open-source platform to build
JavaScript-based Web applications. By providing a nearly
identical API for the development of the server and the
client, Meteor target is to deliver almost real-time data
transfer through latency compensation techniques and
reactive programming.

SematAcc can be employed in empirical experiments
and case studies on Essence theory because it registers
the events triggered by its usage. The events can be eas-
ily downloaded as a CSV string. Thus, they are directly
employable in statistical software.

The rest of this paper is organized as follows. The next
section - Implementation and Architecture - provides a
brief introduction to Meteor, an illustrated guide on how
to use SematAcc main functionality, and more technical
details on the architecture of the system and the source-
code organization. It is followed by a section regarding
the Quality Control of the system, where the tests and
the techniques in order to ensure a high quality of the
delivered software are provided. In the Availability section,
details on SematAcc system requirements and dependen-
cies are given, as well as the information on how to obtain
the software. The last section - Reuse Potential - provides
an overview on how to configure and run SematAcc on a
local computer and on a remote server and suggestions on
how to employ the software for research purposes.

Implementation/architecture
SematAcc was implemented using the recent Meteor
project15. Meteor is an open-source platform and frame-
work to build JavaScript-based Web applications. It is
built upon the server-side JavaScript enabling technology
Node.js16 and the NoSQL document-oriented MongoDB
database17. As a programming framework, Meteor permits
developers to write both client- and server-side applica-
tions using almost the same JavaScript APIs. Its aim is to
achieve nearly real-time performance by providing latency
compensation for data transfers between the server and

clients (and vice versa). Data is the central point of Meteor.
It is organized in data structure named collections. Meteor
collections are convenient wrappers around MongoDB
documents; they provide the basic create, read, update,
and delete operations needed for the functionality of a
Web application.

Meteor has been inspired by the reactive programming
paradigm18: nearly all of its layers, from database access
to graphical user interface (GUI), provide an event-driven
interface whose operations run whenever the underlying
data-dependencies change. For example, a hypothetical
Meteor Web application is developed to manage a library.
A template of the GUI of the application is responsible to
render a list of books. A user observes a Web page with a
list of books. Meanwhile, an editor inserts a new book in
the database, from the application backend. The change
in the data is detected by Meteor components, which
automatically trigger a re-render of the GUI element inter-
ested by this operation. The user simply sees a new ele-
ment added to the list, without a Web page refresh.

As an infrastructure, Meteor covers development, test-
ing, and production phases to run the implemented
source-code. For development, Meteor provides a local
server, built on top of Node.js16, to run the developed
Website and perform tests. For testing and production,
Meteor provides a freely available infrastructure of serv-
ers. More information on Meteor can be obtained on the
official Website15, in the introductory screencast19, and on
the documentation Website20.

Before illustrating some details regarding SematAcc
architecture, a brief introduction on using SematAcc is
provided. Upon login, the user manages the projects (Fig.
1). The Hint Box on the left side of the screen contains
suggestions, which help the user to manage the projects.
The central box lists the available projects. After the user
creates a project, putting the mouse over it, it will acti-
vate the available commands. A click on the arrow icon
will accelerate a project with SematAcc (that is, it will start
the modeling activity with Essence kernel). The other two
commands are for editing a project and for deleting it.

When the user decides to accelerate a project with
SematAcc, the Essence kernel is loaded with the chosen
project (Fig. 2). This is the main functionality of SematAcc.
The user interface is divided in three parts. The first part,
on the left, is the already mentioned Hint Box, which
reports information on an Alpha or a State, depending on
the position of the mouse. The second part, on the center,
is Essence kernel. It shows the Alphas. If the user clicks
on an Alpha, the Kernel expands and shows the corre-
sponding States. The third part, on the right, is the project
status. It displays a rose graph and a horizontal bar chart.
The rose graph represents the project status in terms of
Alphas’ completions, whereas the horizontal bar chart
provides an overview of the Concerns’ completion.

When a user clicks on a State, thus expressing a change
of State of an Alpha, the graphs are immediately updated.
For example, in Fig. 3), the user chooses that Require-
ments Alpha is now in the Conceived State. The rose
graphs and the horizontal bar chart on the right side of

Graziotin and Abrahamsson Art. e4, p.  3 of 7

Fig. 3 represent the change in the State of an Alpha, and
the completion of the project is shown.

The models of SematAcc derive from an analysis of the
Essence theory. They are represented in the class diagram
of Fig.4.

A user of the system possesses one-to-many projects.
Each project has an associated Essence kernel. In SematAcc,
the kernel is a graphical conceptualization and does not
have a corresponding database collection. Although a
kernel may have one-to-many Concerns, the current OMG
standard proposal suggests three of them: “Customer”,
“Solution”, and “Endeavor”. The three Concerns contain
the corresponding Alphas. Alphas have several associated
States but may be in zero or one-and-only-one State.

