
The Highly Accurate N-DEterminant (HANDE) quantum
Monte Carlo project [1] began life as an experiment by
one of us (JSS) to explore the (then recent) development
in quantum chemistry: the full configuration interaction
quantum Monte Carlo (FCIQMC) method [2]. FCIQMC can
be viewed simply as a stochastic approach to the power
method; it allows the calculation of exact ground state
energies of quantum systems with Hilbert spaces orders of
magnitude larger than accessible via even state-of-the-art
deterministic algorithms. Initially only the Hubbard model
was implemented, but HANDE now handles a range of
model and chemical systems. At the same time HANDE has
become an efficient and highly parallel implementation
of FCIQMC and related methods [3, 4], capable of scaling
to several thousand cores. We have also provided deeper
understanding of the FCIQMC method [5–7], extended
HANDE to include the canonical implementation of the
stochastic coupled cluster approach [8] and developed
new methods within the field [9]. The driving-force for
this transformation, from a toy code to a professional
software package, has been the team of contributors split
between three universities working together in a sustain-
able and robust process. We are very proud of the variety
of our developers, who represent several different areas

of science and range from undergraduates to professors.
Indeed, we have had exceptional success with undergrad-
uate research projects, which is remarkable given that
most start with no or little experience in parallel com-
puting and in quantum chemistry—a notable example is
the development of a novel Monte Carlo method by two
undergraduate students [9].

The unexpected and organic growth has provided its
challenges. How to transition into a community-owned
code from the initial gatekeeper model we stumbled into?
How to develop and support new contributors to the
project? In some cases we planned ahead; in others we
reached a consensus through iterative experimentation.
Indeed, we have found flexibility and willingness to adapt
to be of vital importance.

In this contribution we first describe the choices we
made in an effort to write a sustainable, portable library,
the approach we have settled on for development and the
benefits we have subsequently obtained. We then discuss
how we have trained students to be successful and valu-
able members of the development team and our future
plans for the HANDE project before offering our conclu-
sions and suggestions to the wider computational science
community.

ISSUES IN RESEARCH SOFTWARE

Open-Source Development Experiences in Scientific
Software: The HANDE Quantum Monte Carlo Project
J. S. Spencer1,2, N. S. Blunt3, W. A. Vigor4, Fionn D. Malone2, W. M. C. Foulkes2,
James J. Shepherd5 and A. J. W. Thom3

1 Department of Materials, Imperial College London, Exhibition Road, London, SW7 2AZ, United Kingdom
j.spencer@imperial.ac.uk

2 Department of Physics, Imperial College London, Exhibition Road, London, SW7 2AZ, United Kingdom
f.malone13@imperial.ac.uk, wmc.foulkes@imperial.ac.uk

3	University	Chemical	Laboratory,	Lensfield	Road,	Cambridge,	CB2	1EW,	United	Kingdom
nsb37@cam.ac.uk, ajwt3@cam.ac.uk

4 Department of Chemistry, Imperial College London, Exhibition Road, London, SW7 2AZ, United Kingdom
w.vigor11@imperial.ac.uk

5 Department of Chemistry, Rice University, Houston, TX 77005-1892, USA
jjs6@rice.edu

The HANDE quantum Monte Carlo project offers accessible stochastic algorithms for general use for
scientists in the field of quantum chemistry. HANDE is an ambitious and general high-performance code
developed by a geographically-dispersed team with a variety of backgrounds in computational science. In
the course of preparing a public, open-source release, we have taken this opportunity to step back and
look at what we have done and what we hope to do in the future. We pay particular attention to devel-
opment processes, the approach taken to train students joining the project, and how a flat hierarchical
structure aids communication.

