
Crick, T, et al. 2017 Reproducibility in Research: Systems,
Infrastructure, Culture. Journal of Open Research Software,
5: 32. DOI: https://doi.org/10.5334/jors.73

Journal of
open research software

ISSUES IN RESEARCH SOFTWARE

Reproducibility in Research: Systems, Infrastructure,
Culture
Tom Crick1, Benjamin A. Hall2 and Samin Ishtiaq3

1Cardiff Metropolitan University, UK
2University of Cambridge, UK
3Microsoft Research Cambridge, UK
Corresponding author: Tom Crick (tcrick@cardiffmet.ac.uk)

The reproduction and replication of research results has become a major issue for a number of scientific
disciplines. In computer science and related computational disciplines such as systems biology, the
challenges closely revolve around the ability to implement (and exploit) novel algorithms and models.
Taking a new approach from the literature and applying it to a new codebase frequently requires local
knowledge missing from the published manuscripts and transient project websites. Alongside this issue,
benchmarking, and the lack of open, transparent and fair benchmark sets present another barrier to the
verification and validation of claimed results.

In this paper, we outline several recommendations to address these issues, driven by specific examples from
a range of scientific domains. Based on these recommendations, we propose a high-level prototype open
automated platform for scientific software development which effectively abstracts specific dependencies
from the individual researcher and their workstation, allowing easy sharing and reproduction of results.
This new e-infrastructure for reproducible computational science offers the potential to incentivise a
culture change and drive the adoption of new techniques to improve the quality and efficiency – and thus
reproducibility – of scientific exploration.

Keywords: reproducible research; cyberinfrastructure; scientific workflows; computational science; open
science; data sharing; code sharing; best practices

1 Introduction
Marc Andreessen (co-author of Mosaic, the first widely
used web browser) boldly stated in 2011 that “software is
eating the world” [1]. This is true: we live in a computational
world, with our everyday communications, entertainment,
shopping, banking, transportation, national security, etc,
all heavily data-driven and largely overtaken by software.

 Andreessen’s statement is particularly true for science
and engineering. A 2012 report by the UK’s Royal Society
stated that computational techniques have “moved on
from assisting scientists in doing science, to transforming
both how science is done and what science is done” [2].
Many of the examples discussed in this paper exploit a
fundamental advantage of computer science and more
generally, computational science: the unique ability for
researchers to share the raw outputs of their work as
software and datafiles. New experiments, simulations,
models, benchmarks, even proofs increasingly cannot be
done without software. This software does not consist
of simple hack-together, use-once, throw-away scripts;
research software repositories contain thousands, perhaps
millions, of lines of code and they increasingly need to be
actively supported and maintained. More importantly,

with reproducibility being a fundamental tenet of science,
they need to be open and re-useable.

 However, if we closely analyse the scientific literature
related to software tools it often does not appear to
be adhering to these rules [3, 4]. How many of them
are open and available? How many explain their
experimental methodologies, in particular the basis for
their benchmarking? In particular, can we (re)build the
code? [5] We, the authors, are perhaps as guilty as anyone
in the past, where we have published papers [6, 7] with
benchmarks and promises of code to be released in the
near future which depreciate as you move onto the next
project.

There are various reasons why the wider scientific
community is in this position. We are currently
undergoing significant changes to models of academic
dissemination, especially considering the wider open
research movement, with new models being proposed
[8–10]. Now, numerous “high-impact” journals explicitly
require that source code and data is made available online
under some form of open source license, but there still
exists large disciplinary gaps. While these initiatives are
great, they are often optional, seem piecemeal, and do

https://doi.org/10.5334/jors.73
mailto:tcrick@cardiffmet.ac.uk

Crick et al: Reproducibility in ResearchArt. 32, p. 2 of 9

little to enable the verification and validation of scientific
results at a later stage. Even within the same field, there
are different ideas of what defines reproducibility [11],
as well as evidence of “overturn bias” – replications that
overturn original results are much easier to publish than
those that confirm original results [12].

Nevertheless, the reproduction and replication of
reported scientific results has become a widely discussed
topic within the scientific community [13–15]. Whilst the
increasing number of retractions of studies across a variety
of disciplines has drawn the focus of many commentators,
automated systems, which allow easy reproduction of
results, offer the potential to improve the efficiency of
scientific exploration and drive the adoption of new
techniques. However, just publishing (linked) scientific
data is not enough to ensure the required reusability [16].
There exists a wider socio-cultural problem that pervades
the scientific community, with estimates that as much as
50% of published studies, even those in top-tier academic
journals, cannot be repeated with the same conclusions by
an industrial lab [17, 18]. There are numerous non-technical
impediments to making software maintainable and
re-useable. The pressure to “make the discovery”, publish
quickly and move onto the next project disincentivises
careful software curation and preservation. Releasing code
prematurely is often seen to give your competitors an
advantage, but we should be shining light into these “black
boxes” [14]; in essence: better software, better research [19].

However, there is promising existing work in this area
[20–23], with a variety of manifestos for reproducible
research and community initiatives [24–29], top tips and
“ten simple rules” [30–36], as well as analysis of the wider
legal, professional, ethical and risk perspectives [37, 38].
Things can, should and need to be much better if we want to
uphold and maintain the scientific tenets of openness and
sharing. Building upon previous work [39, 40], we present
a call to action, along with a set of recommendations
which we hope will lead to better, more sustainable, more
re-useable software, to move towards an imagined future
practice and usage of scientific software development. We
also propose a high-level specification for a service that
would automate many of our recommendations.

2 We Need to Talk About Reproducibility
2.1 Can I Implement Your Algorithm?
Reproducibility is a fundamental tenet of high-quality
research. Yet many descriptions of algorithms are too
high-level, too obscure, too poorly-defined to allow an
easy re-implementation by a third party. A step in the
algorithm might say: “We pick an element from the frontier
set” but which element do you pick? Will the first one
do? Why will any element suffice? Sometimes the author
would like to give more implementation detail but is
constrained by an arbitrary page limit of a conference or
journal paper. Sometimes the authors’ description in-lines
other algorithms or data structures that perhaps only that
author is familiar with.

Until recently, reproducibility was only discussed at
conferences and workshops convened explicitly for that
purpose. This is changing, and a number of high-profile
computer science venues such as the ACM SIGPLAN

conferences POPL and PLDI now explicitly acknowledge
the importance of reproducibility, promoting community-
driven reviewing and validation of software artefacts.