Each Concern, Alpha, and State has a corresponding
name and description taken from Essence OMG submis-
sion. In order to speed-up the Essence learning process,
the descriptions of kernel elements appear in SematAcc as
soon as the user hovers with the mouse over them.

Concerns and Alphas also possess a completion, repre-
sented as a JavaScript Number. This number represents
the percentage of completion of such kernel elements.
For an Alphas completion, the order of the current Alpha
State is employed. Then, the completion of the Alphas
determines the progress of the project in terms of Con-
cerns completion.

Finally, each project possesses events, which are
employed by SematAcc to log and generate data for
research purposes.

A high-level view of the most important functionality of
SematAcc is represented in Fig. 5.

In the example provided in Fig. 3, the user decides that
the “Requirements” are now “conceived”. A mouse click
on the “conceived” State in the user interface triggers an
update to the server’s Alpha collection. Upon a successful
update in the database, the completion ratios for the Con-
cerns and the Alphas are recalculated in order to keep the
data consistent. Then, the client component of SematAcc

Fig. 1: Project Management in SematAcc.

Fig. 2: SematAcc Main Window: the Hint Box, the Essence kernel, and the graphs.

Graziotin and AbrahamssonArt. e4, p.  4 of 7

is notified of the successful change of State operation. A
relevant event is generated and stored. Finally, the graphs
are updated to represent the new data. At this stage,
SematAcc GUI shows what is represented in Fig. 3.

The project source-code is organized by separation of
concerns. The project’s root directory contains three main
parts, according to Meteor conventions. In the client
folder, there is the code executed by the client (the Web

Fig. 3: Change of State in SematAcc.

Fig. 4: SematAcc Models.

Fig. 5: High-level view of a change in Alpha State.

Graziotin and Abrahamsson Art. e4, p.  5 of 7

browser). In the server folder lives the source-code, which
is purely executed on the server side. The tests folder
hosts the automated tests written with the Laika frame-
work21. The public folder stores all the binary files pub-
licly accessible – e.g., pictures. All the source-code files are
commented. For more information regarding the project
structure, we advise to read the README file in SematAcc
source-code. The file also contains instructions on how
to run SematAcc on a development machine and how to
have an own private instance of SematAcc on Meteor’s
free servers.

Quality Control
Different levels of testing have been performed. Eight vol-
unteers were involved to perform user-acceptance tests of
the software. Three of them are experts of Essence. The
remaining five are experts in the field of software engi-
neering but needed an introduction to Essence theory.
Their involvement persisted up to the first public release
of SematAcc. Their feedback influenced the development
of Essence, especially of its GUI.

Before a public release, SematAcc is manually tested
with the latest versions of the leading browsers (i.e., Moz-
illa Firefox, Google Chrome, Microsoft Internet Explorer,
and Apple Safari).

An official automated testing method does not exist for
Meteor yet22. However, community-based tools are under
active development. SematAcc employs the recently born
Laika21, a feature rich testing framework for Meteor, which
simulates the interaction between the server and clients.
The tests are run before each commit to the version con-
trol system. In order to run the tests, the Laika framework
has to be installed on the system. More information on
how to run the test cases can be found in the TESTING.md
file in SematAcc root directory.

Lastly, each SematAcc function has been carefully
debugged. Formal inspections of the database content
revealed consistent data values after the software trials.
The JavaScript code adheres to standard coding conven-
tions and passes all JS Hint tests23.

(2) Availability

Operating system
Server-side: SematAcc works wherever Meteor works. Offi-
cial support24 is offered for:

•	 Mac OS X 10.6 and above
•	 GNU/Linux x86 and x86_64

Microsoft Windows is non-officially supported and not
immediately updated25.

Client-side: any operating system, which runs a recent
Web-browser.

Programming Language
HTML, CSS, and JavaScript over Meteor framework v0.6.4.

Additional system requirements
A minimum resource requirement is the ability to run the
Meteor framework, i.e. Node.js16 and MongoDB17.

In a GNU/Linux development machine, the memory
map of the processes, gathered with the pmapcommand,
was of 295.02Mb.

SematAcc source code occupies about 1Mb of disk
space.

Dependencies
Meteor v0.6.415.

List of contributors

•	Daniel Graziotin (Project Development)
•	Pekka Abrahamsson (Project Manager)

Archive

Name
figshare

Persistent identifier
http://dx.doi.org/10.6084/m9.figshare.664127

License
3-clause BSD license

Publisher
Daniel Graziotin

Date published
20/04/2013

Code repository

Name
Github

Identifier
https://github.com/s4fs/sematacc

License
3-clause BSD license

Date published
09/10/2013

Language
English

(3) Reuse potential

Before describing the reuse potential of SematAcc, the
instructions on how to obtain and run SematAcc are pro-
vided.