Keywords: software development; student training

Spencer,	J	S	et	al	2015	Open-Source	Development	Experiences	in	Scientific	Software:	
The HANDE Quantum Monte Carlo Project. Journal of Open Research Software, 3:	e9,	
DOI:	http://dx.doi.org/10.5334/jors.bw

Journal of
open research software

mailto:j.spencer@imperial.ac.uk
mailto:f.malone13@imperial.ac.uk
mailto:wmc.foulkes@imperial.ac.uk
mailto:nsb37@cam.ac.uk
mailto:ajwt3@cam.ac.uk
mailto:w.vigor11@imperial.ac.uk
mailto:jjs6@rice.edu
http://dx.doi.org/10.5334/jors.bw

Spencer et al: Open-Source Development Experiences in Scientific SoftwareArt. e9,	p. 	2	of	6	

HANDE Overview
HANDE is a small, but growing, project with half a dozen
active developers at any one time. Most users are also
developers but the user community is growing through
active collaborations. The code base contains approxi-
mately 20000 lines of Fortran 2003, plus a smaller
amount of C and several thousand lines of comments and
is parallelised using MPI and OpenMP. HANDE is available
as a source distribution via the project website [1] and
github [10]. The distribution also contains a substantial
amount of documentation, including compilation and
usage instructions, and tutorials as well as python mod-
ules for data analysis. HANDE is developed on Linux, Mac
OS X and Windows though, due to the nature of super-
computers, production calculations on high performance
computer facilities are universally performed on Linux.

A Development Model
We view ourselves as scientists and programmers (though
our funding agencies might not agree!) and believe both
roles are vital. As programmers, a maintainable and effi-
cient code is our main goal. As scientists, we wish to rap-
idly address the questions posed in our research. These
positions are not, however, contradictory: rather we
have found the programmers’ goal also minimizes delays
in making scientific progress once spread over a num-
ber of consecutive projects. In other words, poor design
and development choices eventually hinder us. Here we
detail some of the choices we have made and their con-
sequences. We note that the comments we have to make
are surprisingly general; an in-depth knowledge of the
algorithm is not necessary to appreciate what we are dis-
cussing. We are, however, aided by FCIQMC and related
methods being simple and composed of only a few dis-
tinct data flows. In particular, the memory demands are
dominated by the representation of the eigenvector and
the computational cost per iteration by the tight loop in
which the eigenvector is stochastically evolved.

Coding conventions— We have taken care to maintain
consistency in coding conventions throughout. This begins
with a common, ordered commenting style [11]; this vis-
ual cue helps developers become immediately aware of
the existence of code norms and leads to it being easier
to maintain wide-spread adoption of the other features
below. Apart from making it far easier and more pleasant
to read and understand code, such conventions serve as a
guide to those with little prior experience programming
and help prevent code from being rushed. We ensure that
the functionality and inputs and outputs of all procedure
interfaces are documented; this can then be extracted
using tools such as sphinx [12] and makes comprehension
whilst navigating code (e.g. using ctags [13]) far faster.
We further advocate the use of extensive commenting to
provide both an overview of the theory and the choices
that lie behind an implementation: indeed, in the more
theoretically challenging parts of HANDE, the amount of
comments rivals or exceeds the actual amount of code.
Such cases can be viewed as an example of literate pro-
gramming and may include theoretical overviews (which,
for research software, are frequently not yet available in

the literature), a discussion on implementation choices,
benchmarks, examples and so on. These serve both as doc-
umentation and as extremely helpful material from which
new members of the development team can learn about
details which may be inappropriate for traditional papers.

Pure functions— A growing trend in HANDE develop-
ment, which has been successful, is a move towards the
use of pure functions, which (along with other functional
programming approaches) have been demonstrated to
have compelling advantages [14–16]. The results of pure
functions depend only upon the input argument values
and have no side effects on any part of the code outside
the function. As such, pure functions cannot depend on
any global data. We have found that functions which
depend heavily on global data have many subtle interac-
tions and assumptions, such that changing one part of
the code can unexpectedly alter other parts. This problem
becomes worse as the size of a program grows. In contrast,
one can be confident that changes outside a pure func-
tion can never alter its results for the same set of inputs.
Beyond this, code written in a pure style is more reusable
(both within the code and in separate projects) and easier
to test. Whilst writing code in a pure style can initially
take longer, we are finding that it saves significant time
and effort in the long run and makes implementing new
functionality far easier. We have utilized this for threaded
parallelism and alternate implementations.

