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The reproduction and replication of research results has become a major issue for a number of scientific 
disciplines. In computer science and related computational disciplines such as systems biology, the 
challenges closely revolve around the ability to implement (and exploit) novel algorithms and models. 
Taking a new approach from the literature and applying it to a new codebase frequently requires local 
knowledge missing from the published manuscripts and transient project websites. Alongside this issue, 
benchmarking, and the lack of open, transparent and fair benchmark sets present another barrier to the 
verification and validation of claimed results.

In this paper, we outline several recommendations to address these issues, driven by specific examples from 
a range of scientific domains. Based on these recommendations, we propose a high-level prototype open 
automated platform for scientific software development which effectively abstracts specific dependencies 
from the individual researcher and their workstation, allowing easy sharing and reproduction of results. 
This new e-infrastructure for reproducible computational science offers the potential to incentivise a 
culture change and drive the adoption of new techniques to improve the quality and efficiency – and thus 
reproducibility – of scientific exploration.
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1 Introduction
Marc Andreessen (co-author of Mosaic, the first widely 
used web browser) boldly stated in 2011 that “software is 
eating the world” [1]. This is true: we live in a computational 
world, with our everyday communications, entertainment, 
shopping, banking, transportation, national security, etc, 
all heavily data-driven and largely overtaken by software.

 Andreessen’s statement is particularly true for science 
and engineering. A 2012 report by the UK’s Royal Society 
stated that computational techniques have “moved on 
from assisting scientists in doing science, to transforming 
both how science is done and what science is done” [2]. 
Many of the examples discussed in this paper exploit a 
fundamental advantage of computer science and more 
generally, computational science: the unique ability for 
researchers to share the raw outputs of their work as 
software and datafiles. New experiments, simulations, 
models, benchmarks, even proofs increasingly cannot be 
done without software. This software does not consist 
of simple hack-together, use-once, throw-away scripts; 
research software repositories contain thousands, perhaps 
millions, of lines of code and they increasingly need to be 
actively supported and maintained. More importantly, 

with reproducibility being a fundamental tenet of science, 
they need to be open and re-useable.

  However, if we closely analyse the scientific literature 
related to software tools it often does not appear to 
be adhering to these rules [3, 4]. How many of them 
are open and available? How many explain their 
experimental methodologies, in particular the basis for 
their benchmarking? In particular, can we (re)build the 
code? [5] We, the authors, are perhaps as guilty as anyone 
in the past, where we have published papers [6, 7] with 
benchmarks and promises of code to be released in the 
near future which depreciate as you move onto the next 
project.

There are various reasons why the wider scientific 
community is in this position. We are currently 
undergoing significant changes to models of academic 
dissemination, especially considering the wider open 
research movement, with new models being proposed 
[8–10]. Now, numerous “high-impact” journals explicitly 
require that source code and data is made available online 
under some form of open source license, but there still 
exists large disciplinary gaps. While these initiatives are 
great, they are often optional, seem piecemeal, and do 
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little to enable the verification and validation of scientific 
results at a later stage. Even within the same field, there 
are different ideas of what defines reproducibility [11], 
as well as evidence of “overturn bias” – replications that 
overturn original results are much easier to publish than 
those that confirm original results [12].

Nevertheless, the reproduction and replication of 
reported scientific results has become a widely discussed 
topic within the scientific community [13–15]. Whilst the 
increasing number of retractions of studies across a variety 
of disciplines has drawn the focus of many commentators, 
automated systems, which allow easy reproduction of 
results, offer the potential to improve the efficiency of 
scientific exploration and drive the adoption of new 
techniques. However, just publishing (linked) scientific 
data is not enough to ensure the required reusability [16]. 
There exists a wider socio-cultural problem that pervades 
the scientific community, with estimates that as much as 
50% of published studies, even those in top-tier academic 
journals, cannot be repeated with the same conclusions by 
an industrial lab [17, 18]. There are numerous non-technical 
impediments to making software maintainable and 
re-useable. The pressure to “make the discovery”, publish 
quickly and move onto the next project disincentivises 
careful software curation and preservation. Releasing code 
prematurely is often seen to give your competitors an 
advantage, but we should be shining light into these “black 
boxes” [14]; in essence: better software, better research [19].