Recommendation I: We recommend that a paper
must describe the algorithm in such a way that it is
implementable by any knowledgeable reader of that
algorithm. The description is, of course, subjective,
but to help encourage better descriptions, we also
recommend that — in addition to having incentives
to support sharing of computational artefacts —
relevant scientific conferences develop special
tracks for papers that re-implement past papers’
algorithms, techniques or tools.

2.2 Set The Code Free
There can be no better proof of your algorithm working,
than if you provide the source code of an implementation;
software development is hard, but sharing and re-using
code is relatively easy.

Many years ago, Richard Stallman (founder of the GNU
Project and Free Software Foundation) postulated that all
code would be free [41] and we would make our money by
consulting on the code. As it turns out, this is now the case
for a significant part of the computing industry. There are,
of course, hard commercial pressures for keeping code
closed-source. Even in the scientific domain, scientists and
their collaborators may wish to hold onto their code as
a competitive advantage, especially if there exists larger
competitors who could use the available code to “reverse
scoop” the inventors, charging into a promising new
research area opened by the inventors.

Closed source is one thing; licenses that deny the
user from viewing, modifying, or sharing the source are
another thing. There are, however, even licences on widely
adopted tools like Gaussian [42] (for computational
chemistry) that prohibit even analysing software
performance and behaviour. For example, a wide variety
of licenses exist for molecular dynamics software, with
different degrees of openness e.g. Gromacs uses the GNU
Lesser General Public License (LGPL) [43], CHARMM and
Desmond are Academic/Commercial software licences
[44, 45], Amber and NAMD are custom open-like licences.
Z3 is an example from the verification area: the code itself
was only recently open sourced, but the previous MSR-LA
license allowed the source code to be read, copied, forked
for academic use, providing researchers in the field
substantial flexibility [46].

Even ignoring licensing issues, sometimes the source is
not made open because the author thinks that it is not
quite finished. You should follow the “release early, release
often” mantra, as well as releasing somewhere public like
GitHub, where it is easy to share and fork. Your code is
good enough [13].

Recommendation II: There is little doubt that, if
scientific research wants to be open and free, then
the code that underlies it too needs to be open and
free. Code that is available for browsing, modifying,
and forking, facilitates testing and comparison.
We recommend that code be published under

Crick et al: Reproducibility in Research Art. 32, p. 3 of 9

an appropriate open source license [47]; while
we defer legal discussion of the specifics of any
particular licences, BSD and Apache are good,
flexible ones.

2.3 Be A Better Academic Citizen
If you have the appropriate knowledge, skills and
experience, you can create better software. We have
seen the emergence of successful initiatives, such as the
Software Sustainability Institute (http://www.software.
ac.uk) and the UK Community of Research Software
Engineer (http://www.rse.ac.uk), in cultivating world-class
research through software, developing software skills and
raising the profile of research software engineers.

Many scientists will not have had any formal, or even
informal, training in scientific software development.
Building upon the work of Software Carpentry (http://
software-carpentry.org) and Data Carpentry (http://www.
datacarpentry.org), basic training in software engineering
concepts like version control (git, mercurial), unit testing
(tests written to exercise the smallest testable parts
of a system, like a function exported from a module),
regression testing (a test framework that ensures that
previous results are maintained over the changes in the
source code), build tools (Make, scons), etc, can help
improve the quality of the software written enormously
[48]. Interestingly, many of these concepts are taught to
computer science undergraduates, but it could be argued
that they are taught at the wrong time of their careers,
without the experience of complex, long-running projects.

Recommendation III: Software development
skills should be regarded as fundamental literacies
for scientists and engineers: we recommend that
formal programming, data and computational
skills are taught as core at undergraduate and
postgraduate level.

2.4 The Lingua Franca of Computational Research
There is no other scientific or technical field where its
participants can just make up a non-principled artefact
like a programming language so easily. In a way, it shows
how much of a “commons” computer science has become,
that anyone can create a new programming language, API,
framework or compiler. This clearly has its advantages and
disadvantages.

High-level languages are generally more readable than
their low-level relations. The “density” of a program is often
seen to be a good thing, but it is not always the case that a
shorter Haskell program (for example) is easier to maintain
than a longer C++ one; what is important is the readability
of the code itself. A good example here is from the world
of automatic theorem proving: the SSReflect language
is much more readable than the original, standard Coq
language [49]. SSReflect uses mathematicians’ vernacular
for script commands, allows reproducibility of automatic
proof-checking because parameters are named rather
than numbered. Even though these proof scripts are
really only ever going to be run by a machine, they seek to
maintain the basic mathematical idea that a proof should
be readable by another mathematician.

Many high-level programming languages impose
constraints like types: that you can never add a number
and a string is the most basic example, but ML’s functors
provide principled ways of plugging in components with
their implementations completely hidden. Aggressive
type checking avoids a subset of bugs which can arise
due to incorrectly written functions e.g. well publicised
problems with a NASA Mars orbiter (http://www.cnn.
com/TECH/space/9909/30/mars.metric.02/). A further
example is a pressure coupling bug (http://redmine.
gromacs.org/issues/14) in Gromacs [43], which arose due
to the inappropriate swapping of a pressure term with a
stress tensor. A further extension of types, a concept called
units of measure that is implemented in languages such
as F#, can deal with these kinds of bugs at compile time.
Similarly, problems found using in-house software for
crystallography led to the retraction of five papers [50],
due to a bug which inverted the phases.

Recommendation IV: The use of a principled,
high-level, typed programming language in which
to write your software helps hugely with the
maintainability, robustness and openness of the
software produced. Even in web frontend work,
you have choices: use Typescript or Flow rather
than plain old Javascript; use Hack rather than PHP.

2.5 Lineage (or: “Standing On The Shoulders Of
Giants”)
Research software is not just software – it is the
instantiation of novel algorithms and data structures
(or at least novel applications of data structures). Thus,
lineage is important:

Recommendation V: Code should always include
links to papers publishing key algorithms and
the code should include explicit relationships to
other projects on the repository (i.e. Project B was
branched from Project A). This ensures that both
the researchers and software developers working
upstream of the current project are properly cred-
ited, encouraging future sharing and development.
Remember, the people who did the research are not
necessarily the same people as the developers and
maintainers of the software, so it is important to
reward both appropriately with citations: take note
of the FORCE11 Software Citation Principles [51].