Factorisation— Open source software provides a huge
advantage to our developers; they are encouraged to
extract code which could be reused in other projects to
contribute to the community. This approach to factorisa-
tion forces developers to plan and separate functionally
and logically independent code, improving the quality
and sustainability of the code. Conversely we benefit from
similar efforts in the broader community and can use
state-of-art portable libraries to minimise time-to-science
and avoid duplication of effort. For example, we use HDF5
for checkpoint files [17], dSFMT for random numbers [18]
and the python scientific stack (especially numpy [19],
pandas [20] and matplotlib [21]) for data analysis. In
return, our contributions include Fortran interfaces to
libraries [22], a test framework [23] (see below) and a
python library for removing serial correlations in Monte
Carlo data [24]. We find such efforts are a way of broad-
ening impact of our development work far beyond the
immediate stochastic quantum chemistry community.
Encouragingly, we have also received contributions to
these libraries from outside of our team. Making the code
publicly accessible via distributed version control (e.g. on
github) is key to reducing the barrier to entry.

Despite the above, a large number of dependencies is
undesirable from a usability viewpoint: requiring the user
to manually compile several packages before using our
program hinders experimentation and porting to new
platforms. We try to overcome this in two ways: small
libraries with permissive licenses can be included in the
source distribution and non-core features which depend
upon larger libraries can be disabled at compile-time.

Pull requests and code review— In the last year we
have moved to a system of pull requests based upon the

Spencer et al: Open-Source Development Experiences in Scientific Software Art. e9,	p. 	3	of	6	

git flow model [25]. In this system, any contributions to
HANDE must be made on a branch (using our version con-
trol system of choice, git) and a review of the branch per-
formed (by at least one other contributor) before it may be
merged into master (see Fig. 1). Code review can easily be
performed using (e.g.) github’s inline commenting or, our
preferred tool, watson [26]. Code review is deliberately
light weight and allows for rapid peer feedback about the
approach used, problems in the design and consistency in
code style. In particular, the process typically includes vali-
dation and verification, of the code, documentation and
(crucially) any new theoretical work underlying it. We have
found that this process greatly reduces bugs and rushed
code from ending up in the master, which is designated to
be sufficiently stable for production calculations. Already
we have seen substantial improvements in the flexibility,
sustainability and maintainability of the code. It also gives
contributors an understanding of parts of the codebase
that they may not otherwise know much about. Even
those who do not perform a review in detail gain knowl-
edge of the various projects being worked on. The social
impact of this is interesting: we find code review to be
an excellent way of flattening the academic hierarchical
structure. In particular, we note that the levels of exper-
tise in scientific and computational domains are often not
aligned and the more ‘junior’ members of a research team
are often the ones doing the most software development
and hence their reviews of contributions from more ‘sen-
ior’ members can be the most enlightening.

One aspect deserves special consideration: not all devel-
opment work is evolutionary; some must be revolution-
ary. This kind of development work is frequently long
running and handling both the review and merging (often
into a very different codebase after months of parallel

development) is painful. We have found that regular peer
review of intermediate work and occasional rebasing of
such branches against the current development version of
the code goes a long way to mitigating such issues.

Regression testing— Scientific codes produce quan-
titative results that, in principle, should be extremely
simple to test against when the code changes. When dif-
ferences happen to indicate a bug, these can be tracked
down between a relatively small number of commits
using a bisection method. Whilst unit tests are valuable,
we have found that regression tests are easier to retrofit to
existing code bases and are good at capturing problems in
the interfaces between procedures or changes compared
to existing answers. This type of regression testing is
relatively straight-forward to undertake. Apart from data
extraction from output files, regression testing involves
a generic set of tasks. One of us (JSS) maintains an open
source portable tool for just such a purpose [23], which
has attracted use in the wider electronic structure com-
munity. Running the tests can be automated (e.g. to check
every commit, every pull request, given time intervals)
using tools such as jenkins, travis-ci or buildbot, which
is currently used in the HANDE project, as is performed
by many other projects (e.g. [27] and [28]). The design of
tests themselves is a non-trivial challenge, and should not
be underestimated. A test should check a broad sweep of
functionality, but when there are many input parameters
(and variably sparse matrices) it is impossible to check
every combination, though tools such as gcov are invalua-
ble in discovering the fraction of the code covered by a set
of tests. HANDE contains over 160 tests which cover over
85% of the code base (excluding external libraries) and
increasing this is an ongoing effort. Moreover, because
the software is designed for high-performance computing

master feature/XXX

feature guts

feature end

review code

code review pull request

response
code review comments pull request

review reply

review accept

bugfix

simple bugfix

feature/YYY

feature start

feature guts

rebase

feature end

review

code review pull request

response
code review comments pull request

review reply

review accept

Figure 1: Git workflow. Blue indicates a simple commit, and red a merge commit. As all changes are made in a branch
and merged to master, all master commits are merges and undergo automated integration and regression testing. Not
all branches are shown for simplicity. Double arrows are accompanied by an email to the developer list.