However, there is promising existing work in this area 
[20–23], with a variety of manifestos for reproducible 
research and community initiatives [24–29], top tips and 
“ten simple rules” [30–36], as well as analysis of the wider 
legal, professional, ethical and risk perspectives [37, 38]. 
Things can, should and need to be much better if we want to 
uphold and maintain the scientific tenets of openness and 
sharing. Building upon previous work [39, 40], we present 
a call to action, along with a set of recommendations 
which we hope will lead to better, more sustainable, more 
re-useable software, to move towards an imagined future 
practice and usage of scientific software development. We 
also propose a high-level specification for a service that 
would automate many of our recommendations.

2 We Need to Talk About Reproducibility
2.1 Can I Implement Your Algorithm?
Reproducibility is a fundamental tenet of high-quality 
research. Yet many descriptions of algorithms are too 
high-level, too obscure, too poorly-defined to allow an 
easy re-implementation by a third party. A step in the 
algorithm might say: “We pick an element from the frontier 
set” but which element do you pick? Will the first one 
do? Why will any element suffice? Sometimes the author 
would like to give more implementation detail but is 
constrained by an arbitrary page limit of a conference or 
journal paper. Sometimes the authors’ description in-lines 
other algorithms or data structures that perhaps only that 
author is familiar with.

Until recently, reproducibility was only discussed at 
conferences and workshops convened explicitly for that 
purpose. This is changing, and a number of high-profile 
computer science venues such as the ACM SIGPLAN 

conferences POPL and PLDI now explicitly acknowledge 
the importance of reproducibility, promoting community-
driven reviewing and validation of software artefacts.

Recommendation I: We recommend that a paper 
must describe the algorithm in such a way that it is 
implementable by any knowledgeable reader of that 
algorithm. The description is, of course, subjective, 
but to help encourage better descriptions, we also 
recommend that — in addition to having incentives 
to support sharing of computational artefacts — 
relevant scientific conferences develop special 
tracks for papers that re-implement past papers’ 
algorithms, techniques or tools.

2.2 Set The Code Free
There can be no better proof of your algorithm working, 
than if you provide the source code of an implementation; 
software development is hard, but sharing and re-using 
code is relatively easy.

Many years ago, Richard Stallman (founder of the GNU 
Project and Free Software Foundation) postulated that all 
code would be free [41] and we would make our money by 
consulting on the code. As it turns out, this is now the case 
for a significant part of the computing industry. There are, 
of course, hard commercial pressures for keeping code 
closed-source. Even in the scientific domain, scientists and 
their collaborators may wish to hold onto their code as 
a competitive advantage, especially if there exists larger 
competitors who could use the available code to “reverse 
scoop” the inventors, charging into a promising new 
research area opened by the inventors.

Closed source is one thing; licenses that deny the 
user from viewing, modifying, or sharing the source are 
another thing. There are, however, even licences on widely 
adopted tools like Gaussian [42] (for computational 
chemistry) that prohibit even analysing software 
performance and behaviour. For example, a wide variety 
of licenses exist for molecular dynamics software, with 
different degrees of openness e.g. Gromacs uses the GNU 
Lesser General Public License (LGPL) [43], CHARMM and 
Desmond are Academic/Commercial software licences 
[44, 45], Amber and NAMD are custom open-like licences. 
Z3 is an example from the verification area: the code itself 
was only recently open sourced, but the previous MSR-LA 
license allowed the source code to be read, copied, forked 
for academic use, providing researchers in the field 
substantial flexibility [46].

Even ignoring licensing issues, sometimes the source is 
not made open because the author thinks that it is not 
quite finished. You should follow the “release early, release 
often” mantra, as well as releasing somewhere public like 
GitHub, where it is easy to share and fork. Your code is 
good enough [13].

Recommendation II: There is little doubt that, if 
scientific research wants to be open and free, then 
the code that underlies it too needs to be open and 
free. Code that is available for browsing, modifying, 
and forking, facilitates testing and comparison. 
We recommend that code be published under 
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an appropriate open source license [47]; while 
we defer legal discussion of the specifics of any 
particular licences, BSD and Apache are good, 
flexible ones.

2.3 Be A Better Academic Citizen
If you have the appropriate knowledge, skills and 
experience, you can create better software. We have 
seen the emergence of successful initiatives, such as the 
Software Sustainability Institute (http://www.software.
ac.uk) and the UK Community of Research Software 
Engineer (http://www.rse.ac.uk), in cultivating world-class 
research through software, developing software skills and 
raising the profile of research software engineers.