2.6 YMMV
The tweet in Figure 1 is satirical but worryingly true,
highlighting the perils of reproducible research. Often, the
tool that the paper describes does not exist for download.
Or runs only on one particular bespoke platform. Or might
run for the author, for a while, but will ‘bit-rot’ so quickly
that even the author cannot compile it the following year.
Computational reproducibility would appear to be more
straightforward than replicating physical experiments,
but the complex and rapidly changing nature of computer
systems and environments that are being used across
different disciplines makes being able to reproduce and
extend such work a serious challenge [52].

http://www.software.ac.uk
http://www.software.ac.uk
http://www.rse.ac.uk
http://software-carpentry.org
http://software-carpentry.org
http://www.datacarpentry.org
http://www.datacarpentry.org
http://www.cnn.com/TECH/space/9909/30/mars.metric.02/
http://www.cnn.com/TECH/space/9909/30/mars.metric.02/
http://redmine.gromacs.org/issues/14
http://redmine.gromacs.org/issues/14

Crick et al: Reproducibility in ResearchArt. 32, p. 4 of 9

Recommendation VI: You must provide the
source code of the tool, but also with details of
precisely how you built and wrote the software. For
example:

•	 You should provide the compiler and build toolchain;
•	 You should provide build tools (e.g. Makefiles/Ant/

etc) and comprehensive build instructions;
•	 You should list or link to all non-standard packages

and libraries that you use;
•	 You should note the specifics of the hardware and OS

used.

This may appear to be significant extra overhead
for researchers, but GitHub APIs, continuous in-
tegration servers, virtual machines and cloud en-
vironments can make it easier; see Section 3 for
more on this.

2.7 Data Representations and Formats
We often do not, and should not, care how things are
stored on disk, what their precise representations are.
A common, constrained, standard representation is
however good for passing tests or models around between
different tools. A properly described representation, like
the SMT-LIB format (http://smt-lib.org) for Satisfiability
Modulo Theory (SMT) solvers, where both the syntax and
semantics are well understood, hugely aids developing
tools, techniques and benchmarks.

Another example, from biology, is that of the standard
representation of qualitative networks and Boolean
networks [53, 54]. These networks can be expressed
in SMV format, but this would mean that standard
qualitative/Boolean network behaviours have to be
hard-coded for each variable, introducing the possibility
for errors. In the BioModelAnalyzer tool [55], the JSON
contains only the modifiable parameters limiting the
possibility for error; the SBML-Qual standard achieves a
similar goal for logical models [56].

Recommendation VII: Avoid creating new
representations when common formats already
exist. Use existing extensible internationally

standardised representations and formats to
facilitate sharing and re-use.

2.8 World Records
The benchmarks the tool describes are fashioned only for
this instance of this time. They might claim to be from
the Microsoft Windows device driver set, but the reality
is that they are stripped down versions of the originals.
Stripped down so much as to be useless to anyone but
the author vs. the referee. It is worse than that really:
enough benchmarks are included to beat other tools. The
comparisons are never fair (especially for comparisons
against your tool). If every paper has to be novel, then
every benchmark, too, will be novel; there is no monotonic,
historical truth in new, synthetically-crafted benchmarks.
It is as if, in order to beat Usain Bolt’s 100m world record
time, you make him race overweight and out of season,
with a winter overcoat and the wrong sized shoes. Given
this setup, you could surely hope to beat his 9.58s time on
a shorter length track.

Recommendation VIII: Benchmarks should be
public. They should allow anyone to contribute,
implying that the tests are in a standard format.
Further, these benchmarks must be heavily
curated. Every test/assertion should be justified.
Papers should be penalised if they do not use these
public benchmarks. While there are some domains
in which it may not be immediately possible to
share full benchmarks sets, this should be the
exception (with justification) rather than the norm.

A good example of some of these points is the RCSB
Protein Data Bank (http://www.pdb.org) and Systems
Biology Markup Language [56]. The software ones
we know of, the SMT Competition (http://smtcomp.
sourceforge.net/2014/), SV-COMP (http://sv-comp.
sosy-lab.org/2015/) and Termination Problems Data
Base (http://termination-portal.org/wiki/TPDB) are on
that journey. Such repositories would allow the tests
to be taken and easily analysed by any competitor tool.
Some communities go further; the Critical assessment of
methods of protein structure prediction and prediction
of interactions (CASP and CAPRI) [57, 58] communities
present a single-blind test of protein folding and docking
algorithms annually, allowing open competition on a level
playing field. Similarly the DREAM challenges (http://
dreamchallenges.org/) attempt to address large scale
problems through open competition.

2.9 Test It To See
Some models may be chaotic and influenced by floating-
point errors (e.g. molecular dynamics), further frustrating
testing. For example: Sidekick is an automated tool for
building molecular models and performing simulations
[59]. Each system is simulated from an different initial
random seed, and under most circumstances this is the
only difference expected between replicas. However, on a
mixed cluster with both AMD and Intel microprocessors
on the nodes, the difference in architecture was found to

Figure 1: #overlyhonestmethods on Twitter by
@ianholmes [source: https://twitter.com/ianholmes/
status/288689712636493824].

http://smt-lib.org
http://www.pdb.org
http://smtcomp.sourceforge.net/2014/
http://smtcomp.sourceforge.net/2014/
http://sv-comp.sosy-lab.org/2015/
http://sv-comp.sosy-lab.org/2015/
http://termination-portal.org/wiki/TPDB
http://dreamchallenges.org/
http://dreamchallenges.org/
https://twitter.com/ianholmes/status/288689712636493824
https://twitter.com/ianholmes/status/288689712636493824
https://twitter.com/ianholmes/status/288689712636493824

Crick et al: Reproducibility in Research Art. 32, p. 5 of 9

alter the number of water molecules added to each system
by one. This meant that the same simulation performed
on different architectures would diverge. Similarly,
in a different simulation engine, different neighbour
searching strategies gave divergent simulations due to the
differing order in which forces were summed.

A further example is the handling of pseudo-random
number generation in Avida [60], an open source
scientific software platform for conducting and analysing
experiments with self-replicating and evolving computer
programs. While it may initially appear attractive to
develop bespoke random number generators within a
system for consistency or performance across platforms,
this invariably adds complexity to your system and may
inhibit sharing and reproducibility.

Recommendation IX: Despite these challenges
to testing, unshared code is ultimately untestable.
Testing new complex scientific software is difficult
– until the software is complete, unit tests may not
be available. You should aim to re-use modules or
repos (git submodules) from publicly-shared code;
a corollary of Linus’s Law (“given enough eyeballs,
all bugs are shallow”) might be that shared code is
inherently more test-able.

2.10 Welcome to Web 2.0
Virtual machines (VMs) in the cloud also make the testing
of scaling properties more simple. If you have a tool that
you claim is more efficient, you could put together a cluster
of slow nodes in the cloud to demonstrate how well the
software scales for parallel calculations. Cloud computing
is cheap, and getting cheaper. Algorithms that used to
require massive HPC resources can now be run cheaply by
bidding on the VM spot market. The web is a great leveller:
use and share workflows and web services [61, 62].