Spencer et al: Open-Source Development Experiences in Scientific SoftwareArt. e9,	p. 	4	of	6	

and contains Monte Carlo algorithms, it can be hard to
reliably review this functionality, especially for bugs which
are only revealed when run on thousands of processors.
Where possible, therefore, new conceptual developments
are checked against numbers from other codes. A commu-
nity which supports this kind of data sharing is extremely
important for reliable scientific reproducibility.

Reproducibility— Reproducibility of experimental
results is one of the most important principles in the
scientific community. Numerical experiments should be
held to as high standards, but often this is more difficult
than it seems as code can change rapidly over time. This
is even more problematic for Monte Carlo algorithms
where newly introduced features can alter the Markov
chain resulting in slightly different numerical answers.
Furthermore, complex calculations rely upon an exist-
ing set of input and checkpoint files and produce similar
numbers of files as output, making data provenance com-
plicated. As a simple measure to overcome this we output
the input options and the git commit hash to the main
output file and a UUID specific to the calculation in all
output files which enables us and any other user to repro-
duce the results of a particular calculation. We are fans of
the IPython Notebook [29] for data analysis as a way of
storing the analysis and output together. These notebooks
also represent useful training aids.

Modern Standards— Languages continue to evolve and
exploiting new developments can be a powerful tool in mak-
ing code more flexible, portable and maintainable. For exam-
ple, the C interoperability features in Fortran 2003 make it
much easier to combine existing code written in either lan-
guage and so reduces the need to ‘reinvent the wheel’. One
word of caution: new language features are implemented at
different rates across different compilers, which are updated
infrequently in some environments. It is important to bal-
ance using new language features and staying away from the
bleeding edge. Regular testing against a variety of common
compilers is vital in maintaining the portability of the code.

Bug fixing— Bug fixing in an academic environment is
somewhat fraught given the inherently fluctional develop-
ment community. Whilst we have found the many bugs
are prevented (or rather, discovered at time-of-creation) by
code review, inevitably bugs remain to be discovered at a
later time. Whilst debugging is a universally hard problem,
especially (as is often the case in academia) when the origi-
nal student or researcher has moved on, we have found
the approaches we discussed above crucial in mitigating
this factor. Good documentation, commenting and tests
provide an indication of what the code should do (or at
least what its author thought it should do!) and remove
one layer of mystery. We have also found code review an
excellent strategy to aid this; having multiple developers
review and understand a section of the codebase (albeit
perhaps not on the same level as its author) aids the
spread of knowledge throughout the development team
and helps make it more likely that at least one person is
capable of fixing the bug relatively quickly. Once a bug is
reported, it is triaged and a fix is proposed. Following our
standard code review process, it is then merged into the
stable branch. It is then important to update the test suite
so that the bug remains fixed. Who does this work can be

problematic, especially in cases where the original is no
longer working on HANDE. Sometimes a code developer
tracks the problem down. In other cases we find the open
source adage of ‘scratching your own itch’ useful: the user
who wants a bug fixed will (hopefully!) be suitably moti-
vated to also fix it, given support and guidance from the
wider development team. We have found that this can be a
powerful tool for encouraging users to become developers.

Training
The challenges facing someone joining a computational
science project are multi-faceted: one must be knowl-
edgeable in broad technical issues, the programming
language(s) used as well as the theory of the underlying
science. However, in practice, applied computer science
is often attempted in academia without formal training.
This requires that students learn on-the-job, but students
often come highly motivated to learn new skills from day
one. Fortunately there are now excellent and affordable
courses aimed at improving technical skills of computa-
tional scientists run by universities, national bodies
(e.g. ARCHER in the UK [30]) and international groups. We
especially praise the impact of Software Carpentry [31].