Many scientists will not have had any formal, or even 
informal, training in scientific software development. 
Building upon the work of Software Carpentry (http://
software-carpentry.org) and Data Carpentry (http://www.
datacarpentry.org), basic training in software engineering 
concepts like version control (git, mercurial), unit testing 
(tests written to exercise the smallest testable parts 
of a system, like a function exported from a module), 
regression testing (a test framework that ensures that 
previous results are maintained over the changes in the 
source code), build tools (Make, scons), etc, can help 
improve the quality of the software written enormously 
[48]. Interestingly, many of these concepts are taught to 
computer science undergraduates, but it could be argued 
that they are taught at the wrong time of their careers, 
without the experience of complex, long-running projects.

Recommendation III: Software development 
skills should be regarded as fundamental literacies 
for scientists and engineers: we recommend that 
formal programming, data and computational 
skills are taught as core at undergraduate and 
postgraduate level.

2.4 The Lingua Franca of Computational Research
There is no other scientific or technical field where its 
participants can just make up a non-principled artefact 
like a programming language so easily. In a way, it shows 
how much of a “commons” computer science has become, 
that anyone can create a new programming language, API, 
framework or compiler. This clearly has its advantages and 
disadvantages.

High-level languages are generally more readable than 
their low-level relations. The “density” of a program is often 
seen to be a good thing, but it is not always the case that a 
shorter Haskell program (for example) is easier to maintain 
than a longer C++ one; what is important is the readability 
of the code itself. A good example here is from the world 
of automatic theorem proving: the SSReflect language 
is much more readable than the original, standard Coq 
language [49]. SSReflect uses mathematicians’ vernacular 
for script commands, allows reproducibility of automatic 
proof-checking because parameters are named rather 
than numbered. Even though these proof scripts are 
really only ever going to be run by a machine, they seek to 
maintain the basic mathematical idea that a proof should 
be readable by another mathematician.

Many high-level programming languages impose 
constraints like types: that you can never add a number 
and a string is the most basic example, but ML’s functors 
provide principled ways of plugging in components with 
their implementations completely hidden. Aggressive 
type checking avoids a subset of bugs which can arise 
due to incorrectly written functions e.g. well publicised 
problems with a NASA Mars orbiter (http://www.cnn.
com/TECH/space/9909/30/mars.metric.02/). A further 
example is a pressure coupling bug (http://redmine.
gromacs.org/issues/14) in Gromacs [43], which arose due 
to the inappropriate swapping of a pressure term with a 
stress tensor. A further extension of types, a concept called 
units of measure that is implemented in languages such 
as F#, can deal with these kinds of bugs at compile time. 
Similarly, problems found using in-house software for 
crystallography led to the retraction of five papers [50], 
due to a bug which inverted the phases.

Recommendation IV: The use of a principled, 
high-level, typed programming language in which 
to write your software helps hugely with the 
maintainability, robustness and openness of the 
software produced. Even in web frontend work, 
you have choices: use Typescript or Flow rather 
than plain old Javascript; use Hack rather than PHP.

2.5 Lineage (or: “Standing On The Shoulders Of 
Giants”)
Research software is not just software – it is the 
instantiation of novel algorithms and data structures 
(or at least novel applications of data structures). Thus, 
lineage is important:

Recommendation V: Code should always include 
links to papers publishing key algorithms and 
the code should include explicit relationships to 
other projects on the repository (i.e. Project B was 
branched from Project A). This ensures that both 
the researchers and software developers working 
upstream of the current project are properly cred-
ited, encouraging future sharing and development. 
Remember, the people who did the research are not 
necessarily the same people as the developers and 
maintainers of the software, so it is important to 
reward both appropriately with citations: take note 
of the FORCE11 Software Citation Principles [51].

2.6 YMMV
The tweet in Figure 1 is satirical but worryingly true, 
highlighting the perils of reproducible research. Often, the 
tool that the paper describes does not exist for download. 
Or runs only on one particular bespoke platform. Or might 
run for the author, for a while, but will ‘bit-rot’ so quickly 
that even the author cannot compile it the following year. 
Computational reproducibility would appear to be more 
straightforward than replicating physical experiments, 
but the complex and rapidly changing nature of computer 
systems and environments that are being used across 
different disciplines makes being able to reproduce and 
extend such work a serious challenge [52].
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Recommendation VI: You must provide the 
source code of the tool, but also with details of 
precisely how you built and wrote the software. For 
example:

•	 You should provide the compiler and build toolchain;
•	 You should provide build tools (e.g. Makefiles/Ant/

etc) and comprehensive build instructions;
•	 You should list or link to all non-standard packages 

and libraries that you use;
•	 You should note the specifics of the hardware and OS 

used.