Recommendation X: The web and the cloud really
do open up a whole new way of working. Even small,
seemingly trivial features like putting up a web
interface to your tool and its tests will allow users
who are not able to install necessary dependencies
to explore the running of the tool [63]. Ultimately,
this can lead to making an “executable paper” appear
on the Internet. The interactive Try F#(http://
www.tryfsharp.org/Learn) and Z3 tutorials (http://
rise4fun.com/Z3/tutorial/guide) are a great start
that begin to expose what can be done in this area.

3 A Model for Reproducible Research Software
Some of our Recommendations, such as “Be A Better
Person” or “The Lingua Franca”, are abstract, airy-fairy,
pie-in-the-sky even. However, most of them can be
concretely realised by a service for reproducibility. This
service provides a concrete implementation of free
source code (“Set The Code Free”) that depends on other
free source code (“Lineage”) building (“YMMV”, “Welcome
to Web 2.0”) and running tests contributed in public
(“Data Representations”, “World Records”) in a completely
reproducible regime.

The service we describe here can be seen as a
specification. We have not built it, but many services like
travis-ci or Azure VSTS provide some of the mechanical
parts of it. A service for reproducibility is intended to play
three important roles; it should:

i)	 Demonstrate that a piece of code can be compiled,
run and behaves as described, without manual
intervention from the developer;

ii)	 Store and link specific artefacts with their linked
publications or other publicly-accessible datasets;

iii)	Allow new benchmarks to be added, by users other
than the developer, to widen the testing and identify
potential bugs.

The whole premise of our previous paper [40] is that algorithms
(and their implementations) and models (sometimes also
called benchmarks) are inextricably linked. Algorithms are
designed for certain types of models; models, though created
to mimic some physical reality, also serve to express the
current known algorithms. An integrated autonomous open
cloud-based service can make this link explicit.

By developing a cloud-based, centralised service, which
performs automated code compilation, testing and
benchmarking (with associated auditing), we will link
together published implementations of algorithms and
input models. This will allow the prototype to link together
software and data repositories, toolchains, workflows and
outputs, providing a seamless automated infrastructure
for the verification and validation of scientific models
and in particular, performance benchmarks. The program
of work will lead the cultural shift in both the short and
long-term to move to a world in which computational
reproducibility helps researchers achieve their goals,
rather than being perceived as an overhead.

A system as described here has several up-front benefits:
it links research papers more closely to their outputs,
making external validation easier and allows interested
users to explore unaddressed sets of models. Critically, it
helps researchers across computational science to be more
productive, rather than reproducibility being an overhead on
top of their day-to-day work. In the same way that tools such
as GitHub make collaborating easier while simultaneously
allowing effortless sharing, we envisage our system being
similarly usable for sharing and testing algorithms and their
implementations, software, models and benchmarks online.

Suppose you have come up with a better algorithm to
deal with some standard problem. You write up the paper
on the algorithm, and you also push an implementation
of your algorithm to the our cloud environment’s section
on this standard problem. The effect of pushing your
implementation is to register your program as a possible
competitor in this standard problem competition. There
exist several dozen widely-agreed tests on this problem
already on our cloud environment’s database. Maybe,
after some negotiation due to your novel approach to this
standard problem, you add some of your own tests to the
database too.

Pushing your code activates the environment’s
continuous integration system. The cloud pulls in all

http://www.tryfsharp.org/Learn
http://www.tryfsharp.org/Learn
http://rise4fun.com/Z3/tutorial/guide
http://rise4fun.com/Z3/tutorial/guide

Crick et al: Reproducibility in ResearchArt. 32, p. 6 of 9

the dependencies your code needs, on the platforms
you specify, and runs all the benchmarks. This happens
every time you push. It also happens every time one of
your dependencies (a library, a firmware upgrade for your
platform, a new API) changes too. This system (presented
in Figure 2) would integrate with publicly available
source code repositories, automates the build, testing and
benchmarking of algorithms and benchmarks. It would
allow testing models against competing algorithms,
and the addition of new models to the test suite (either
manually or from existing online repositories).

If we are truly serious about addressing the systemic
socio-technical issues in scientific disciplines that are
underpinned by leveraging software and computational
techniques, then the proposal above would bring together
almost all of the points we have discussed in this paper to
provide an open research infrastructure for all. There are
already several web services that already aim to do many
of these things [22, 64], so a service that can integrate
most if not all of these features is possible. Such a service
would then allow algorithms and models to evolve
together, and be reproducible from the outset. Something
more open and complete, and stamped with the authority
of the major domain conferences/journals/national
academies, would mean that your code would never ‘bit-
rot’, and no one would have problems reproducing the
implementation of your published algorithm.

4 Next Steps
Following the proposal of such a system, the question
becomes: how do we encourage widespread uptake, or even
standardisation? Such a service would appear to be non-
trivial, given the large numbers of tools and workflows that
could potentially require to be supported by the service.
After such a service has been implemented, how do we
ensure it is useful and usable for researchers. Furthermore,
how do we make it sustainable?

The benefits to the wider computational research
community from a cultural change to favour reproducibility
are clear and as such we should aim through software
e-infrastructure and sharable, community curated research
workflows to mitigate these costs. Furthermore, we can
reasonably expect the distinct needs of specific research
communities to evolve over time, and initial implementations
of the platform may require refinement in response to
user feedback (supporting the critical cultural change by

improving the efficiency of researchers). As such, if the wider
research community is to move to requiring reproducibility,
it seems most reasonable that this is staggered over a number
of years to allow for both of these elements to develop, until
eventually all researchers are required to use the service.

The key question for different research communities
then becomes: how to initialise this change? Such a
requirement creates a set of new costs to researchers,
both in terms of time spent ensuring that their tools
work on the centralised system (in addition to their
local implementation), but also potentially in terms of
equipment (in terms of running the system). Such costs
may be easier to bear for some groups compared to
others, especially those with large research groups who
can more easily distribute the tasks, and it is important
that the service does not present a barrier to early career
researchers and those with efficient budgets (this type of
cost analysis is not unique to reproducibility efforts – it
has been estimated that a shift to becoming exclusively
open access for a journal may lead to a ten-fold increase in
computer science publication costs [65]).