For demonstration purposes, an example instance of
SematAcc is available (http://sematacc.meteor.com).
Users need to register to the system in order to employ
it. However, a demo project is ready to be used (http://
sematacc.meteor.com/demo) without requiring registra-
tion. The demo project is not owned by any user and is
shared between all users of the system. Changes made to
the demo project are immediately pushed to any client
that is visualizing the demo project. It must be noted that
the example instance is for testing the software, and not
for production environment. While attempts are made to
preserve the data at each new version deployment, this
cannot be guaranteed.

Graziotin and AbrahamssonArt. e4, p.  6 of 7

Preferably, SematAcc should run on a local machine or
on Meteor’s freely available servers. In the following para-
graphs, we describe both cases.

SematAcc needs Meteor as unique dependency. Any
other dependency has been included in SematAcc source-
code. Meteor is officially available for GNU/Linux and Mac
OS X, while official support for Microsoft Windows is under
development24. The installation of Meteor is straightfor-
ward for the supported platform as it is reduced to a single
line to be input in a terminal. Please see the Quick start
section in Meteor Documentation20. For Microsoft Win-
dows, non-official support is provided. The instructions
and an installer for Microsoft Windows are provided in
Meteor for Windows25.

After the installation of Meteor, the command meteor
has to be issued in a terminal, within the root folder of
SematAcc. A Meteor instance will run and serve the pro-
ject. SematAcc will be accessible from a Web browser at
http://localhost:3000. In order to test-deploy SematAcc
on Meteor’s free servers, the command meteor deploy –P
chosenname.meteor.com has to be issued from the root
folder of SematAcc. After choosing a password, SematAcc
will automatically be deployed and will be available at
http://chosenname.meteor.com, given that the chosen
name is available. These instructions are valid for all oper-
ating systems.

Support requests for SematAcc are accepted and wel-
comed through the issue tracker of the project (https://
github.com/s4fs/sematacc/issues). Bug reports and fea-
ture requests should be entered in the issue tracker. Other
enquiries can be made via e-mail to the authors of this
project.

Regarding the reuse potential, SematAcc serves for mul-
tiple purposes in research activities on Essence theory. The
tool has been developed specifically for producing empiri-
cal data on Essence and it is currently suitable only for this
purpose. SematAcc may be employed as a tool for setting
up case studies in the adoption of the Essence theory. How
practitioners can learn the Essence theory can be studied.
SematAcc can also be employed in empirical experiments
and case studies when a software development progres-
sion is measured in terms of State transitions and Concern
visualization.

Each change in an Alpha State is recorded and can be
exported as a CSV string. The example of Figure 3 would
generate an event of the form <”2013-04-03T14:01:27.0
07Z”,”Requirements.State”, “Conceived”>. The events are
directly exportable as a CSV string from the graphical user
interface. Other events can be easily recorded by modify-
ing the source-code of SematAcc, as a single line of code
is required to record an Event. See the README file of the
project source-code for more information.

Acknowledgements
We kindly acknowledge Dr. Ivar Jacobson, who provided
his constructive feedback for SematAcc while discussing
the Essence theory with us. We would like to thank all the
anonymous users who tried the system and provided user-
acceptance data for it. We are grateful for the insightful
feedback received by two anonymous reviewers, which

helped us to improve the paper significantly. Last but not
least, we are thankful to Elena Borgogno for her tireless
help in improving this article.

References
1. Ralph P, Johnson P, Jordan H. 2013 Report on the

first SEMAT workshop on general theory of software
engineering (GTSE 2012). ACM SIGSOFT Software En-
gineering Notes, 38(2): 26–28. DOI: http://dx.doi.
org/10.1145/2439976.2439999

2. Kuhn T S. 1996 The Structure of Scientific Revolutions.
London: University of Chicago Press;

3. Naur P, Randell, B. 1969 Report on a conference
sponsored by the NATO Science Committee. Avail-
able at: http://homepages.cs.ncl.ac.uk/brian.randell/
NATO/nato1968.pdf [accessed 19th July 2013]

4. Johnson P, Ekstedt M, Jacobson I. 2012 Where’s the
Theory for Software Engineering? IEEE Software, 29(5)
DOI: http://dx.doi.org/10.1109/MS.2012.127

5. Kajko-Mattsson M. 2013 Software engineering suf-
fers from the beehive syndrome. Information Science
and Digital Content Technology (ICIDT), 2012 8th In-
ternational Conference on Computing Technology and
Information Management, 1: 49–52.