Introduction to HANDE— Ideally, the instruction
given should be: ‘checkout the code and play around with
it’ and that should be sufficient; we aim for this to be the
case. New developers frequently comment that strate-
gies mentioned in the previous section greatly help them
in coming to grips with the code and in keeping initial
motivation high. We note this is a constant battle: addi-
tional features, optimisation and poor habits can cause
the barrier of entry to creep up over time. However, we
find a mindful approach beneficial. We recognise that
initial impressions matter and so aim to make things as
smooth as possible. We find that the speed at which new
developers learn is helped by a) a curated list of resources
that cover the minimal amount of technical and scientific
knowledge initially required; b) writing a ‘toy’ standalone
code relevant to the problem (we get everyone to write a
minimal FCIQMC program; another example is Ref. [32]);
c) an introductory project which is both accessible and has
a high chance of success, both technically and also as an
appreciated contribution to the community.

Our experience is that highly-motivated students on
moving away from the community willingly stay involved
and enjoy doing so; this sets good examples for incom-
ing students. Informal, nonhierarchical, peer-based man-
agement greatly enhances this effect; learning happens
organically in an environment where asking questions is
easy and group discussion common.

Converting users to developers— By the very nature of
academia, the development community around research
software fluctuates. Converting users into developers
helps substantially in making a project sustainable, espe-
cially in niche fields. In addition to attempting to mini-
mise the barrier to entry, we find a powerful technique is
to encourage users to ‘scratch their own itch’: when a user
has a feature request, we try to help them to implement it
themselves (even if this takes more time than a core devel-
oper doing it themselves). The time investment is typically
rewarded surprisingly quickly.

Spencer et al: Open-Source Development Experiences in Scientific Software Art. e9,	p. 	5	of	6	

Coding retreats— Engendering a development com-
munity and sharing knowledge across a geographically
dispersed network is hard. To this end we recently held
a residential coding retreat. Those in attendance were
encouraged to implement a simple feature (i.e. could be
completed in the time available) of interest; coding review
happened on-site. We found this to be a good community-
building format. An important feature was to set aside
substantial amounts of time for informal presentations
and discussions, which provided a forum to discuss ongo-
ing research as well as the codebase.

Discussion
We conclude with some examples of where our approach
succeeded and where it failed, followed by an outlook on
the future.

The development of a flexible, modular code supported
by a training regime for new team members might appear
to be a bet which may or may not pay off. Our experiences
show that it does pay off; in fact many of the approaches we
discussed above were suggested naturally and adopted due
to frustration with inefficiencies from not doing them. The
impact on our work has been tremendous. For example, two
undergraduate students in a few months were able to pro-
pose, implement and test a new finite-temperature Monte
Carlo approach in electronic structure [9]. This would not
have been possible if they had to start from scratch or from
a monolithic, inpenetrable codebase. Internal peer review
has made our code more robust: review of recent improve-
ments to the coupled cluster Monte Carlo [8] revealed a
subtle bias when MPI parallelisation was used. We have also
found the community aspect in development to be impor-
tant and have some unexpected benefits. Recently several
of us realised we were all struggling with a similar limi-
tation in the code base and, as a result, embarked jointly
on the (thankless) task of re-engineering some core data
structures to provide additional flexibility. It is unlikely this
work would have taken place if everyone was instead just
focussing on their own research project in isolation (which
discourages this kind of improvement/tidying/maintance
that benefits everyone) but doing so will actually open up
new possibilities for all of us.

In other instances, we have been less successful. One
project on improving parallel scaling ended up running
for almost a year, completely separate from the rest of the
development. Combining this with other work was painful:
such large sets of changes are hard to review adequately
and the resultant merge had lots of conflicts which had
to be resolved manually. We should have instead broken
this work up into smaller sections rather than aiming for
perfection in the first instance: our development model
is better suited to continual refinement and incremen-
tal steps than large, radical changes. Another example is
from legacy work: a seemingly innocuous (largely stylistic)
change three years ago introduced a bug in an extreme
corner case which, naturally, was eventually triggered. The
problematic code dated back to before we systematically
performed code reviews. The developer who found the
bug was able to spot it quickly in the affected procedure,
but tracking it down to that point from some unusual
results in production calculations was much harder. The

last two cases are not where our development approach
failed per se, but rather where we failed it. Whilst there
is always the temptation to follow the ‘easy’ course in the
short term, in our experience this turns out to lead to pain
later on—and often more quickly than anticipated!