Nevertheless, this proposed new e-infrastructure could
have a profound impact on the way that computational
science is performed, repositioning the role of models,
algorithms and benchmarks and accelerating the research
cycle, perhaps truly enabling a “fourth paradigm” of data
intensive scientific discovery [66]. Ultimately though,
continuing with an honest and open discussion of what
reproducibility means for the wider science research
community is important: we all need to explicitly confirm
that this is worthwhile and commit to addressing it, or
don’t bother doing it at all.

4.1 A Note on Re-Writing the WSSSPE Paper
Many of the ideas, comments — even attitudes — in this
paper come from the authors’ experience in programming,
programming languages, software. We have started from
the Marc Andreessen comment that opens this paper. In
editing this paper from its original WSSSPE workshop form,
we realised that one assumption that seems to run through
the manuscript is that the behaviours we think are good
are in fact those that can be enforced in software. Take
mutability of variables in programming as an example.
Mutability increases the scope for bugs, so modern
programming languages like OCaml or C++14 enforce
immutability at the language or library level. But in fact

Figure 2: Proposed reproducibility service workflow.

Crick et al: Reproducibility in Research Art. 32, p. 7 of 9

immutability leads very naturally to state-less or de novo
build environments, and so to the guideline that “software
must be compilable with de novo continuous integration”.
And, similarly, so does the issue of openly publishing your
toolchain: it too must be compilable in a from-scratch
build environment to be of use to anyone else.

Competing Interests
The authors have no competing interests to declare.

References
1.	 Andreessen, M “Why Software Is Eating The World,”

The Wall Street Journal, August 2011. Available online:
http://online.wsj.com/news/articles/SB1000142405
3111903480904576512250915629460.

2.	 Royal Society 2012 “Science as an open enterprise,”
Available from: https://royalsociety.org/policy/
projects/science-public-enterprise/report/.

3.	 Editorial 2011 “Devil in the details,” Nature, 470(7334):
305–306, DOI: https://doi.org/10.1038/470305b

4.	 Alberts, B, Cicerone, R J, Fienberg, S E, Kamb, A,
McNutt, M, Nerem, R M, Schekman, R, Shiffrin,
R, Stodden, V, Suresh, S, Zuber, M T, Kline Pope, B
and Jamieson, K 2015 “Self-correction in science at
work,” Science, 348(6242): 1420–1422. DOI: https://
doi.org/10.1126/science.aab3847

5.	 Collberg, C and Proebsting, T A 2016 “Repeatability
in Computer Systems Research,” Communications
of the ACM, 59(3): 62–69. DOI: https://doi.
org/10.1145/2812803

6.	 Crick, T, De Vos, M, Brain, M and Fitch, J 2009
“Generating Optimal Code using Answer Set
Programming.” In: Proceedings of 10th International
Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’09), of Lecture Notes in Computer
Science, 5753: 554–559, Springer. DOI: https://doi.
org/10.1007/978-3-642-04238-6_57

7.	 Berdine, J, Cook, B and Ishtiaq, S 2011 “SLAyer:
Memory Safety for Systems-Level Code,” In: Proceedings
of the 23rd International Conference on Computer Aided
Verification (CAV 2011), of Lecture Notes in Computer
Science, 6806: 178–183, Springer. DOI: https://doi.
org/10.1007/978-3-642-22110-1_15

8.	 De Roure, D “Replacing the Paper: The Twelve Rs
of the e-Research Record.” Available from: http://
www.scilogs.com/eresearch/replacing-the-paper-the-
twelve-rs-of-the-e-research-record/, November 2011.

9.	 Stodden, V, Guo, P and Ma, Z 2013 “Toward
Reproducible Computational Research: An Empirical
Analysis of Data and Code Policy Adoption by Journals,”
PLoS ONE, 8(6). DOI: https://doi.org/10.1371/journal.
pone.0067111

10.	Fursin, G and Dubach, C 2014 “Community-
Driven Reviewing and Validation of Publications,”
In: Proceedings of the 1st ACM SIGPLAN Workshop
on Reproducible Research Methodologies and
New Publication Models in Computer Engineering
(TRUST’14), pp. 1–4, ACM Press. DOI: https://doi.
org/10.1145/2618137.2618142

11.	National Academies of Sciences, Engineering,
and Medicine 2016 Statistical Challenges in Assessing

and Fostering the Reproducibility of Scientific Results:
Summary of a Workshop. The National Academies
Press.

12.	Galiani, S, Gertler, P and Romero, M “Incentives for
Replication in Economics,” Tech. rep., National Bureau
of Economic Research, July 2017. NBER Working Paper
No. 23576.

13.	Barnes, N 2010 “Publish your computer code: it is
good enough,” Nature, 467(753). DOI: https://doi.
org/10.1038/467753a

14.	Morin, A, Urban, J, Adams, P D, Foster, I, Sali, A,
Baker, D and Sliz, P 2012 “Shining Light into Black
Boxes,” Science, 336(6078): 159–160. DOI: https://doi.
org/10.1126/science.1218263

15.	Joppa, L N, McInerny, G, Harper, R, Salido, L,
Takeda, K, O’Hara, K, Gavaghan, D and Emmott,
S 2013 “Troubling Trends in Scientific Software
Use,” Science, 340(6134): 814–815. DOI: https://doi.
org/10.1126/science.1231535

16.	Bechhofer, S, Buchan, I, De Roure, D, Missier, P,
Ainsworth, J, Bhagata, J, Couch, P, Cruickshank, D,
Delderfield, M, Dunlop, I, Gamble, M, Michaelides,
D, Owen, S, Newman, D, Sufi, S and Goble, C 2013
“Why linked data is not enough for scientists,” Future
Generation Computer Systems, 29(2): 599–611. DOI:
https://doi.org/10.1016/j.future.2011.08.004

17.	Osherovich, L 2011 “Hedging against academic risk,”
Science-Business eXchange, 4(15).

18.	Hesman Saey, T 2015 “Repeat Performance: Too many
studies, when replicated, fail to pass muster,” Science
News, 187(2): 21–26. DOI: https://doi.org/10.1002/
scin.2015.187002014

19.	Goble, C 2014 “Better Software, Better Research,”
IEEE Internet Computing, 18(5): 4–8. DOI: https://doi.
org/10.1109/MIC.2014.88

20.	Chirigati, F, Troyer, M, Shasha, D and Freire, J 2013
“A Computational Reproducibility Benchmark,” IEEE
Data Engineering Bulletin, 36(4): 54–59.