This may appear to be significant extra overhead 
for researchers, but GitHub APIs, continuous in-
tegration servers, virtual machines and cloud en-
vironments can make it easier; see Section 3 for 
more on this.

2.7 Data Representations and Formats
We often do not, and should not, care how things are 
stored on disk, what their precise representations are. 
A common, constrained, standard representation is 
however good for passing tests or models around between 
different tools. A properly described representation, like 
the SMT-LIB format (http://smt-lib.org) for Satisfiability 
Modulo Theory (SMT) solvers, where both the syntax and 
semantics are well understood, hugely aids developing 
tools, techniques and benchmarks.

Another example, from biology, is that of the standard 
representation of qualitative networks and Boolean 
networks [53, 54]. These networks can be expressed 
in SMV format, but this would mean that standard  
qualitative/Boolean network behaviours have to be 
hard-coded for each variable, introducing the possibility 
for errors. In the BioModelAnalyzer tool [55], the JSON 
contains only the modifiable parameters limiting the 
possibility for error; the SBML-Qual standard achieves a 
similar goal for logical models [56].

Recommendation VII: Avoid creating new 
representations when common formats already 
exist. Use existing extensible internationally 

standardised representations and formats to 
facilitate sharing and re-use.

2.8 World Records
The benchmarks the tool describes are fashioned only for 
this instance of this time. They might claim to be from 
the Microsoft Windows device driver set, but the reality 
is that they are stripped down versions of the originals. 
Stripped down so much as to be useless to anyone but 
the author vs. the referee. It is worse than that really: 
enough benchmarks are included to beat other tools. The 
comparisons are never fair (especially for comparisons 
against your tool). If every paper has to be novel, then 
every benchmark, too, will be novel; there is no monotonic, 
historical truth in new, synthetically-crafted benchmarks. 
It is as if, in order to beat Usain Bolt’s 100m world record 
time, you make him race overweight and out of season, 
with a winter overcoat and the wrong sized shoes. Given 
this setup, you could surely hope to beat his 9.58s time on 
a shorter length track.

Recommendation VIII: Benchmarks should be 
public. They should allow anyone to contribute, 
implying that the tests are in a standard format. 
Further, these benchmarks must be heavily 
curated. Every test/assertion should be justified. 
Papers should be penalised if they do not use these 
public benchmarks. While there are some domains 
in which it may not be immediately possible to 
share full benchmarks sets, this should be the 
exception (with justification) rather than the norm.

A good example of some of these points is the RCSB 
Protein Data Bank (http://www.pdb.org) and Systems 
Biology Markup Language [56]. The software ones 
we know of, the SMT Competition (http://smtcomp.
sourceforge.net/2014/), SV-COMP (http://sv-comp.
sosy-lab.org/2015/) and Termination Problems Data 
Base (http://termination-portal.org/wiki/TPDB) are on 
that journey. Such repositories would allow the tests 
to be taken and easily analysed by any competitor tool. 
Some communities go further; the Critical assessment of 
methods of protein structure prediction and prediction 
of interactions (CASP and CAPRI) [57, 58] communities 
present a single-blind test of protein folding and docking 
algorithms annually, allowing open competition on a level 
playing field. Similarly the DREAM challenges (http://
dreamchallenges.org/) attempt to address large scale 
problems through open competition.

2.9 Test It To See
Some models may be chaotic and influenced by floating-
point errors (e.g. molecular dynamics), further frustrating 
testing. For example: Sidekick is an automated tool for 
building molecular models and performing simulations 
[59]. Each system is simulated from an different initial 
random seed, and under most circumstances this is the 
only difference expected between replicas. However, on a 
mixed cluster with both AMD and Intel microprocessors 
on the nodes, the difference in architecture was found to 

Figure 1: #overlyhonestmethods on Twitter by 
@ianholmes [source: https://twitter.com/ianholmes/
status/288689712636493824].
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alter the number of water molecules added to each system 
by one. This meant that the same simulation performed 
on different architectures would diverge. Similarly, 
in a different simulation engine, different neighbour 
searching strategies gave divergent simulations due to the 
differing order in which forces were summed.