6. Software Engineering Method and Theory, SEMAT.
2009. Available at: http://semat.org/?page_id=2 [ac-
cessed 2 April 2013]

7. Jacobson I, Ng P-W, McMahon P E, Spence I, Lid-
man S. 2012. The Essence of Software Engineering: Ap-
plying the SEMAT Kernel. Indiana: Addison-Wesley Pro-
fessional;

8. SEMAT. 2013. Essence – Kernel and Language for Software
Engineering Methods. Available at: http://www.omg.org/
spec/Essence/1.0/Beta1/ [accessed August 19 2013]

9. IEEE Computer Society. 2004. Guide to the Software
Engineering Body of Knowledge (SWEBOK). Available
at: http://www.computer.org/portal/web/swebok/
overview [accessed 19th August 2013]

10. Graziotin D. 2012 Special Lecture on Semat Essence
of Software Engineering. Introduction to Management
Engineering. Free University of Bozen-Bolzano Avaial-
ble at: http://task3.cc/1328/special-lecture-on-semat-
essence-of-software-engineering/. [accessed 2nd April
2013]

11. Fowler M. 2010 SEMAT. Available at: http://martinfowl-
er.com/bliki/Semat.html [Accessed 19th July 2013]

12. Cockburn A. 2007 A Detailed Critique of the SEMAT
Initiative. Humans and Technology, inc. Available at:
http://alistair.cockburn.us/A+Detailed+Critique+of+
the+SEMAT+Initiative[accessed 19th July 2013]

13. Aranda J. 2009 Against SEMAT. Available at: http://
catenary.wordpress.com/2009/11/29/against-semat/
[accessed 19th July 2013]

14. Wohlin C, Runeson P, Höst M, Ohlsson M C, Reg-
nell B, et al. 2000 Experimentation in software engi-
neering: an introduction. Dordecht: Kluwer Academic
Publishers.

15. Schmidt G, DeBergalis M, Martina N, Greenspan
D, Oliver A, et al. 2013 Meteor. Available at: http://
meteor.com [accessed 25th July, 2013]

Graziotin and Abrahamsson Art. e4, p.  7 of 7

How to cite this article: Graziotin, D and Abrahamsson, P 2013 A Web-based modeling tool for the SEMAT Essence
theory of software engineering. Journal of Open Research Software 1:e4, DOI: http://dx.doi.org/10.5334/jors.ad

Published: 2 September 2013

Copyright: © 2013 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 3.0 Unported License (CC-BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/3.0/.

The Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

16. Hafner U, Potter J, Fettig A, van Zonneveld K, Cart-
er M, et al. 2009 Node.js. Available at: http://nodejs.
org/ [accessed 3rd April 2013]

17. Ryan K P, Merriman D, Horowitz E. 2007 MongoDB.
Available at: http://www.mongodb.org/ [accessed
25th July 2013]

18. Pucella R R. 1998 Reactive programming in Stand-
ard ML. Proceedings of the 1998 International Confer-
ence on Computer Languages. Pp. 48–57. DOI: http://
dx.doi.org/10.1109/ICCL.1998.674156

19. Schmidt G, DeBergalis M, Martina N, Greenspan D,
Oliver A, et al. 2013 Meteor Introductory Screencast.
Available at: http://www.meteor.com/screencast [ac-
cessed 25th July, 2013]

20. Schmidt G, DeBergalis M, Martina N, Greenspan D,
Oliver A, et al. 2013 Documentation - Meteor. Avail-
able at: http://docs.meteor.com/ [accessed 25th July,
2013]

21. Susiripala A. 2013 Laika: Testing Framework for Me-
teor. Available at: http://arunoda.github.io/laika/ [ac-
cessed 22nd July 2013]

22. Schmidt G, DeBergalis M, Martina N, Greenspan
D, Oliver A, et al. 2013 Official testing framework on
Meteor Roadmap. Available at: https://trello.com/c/
BQ3gu0no/12-official-testing-framework [accessed
25th July, 2013]

23. Kovalyov A, Kluge W, Perez J. 2010 JSHint, a JavaS-
cript Code Quality Tool. Available at: http://www.
jshint.com/ [accessed 2nd April 2013]

24. Schmidt G, DeBergalis M, Martina N, Greenspan
D, Oliver A, et al. 2013 Supported Platforms. meteor/
meteor Wiki. Available at: https://github.com/me-
teor/meteor/wiki/Supported-Platforms [accessed 2nd
April, 2013]

25. Wijsman T. 2013 Meteor for Windows. Available at:
http://win.meteor.com/ [accessed 2nd April, 2013]