21.	Stodden, V and Miguez, S 2014 “Best Practices
for Computational Science: Software Infrastructure
and Environments for Reproducible and Extensible
Research,” Journal of Open Research Software, 2(1):
1–6. DOI: https://doi.org/10.5334/jors.ay

22.	Stodden, V, Miguez, S and Seiler, J 2015
“ResearchCompendia.org: Cyberinfrastructure for
Reproducibility and Collaboration in Computational
Science,” Computing in Science & Engineering, 17(12).
DOI: https://doi.org/10.1109/MCSE.2015.18

23.	Stodden, V, McNutt, M, Bailey, D H, Deelman,
E, Gil, Y, Hanson, B, Heroux, M A, Ioannidis, J
P and Taufer, M 2016 “Enhancing reproducibility
for computational methods,” Science, 354(6317):
1240–1241. DOI: https://doi.org/10.1126/science.
aah6168

24.	Fomel, S and Claerbout, J F 2008 “Reproducible
Research,” Computing in Science & Engineering, 11(1).

25.	“Reproducible Research” 2010 Computing in
Science & Engineering, 12(5): 8–13. DOI: https://doi.
org/10.1109/MCSE.2010.113

26.	Gent, I P “The Recomputation Manifesto.” Available
from: http://arxiv.org/abs/1304.3674, April 2013.

http://online.wsj.com/news/articles/SB10001424053111903480904576512250915629460
http://online.wsj.com/news/articles/SB10001424053111903480904576512250915629460
https://royalsociety.org/policy/projects/science-public-enterprise/report/
https://royalsociety.org/policy/projects/science-public-enterprise/report/
https://doi.org/10.1038/470305b
https://doi.org/10.1126/science.aab3847
https://doi.org/10.1126/science.aab3847
https://doi.org/10.1145/2812803
https://doi.org/10.1145/2812803
https://doi.org/10.1007/978-3-642-04238-6_57
https://doi.org/10.1007/978-3-642-04238-6_57
https://doi.org/10.1007/978-3-642-22110-1_15
https://doi.org/10.1007/978-3-642-22110-1_15
http://www.scilogs.com/eresearch/replacing-the-paper-the-twelve-rs-of-the-e-research-record/
http://www.scilogs.com/eresearch/replacing-the-paper-the-twelve-rs-of-the-e-research-record/
http://www.scilogs.com/eresearch/replacing-the-paper-the-twelve-rs-of-the-e-research-record/
https://doi.org/10.1371/journal.pone.0067111
https://doi.org/10.1371/journal.pone.0067111
https://doi.org/10.1145/2618137.2618142
https://doi.org/10.1145/2618137.2618142
https://doi.org/10.1038/467753a
https://doi.org/10.1038/467753a
https://doi.org/10.1126/science.1218263
https://doi.org/10.1126/science.1218263
https://doi.org/10.1126/science.1231535
https://doi.org/10.1126/science.1231535
https://doi.org/10.1016/j.future.2011.08.004
https://doi.org/10.1002/scin.2015.187002014
https://doi.org/10.1002/scin.2015.187002014
https://doi.org/10.1109/MIC.2014.88
https://doi.org/10.1109/MIC.2014.88
https://doi.org/10.5334/jors.ay
http://www.ResearchCompendia.org
https://doi.org/10.1109/MCSE.2015.18
https://doi.org/10.1126/science.aah6168
https://doi.org/10.1126/science.aah6168
https://doi.org/10.1109/MCSE.2010.113
https://doi.org/10.1109/MCSE.2010.113

Crick et al: Reproducibility in ResearchArt. 32, p. 8 of 9

27.	Fursin, G, Miceli, R, Lokhmotov, A, Gerndt, M,
Baboulin, M, Malony, A D, Chamski, Z, Novillo,
D and Del Vento, D 2014 “Collective mind: Towards
practical and collaborative auto-tuning,” Scientific
Programming, 22(4): 309–329. DOI: https://doi.
org/10.1155/2014/797348

28.	Bailey, D, Borwein, J and Stodden, V 2013 “Set the
Default to “Open”,” Notices of the AMS.

29.	James, D, Wilkins-Diehr, N, Stodden, V, Colbry, D,
Rosales, C, Fahey, M R, Shi, J, da Silva, R F, Lee, K,
Roskies, R, Loewe, L, Lindsey, S, Kooper, R, Barba,
L, Bailey, D H, Borwein, J M, Corcho, Ó, Deelman,
E, Dietze, M C, Gilbert, B, Harkes, J, Keele, S,
Kumar, P, Lee, J, Linke, E, Marciano, R, Marini, L,
Mattmann, C, Mattson, D, McHenry, K, McLay, R
T, Miguez, S, Minsker, B S, Pérez-Hernández, M S,
Ryan, D, Rynge, M, Pérez, I S, Satyanarayanan, M,
Clair, G S, Webster, K, Hovig, E, Katz, D S, Kay, S,
Sandve, G K, Skinner, D, Allen, G, Cazes, J, Cho,
K W, Fonseca, J, Hwang, L, Koesterke, L, Patel, P,
Pouchard, L, Seidel, E and Suriarachchi, I 2014
“Standing Together for Reproducibility in Large-Scale
Computing: Report on reproducibility@XSEDE,” Tech.
rep., XSEDE.

30.	Prlić, A and Procter, J B 2012 “Ten Simple Rules for
the Open Development of Scientific Software,” PLoS
Computational Biology, 8(12): e1002802. DOI: https://
doi.org/10.1371/journal.pcbi.1002802

31.	Masum, H, Rao, A, Good, B M, Todd, M H, Edwards,
A M, Chan, L, Bunin, B A, Su, A I, Thomas, Z and
Bourne, P E 2013 “Ten Simple Rules for Cultivating
Open Science and Collaborative R&D,” PLoS
Computational Biology, 9(9): e1003244. DOI: https://
doi.org/10.1371/journal.pcbi.1003244

32.	Sandve, G, Nekrutenko, A, Taylor, J and Hovig, E 2013
“Ten Simple Rules for Reproducible Computational
Research,” PLoS Computational Biology, 9(10):
e1003285. DOI: https://doi.org/10.1371/journal.
pcbi.1003285

33.	Osborne, J M, Bernabeu, M O, Bruna, M, Calderhead,
B, Cooper, J, Dalchau, N, Dunn, S-J, Fletcher, A G,
Freeman, R, Groen, D, Knapp, B, McInerny, G J,
Mirams, G R, Pitt-Francis, J, Sengupta, B, Wright, D
W, Yates, C A, Gavaghan, D J, Emmott, S and Deane,
C 2013 “Ten Simple Rules for Effective Computational
Research,” PLoS Computational Biology, 10(3):
e1003506. DOI: https://doi.org/10.1371/journal.
pcbi.1003506

34.	Goodman, A, Pepe, A, Blocker, A W, Borgman,
C L, Cranmer, K, Crosas, M, Di Stefano, R, Gil, Y,
Groth, P, Hedstrom, M, Hogg, D W, Kashyap, V,
Mahabal, A, Siemiginowska, A and Slavkovic, A
2014 “Ten Simple Rules for the Care and Feeding of
Scientific Data,” PLoS Computational Biology, 10(4):
e1003542. DOI: https://doi.org/10.1371/journal.
pcbi.1003542

35.	Chue Hong, N P, Crick, T, Gent, I P, Kotthoff, L and
Takeda, K 2015 “Top Tips to Make Your Research
Irreproducible.” Available from: http://arxiv.org/
abs/1504.00062.