A further example is the handling of pseudo-random 
number generation in Avida [60], an open source 
scientific software platform for conducting and analysing 
experiments with self-replicating and evolving computer 
programs. While it may initially appear attractive to 
develop bespoke random number generators within a 
system for consistency or performance across platforms, 
this invariably adds complexity to your system and may 
inhibit sharing and reproducibility.

Recommendation IX: Despite these challenges 
to testing, unshared code is ultimately untestable. 
Testing new complex scientific software is difficult 
– until the software is complete, unit tests may not 
be available. You should aim to re-use modules or 
repos (git submodules) from publicly-shared code; 
a corollary of Linus’s Law (“given enough eyeballs, 
all bugs are shallow”) might be that shared code is 
inherently more test-able.

2.10 Welcome to Web 2.0
Virtual machines (VMs) in the cloud also make the testing 
of scaling properties more simple. If you have a tool that 
you claim is more efficient, you could put together a cluster 
of slow nodes in the cloud to demonstrate how well the 
software scales for parallel calculations. Cloud computing 
is cheap, and getting cheaper. Algorithms that used to 
require massive HPC resources can now be run cheaply by 
bidding on the VM spot market. The web is a great leveller: 
use and share workflows and web services [61, 62].

Recommendation X: The web and the cloud really 
do open up a whole new way of working. Even small, 
seemingly trivial features like putting up a web 
interface to your tool and its tests will allow users 
who are not able to install necessary dependencies 
to explore the running of the tool [63]. Ultimately, 
this can lead to making an “executable paper” appear 
on the Internet. The interactive Try F#(http://
www.tryfsharp.org/Learn) and Z3 tutorials (http://
rise4fun.com/Z3/tutorial/guide) are a great start 
that begin to expose what can be done in this area.

3 A Model for Reproducible Research Software
Some of our Recommendations, such as “Be A Better 
Person” or “The Lingua Franca”, are abstract, airy-fairy, 
pie-in-the-sky even. However, most of them can be 
concretely realised by a service for reproducibility. This 
service provides a concrete implementation of free 
source code (“Set The Code Free”) that depends on other 
free source code (“Lineage”) building (“YMMV”, “Welcome 
to Web 2.0”) and running tests contributed in public 
(“Data Representations”, “World Records”) in a completely 
reproducible regime.

The service we describe here can be seen as a 
specification. We have not built it, but many services like 
travis-ci or Azure VSTS provide some of the mechanical 
parts of it. A service for reproducibility is intended to play 
three important roles; it should:

i) Demonstrate that a piece of code can be compiled, 
run and behaves as described, without manual 
intervention from the developer;

ii) Store and link specific artefacts with their linked 
publications or other publicly-accessible datasets;

iii) Allow new benchmarks to be added, by users other 
than the developer, to widen the testing and identify 
potential bugs.

The whole premise of our previous paper [40] is that algorithms 
(and their implementations) and models (sometimes also 
called benchmarks) are inextricably linked. Algorithms are 
designed for certain types of models; models, though created 
to mimic some physical reality, also serve to express the 
current known algorithms. An integrated autonomous open 
cloud-based service can make this link explicit.

By developing a cloud-based, centralised service, which 
performs automated code compilation, testing and 
benchmarking (with associated auditing), we will link 
together published implementations of algorithms and 
input models. This will allow the prototype to link together 
software and data repositories, toolchains, workflows and 
outputs, providing a seamless automated infrastructure 
for the verification and validation of scientific models 
and in particular, performance benchmarks. The program 
of work will lead the cultural shift in both the short and 
long-term to move to a world in which computational 
reproducibility helps researchers achieve their goals, 
rather than being perceived as an overhead.

A system as described here has several up-front benefits: 
it links research papers more closely to their outputs, 
making external validation easier and allows interested 
users to explore unaddressed sets of models. Critically, it 
helps researchers across computational science to be more 
productive, rather than reproducibility being an overhead on 
top of their day-to-day work. In the same way that tools such 
as GitHub make collaborating easier while simultaneously 
allowing effortless sharing, we envisage our system being 
similarly usable for sharing and testing algorithms and their 
implementations, software, models and benchmarks online.

Suppose you have come up with a better algorithm to 
deal with some standard problem. You write up the paper 
on the algorithm, and you also push an implementation 
of your algorithm to the our cloud environment’s section 
on this standard problem. The effect of pushing your 
implementation is to register your program as a possible 
competitor in this standard problem competition. There 
exist several dozen widely-agreed tests on this problem 
already on our cloud environment’s database. Maybe, 
after some negotiation due to your novel approach to this 
standard problem, you add some of your own tests to the 
database too.