36.	List, M, Ebert, P and Albrecht, F 2017 “Ten
Simple Rules for Developing Usable Software in
Computational Biology,” PLoS Computational Biology,
13(1): e1005265. DOI: https://doi.org/10.1371/
journal.pcbi.1005265

37.	Stodden, V 2008 “The Legal Framework for
Reproducible Scientific Research: Licensing and
Copyright,” Computing in Science & Engineering, 11(1).

38.	Haas, C N 2016 “Reproducible Risk Assessment,”
Risk Analysis, 6(10): 1829–1833. DOI: https://doi.
org/10.1111/risa.12730

39.	Crick, T, Hall, B A and Ishtiaq, S 2014 ““Can
I Implement Your Algorithm?”: A Model for
Reproducible Research Software,” In: 2nd International
Workshop on Sustainable Software for Science: Practice
and Experiences (WSSSPE2).

40.	Crick, T, Hall, B A, Ishtiaq, S and Takeda, K 2014
““Share and Enjoy”: Publishing Useful (and Usable)
Scientific Models,” In: Proceedings of the 7th IEEE/
ACM International Conference on Utility and Cloud
Computing, pp. 957–961.

41.	Stallman, R M 2010 Free Software Free Society:
Selected Essays of Richard M. Stallman. Free Software
Foundation.

42.	Giles, J 2004 “Software company bans competitive
users,” Nature, 429(6989). DOI: https://doi.
org/10.1038/429231a

43.	Hess, B, Kutzner, C, van der Spoel, D and Lindahl,
E 2008 “GROMACS 4: Algorithms for Highly Efficient,
Load-Balanced, and Scalable Molecular Simulation,”
Journal of Chemical Theory and Computation, 4(3):
435–447. DOI: https://doi.org/10.1021/ct700301q

44.	Brooks, B R, Brooks, C L, Mackerell, A D, Nilsson, L,
Petrella, R J, Roux, B, Won, Y, Archontis, G, Bartels,
C, Boresch, S, Caflisch, A, Caves, L, Cui, Q, Dinner,
A R, Feig, M, Fischer, S, Gao, J, Hodoscek, M, Im,
W, Kuczera, K, Lazaridis, T, Ma, J, Ovchinnikov,
V, Paci, E, Pastor, R W, Post, C B, Pu, J Z, Schaefer,
M, Tidor, B, Venable, R M, Woodcock, H L, Wu, X,
Yang, W, York, D M and Karplus, M 2009 “CHARMM:
The biomolecular simulation program,” Journal of
Computational Chemistry, 30(10): 1545–1614. DOI:
https://doi.org/10.1002/jcc.21287

45.	Bowers, K J, Chow, E, Xu, H, Dror, R O, Eastwood,
M P, Gregersen, B A, Klepeis, J L, Kolossvary, I,
Moraes, M A, Sacerdoti, F D, Salmon, J K, Shan,
Y and Shaw, D E 2006 “Scalable algorithms for
molecular dynamics simulations on commodity
clusters,” In: Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing, IEEE Press. DOI:
https://doi.org/10.1109/SC.2006.54

46.	de Moura, L 2012 “Releasing the Z3 source code.”
Available online: http://leodemoura.github.io/
blog/2012/10/02/open-z3.html.

47.	“Open Source Licenses” http://opensource.org/
licenses.

48.	Wilson, G 2006 “Software carpentry: Getting
scientists to write better code by making them more
productive,” Computing in Science & Engineering, 8(6).
DOI: https://doi.org/10.1109/MCSE.2006.122

https://doi.org/10.1155/2014/797348
https://doi.org/10.1155/2014/797348
https://www.xsede.org/web/reproducibility
https://doi.org/10.1371/journal.pcbi.1002802
https://doi.org/10.1371/journal.pcbi.1002802
https://doi.org/10.1371/journal.pcbi.1003244
https://doi.org/10.1371/journal.pcbi.1003244
https://doi.org/10.1371/journal.pcbi.1003285
https://doi.org/10.1371/journal.pcbi.1003285
https://doi.org/10.1371/journal.pcbi.1003506
https://doi.org/10.1371/journal.pcbi.1003506
https://doi.org/10.1371/journal.pcbi.1003542
https://doi.org/10.1371/journal.pcbi.1003542
https://doi.org/10.1371/journal.pcbi.1005265
https://doi.org/10.1371/journal.pcbi.1005265
https://doi.org/10.1111/risa.12730
https://doi.org/10.1111/risa.12730
https://doi.org/10.1038/429231a
https://doi.org/10.1038/429231a
https://doi.org/10.1021/ct700301q
https://doi.org/10.1002/jcc.21287
https://doi.org/10.1109/SC.2006.54
http://leodemoura.github.io/blog/2012/10/02/open-z3.html
http://leodemoura.github.io/blog/2012/10/02/open-z3.html
http://opensource.org/licenses
http://opensource.org/licenses
https://doi.org/10.1109/MCSE.2006.122

Crick et al: Reproducibility in Research Art. 32, p. 9 of 9

49.	Gonthier, G, Ziliani, B, Nanevski, A and Dreyer, D
2013 “How to make ad hoc proof automation less adhoc,”
Journal of Functional Programming, 23(4): 357–401.
DOI: https://doi.org/10.1017/S0956796813000051

50.	Miller, G 2006 “A Scientist’s Nightmare: Software
Problem Leads to Five Retractions,” Science,
314(5807): 1856–1857. DOI: https://doi.org/10.1126/
science.314.5807.1856

51.	Smith, A M, Katz, D S, Niemeyer, K E and the FORCE11
Software Citation Working Group 2016 “Software
Citation Principles,” PeerJ Computer Science, 2(e86).

52.	Boettiger, C 2015 “An introduction to Docker for
reproducible research,” ACM SIGOPS Operating Systems
Review, 49(1): 71–79. Special Issue on Repeatability
and Sharing of Experimental Artifacts. DOI: https://
doi.org/10.1145/2723872.2723882

53.	Kauffman, S A 1969 “Metabolic stability and
epigenesis in randomly constructed genetic nets,”
Journal of Theoretical Biology, 22(3): 437–67. DOI:
https://doi.org/10.1016/0022-5193(69)90015-0

54.	Schaub, M A, Henzinger, T A and Fisher, J 2007
“Qualitative networks: a symbolic approach to analyze
biological signaling networks,” BMC Systems Biology, 1:
4. DOI: https://doi.org/10.1186/1752-0509-1-4

55.	Benque, D, Bourton, S, Cockerton, C, Cook, B,
Fisher, J, Ishtiaq, S, Piterman, N, Taylor, A and
Vardi, M Y 2012 “BMA: visual tool for modeling and
analyzing biological networks,” In: Proceedings of
the 24th International Conference on Computer Aided
Verification (CAV 2012), of Lecture Notes in Computer
Science, 7358: 686–692, Springer. DOI: https://doi.
org/10.1007/978-3-642-31424-7_50

56.	Chaouiya, C, Berenguier, D, Keating, S M, Naldi,
A, van Iersel, M P, Rodriguez, N, Drager, A, Buchel,
F, Cokelaer, T, Kowal, B, Wicks, B, Goncalves,
E, Dorier, J, Page, M, Monteiro, P T, von Kamp,
A, Xenarios, I, de Jong, H, Hucka, M, Klamt, S,
Thieffry, D, Le Novere, N, Saez-Rodriguez, J and
Helikar, T 2013 “SBML qualitative models: a model
representation format and infrastructure to foster
interactions between qualitative modelling formalisms
and tools,” BMC Systems Biology, 7.

57.	Moult, J, Fidelis, K, Kryshtafovych, A, Schwede,
T and Tramontano, A 2014 “Critical assessment of

methods of protein structure prediction (CASP) — round
x,” Proteins: Structure, Function, and Bioinformatics, 82:
1–6. DOI: https://doi.org/10.1002/prot.24452

58.	Lensink, M F, Velankar, S and Wodak, S J 2017
“Modeling proteinprotein and proteinpeptide
complexes: Capri 6th edition,” Proteins: Structure,
Function, and Bioinformatics, 85(3): 359–377.

59.	Hall, B A, Halim, K B A, Buyan, A, Emmanouil, B
and Sansom, M S P 2014 “Sidekick for membrane
simulations: Automated ensemble molecular dynamics
simulations of transmembrane helices,” Journal of
Chemical Theory and Computation, 10(5): 2165–2175.
DOI: https://doi.org/10.1021/ct500003g

60.	Ofria, C and Wilke, C O 2004 “Avida: A Software
Platform for Research in Computational Evolutionary
Biology,” Artificial Life, 10(2): 191–229. DOI: https://
doi.org/10.1162/106454604773563612

61.	Crick, T, Dunning, P, Kim, H and Padget, J 2009
“Engineering Design Optimization using Services and
Workflows,” Philosophical Transactions of the Royal
Society A, 367(1898): 2741–2751.

62.	Olabarriaga, S, Pierantoni, G, Taffoni, G, Sciacca,
E, Jaghoori, M, Korkhov, V, Castelli, G, Vuerli, C,
Becciani, U, Carley, E and Bentley, B 2014 “Scientific
Workflow Management – For Whom?,” in Proceedings
of 10th IEEE International Conference on e-Science
(e-Science 2014), 298–305, IEEE Press. DOI: https://
doi.org/10.1109/eScience.2014.8

63.	Hall, B A, Jackson, E, Hajnal, A and Fisher, J 2014
“Logic programming to predict cell fate patterns and
retrodict genotypes in organogenesis,” Journal of
The Royal Society Interface, 11(98). DOI: https://doi.
org/10.1098/rsif.2014.0245

64.	Rollins, N D, Barton, C M, Bergin, S, Janssen, M
A and Lee, A 2014 “A Computational Model Library
for publishing model documentation and code,”
Environmental Modelling & Software, 61: 59–64. DOI:
https://doi.org/10.1016/j.envsoft.2014.06.022

65.	Vardi, M Y 2014 “Openism, IPism, Fundamentalism,
and Pragmatism,” Communications of the ACM, 57(8).
DOI: https://doi.org/10.1145/2632265

66.	Hey, T, Tansley, S and Tolle, K (eds.) 2009 The Fourth
Paradigm: Data-Intensive Scientific Discovery. Microsoft
Research.

How to cite this article: Crick, T, Hall, B A and Ishtiaq, S 2017 Reproducibility in Research: Systems, Infrastructure, Culture.
Journal of Open Research Software, 5: 32. DOI: https://doi.org/10.5334/jors.73

Submitted: 08 March 2015 Accepted: 10 August 2017 Published: 09 November 2017

Copyright: © 2017 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

https://doi.org/10.1017/S0956796813000051
https://doi.org/10.1126/science.314.5807.1856
https://doi.org/10.1126/science.314.5807.1856
https://doi.org/10.1145/2723872.2723882
https://doi.org/10.1145/2723872.2723882
https://doi.org/10.1016/0022-5193(69)90015-0
https://doi.org/10.1186/1752-0509-1-4
https://doi.org/10.1007/978-3-642-31424-7_50
https://doi.org/10.1007/978-3-642-31424-7_50
https://doi.org/10.1002/prot.24452
https://doi.org/10.1021/ct500003g
https://doi.org/10.1162/106454604773563612
https://doi.org/10.1162/106454604773563612
https://doi.org/10.1109/eScience.2014.8
https://doi.org/10.1109/eScience.2014.8
https://doi.org/10.1098/rsif.2014.0245
https://doi.org/10.1098/rsif.2014.0245
https://doi.org/10.1016/j.envsoft.2014.06.022
https://doi.org/10.1145/2632265
https://doi.org/10.5334/jors.73
http://creativecommons.org/licenses/by/4.0/

	1 Introduction
	2 We Need to Talk About Reproducibility
	2.1 Can I Implement Your Algorithm?
	2.2 Set The Code Free
	2.3 Be A Better Academic Citizen
	2.4 The Lingua Franca of Computational Research
	2.5 Lineage (or: “Standing On The Shoulders Of Giants”)
	2.6 YMMV
	2.7 Data Representations and Formats
	2.8 World Records
	2.9 Test It To See
	2.10 Welcome to Web 2.0

	3 A Model for Reproducible Research Software
	4 Next Steps
	4.1 A Note on Re-Writing the WSSSPE Paper

	Competing Interests
	References
	Figure 1
	Figure 2