Pushing your code activates the environment’s 
continuous integration system. The cloud pulls in all 
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the dependencies your code needs, on the platforms 
you specify, and runs all the benchmarks. This happens 
every time you push. It also happens every time one of 
your dependencies (a library, a firmware upgrade for your 
platform, a new API) changes too. This system (presented 
in Figure 2) would integrate with publicly available 
source code repositories, automates the build, testing and 
benchmarking of algorithms and benchmarks. It would 
allow testing models against competing algorithms, 
and the addition of new models to the test suite (either 
manually or from existing online repositories).

If we are truly serious about addressing the systemic 
socio-technical issues in scientific disciplines that are 
underpinned by leveraging software and computational 
techniques, then the proposal above would bring together 
almost all of the points we have discussed in this paper to 
provide an open research infrastructure for all. There are 
already several web services that already aim to do many 
of these things [22, 64], so a service that can integrate 
most if not all of these features is possible. Such a service 
would then allow algorithms and models to evolve 
together, and be reproducible from the outset. Something 
more open and complete, and stamped with the authority 
of the major domain conferences/journals/national 
academies, would mean that your code would never ‘bit-
rot’, and no one would have problems reproducing the 
implementation of your published algorithm.

4 Next Steps
Following the proposal of such a system, the question 
becomes: how do we encourage widespread uptake, or even 
standardisation? Such a service would appear to be non-
trivial, given the large numbers of tools and workflows that 
could potentially require to be supported by the service. 
After such a service has been implemented, how do we 
ensure it is useful and usable for researchers. Furthermore, 
how do we make it sustainable?

The benefits to the wider computational research 
community from a cultural change to favour reproducibility 
are clear and as such we should aim through software 
e-infrastructure and sharable, community curated research 
workflows to mitigate these costs. Furthermore, we can 
reasonably expect the distinct needs of specific research 
communities to evolve over time, and initial implementations 
of the platform may require refinement in response to 
user feedback (supporting the critical cultural change by 

improving the efficiency of researchers). As such, if the wider 
research community is to move to requiring reproducibility, 
it seems most reasonable that this is staggered over a number 
of years to allow for both of these elements to develop, until 
eventually all researchers are required to use the service.

The key question for different research communities 
then becomes: how to initialise this change? Such a 
requirement creates a set of new costs to researchers, 
both in terms of time spent ensuring that their tools 
work on the centralised system (in addition to their 
local implementation), but also potentially in terms of 
equipment (in terms of running the system). Such costs 
may be easier to bear for some groups compared to 
others, especially those with large research groups who 
can more easily distribute the tasks, and it is important 
that the service does not present a barrier to early career 
researchers and those with efficient budgets (this type of 
cost analysis is not unique to reproducibility efforts – it 
has been estimated that a shift to becoming exclusively 
open access for a journal may lead to a ten-fold increase in 
computer science publication costs [65]).

Nevertheless, this proposed new e-infrastructure could 
have a profound impact on the way that computational 
science is performed, repositioning the role of models, 
algorithms and benchmarks and accelerating the research 
cycle, perhaps truly enabling a “fourth paradigm” of data 
intensive scientific discovery [66]. Ultimately though, 
continuing with an honest and open discussion of what 
reproducibility means for the wider science research 
community is important: we all need to explicitly confirm 
that this is worthwhile and commit to addressing it, or 
don’t bother doing it at all.

4.1 A Note on Re-Writing the WSSSPE Paper
Many of the ideas, comments — even attitudes — in this 
paper come from the authors’ experience in programming, 
programming languages, software. We have started from 
the Marc Andreessen comment that opens this paper. In 
editing this paper from its original WSSSPE workshop form, 
we realised that one assumption that seems to run through 
the manuscript is that the behaviours we think are good 
are in fact those that can be enforced in software. Take 
mutability of variables in programming as an example. 
Mutability increases the scope for bugs, so modern 
programming languages like OCaml or C++14 enforce 
immutability at the language or library level. But in fact 

Figure 2: Proposed reproducibility service workflow.
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immutability leads very naturally to state-less or de novo 
build environments, and so to the guideline that “software 
must be compilable with de novo continuous integration”. 
And, similarly, so does the issue of openly publishing your 
toolchain: it too must be compilable in a from-scratch 
build environment to be of use to anyone else.
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