As a project such as HANDE grows, there will be an
increasing number of challenges in managing both the
means of communication among the community as well
as the direction of the project itself. To ensure community
growth, it is vital that the low barrier of entry be main-
tained, and one way we are planning to ensure this is to
include developer tutorials which provide a step-by-step
introduction to both the code and our development prac-
tices. Requiring novitiates to work through these tutorials
has the three-fold goal of indoctrination into the coding
and development standards, learning the structures of the
project, and keeping the tutorials up-to-date themselves.
Often such tutorials are created on an ad hoc basis, but
such practices are to be encouraged so as to sustain the
accessibility to all. Indeed, the creation of tutorials aimed
at users and developers would be a good introductory pro-
ject when coupled with peer review.

We end with emphasising the benefits of an open
source, collaborative approach, which we wholeheartedly
endorse to the wider community. A code which is well
written and easily understandable makes it easier to spot
mistakes, which can then be fixed quickly and results pro-
duced with an open source implementation can be repro-
duced with no ambiguity. This enables scientists to spend
more time pursing new ideas and less time resolving prob-
lems already solved by other groups, hence reducing the
collective time to productive science.

Competing Interests
The authors declare that they have no competing interests.

Acknowledgments
JSS and WMCF acknowledge the Thomas Young Centre
under Grant No. TYC-101. WAV is grateful to EPSRC for a
studentship, FDM for an Imperial College PhD scholar-
ship, NSB to Trinity College, Cambridge for an External
Research Studentship, JJS to the Royal Commission for the
Exhibition of 1851 for a Research Fellowship and AJWT
to the Royal Society for a University Research Fellowship.
We acknoledge the Imperial College High Performance
Computing Service and ARCHER via a RAP award and via the
Materials Chemistry Consortium (Grant No. EP/L000202).

References
 1. HANDE [homepage on the Internet]; [cited 26 Feb.

2015]. Available from: http://hande.org.uk.
 2. Booth, G H, Thom, A J W and Alavi, A 2009 J Chem

Phys, 131: 054106. DOI: http://dx.doi.org/10.1063/
1.3193710. PMid: 19673550.

 3. Cleland, D, Booth, G H and Alavi, A 2010 J Chem
Phys, 132: 041103. DOI: http://dx.doi.org/10.1063/
1.3302277. PMid: 20113011.

 4. Petruzielo, F, Holmes, A, Changlani, H, Nightingale, M
and Umrigar, C 2012 Phys Rev Lett, 109: 230201. DOI:
http://dx.doi.org/10.1103/PhysRevLett.109.230201.
PMid: 23368167.

http://hande.org.uk
http://dx.doi.org/10.1063/1.3193710
http://dx.doi.org/10.1063/1.3193710
http://dx.doi.org/10.1063/1.3302277
http://dx.doi.org/10.1063/1.3302277
http://dx.doi.org/10.1103/PhysRevLett.109.230201

Spencer et al: Open-Source Development Experiences in Scientific SoftwareArt. e9,	p. 	6	of	6	

 5. Spencer, J S, Blunt, N S and Foulkes, W M C 2012
J Chem Phys, 136.

 6. Kolodrubetz, M H, Spencer, J S, Clark, B K and
Foulkes, W M C 2013 J Chem Phys, 138.

 7. Shepherd, J J, Scuseria, G E and Spencer, J S
2014 Phys Rev B, 90: 155130. DOI: http://dx.doi.
org/10.1103/PhysRevB.90.155130

 8. Thom, A J W 2010 Phys Rev Lett, 105: 263004. DOI:
http://dx.doi.org/10.1103/PhysRevLett.105.263004.
PMid: 21231654.

 9. Blunt, N S, Rogers, T W, Spencer, J S and Foulkes, W M C
2014 Phys Rev B, 89: 245124. DOI: http://dx.doi.
org/10.1103/PhysRevB.89.245124

10. HANDE github repository. Available from: http://
github.com/hande-qmc/hande [cited 26 Feb. 2015].

11. HANDE’s coupled cluster code is an example of
exten sive commenting and documentation used in
the project. Available from: https://github.com/
hande-qmc/hande/blob/master/src/ccmc.F90.
[cited 26 Feb. 2015].

12. Sphinx Python Documentation Generator [homepage
on the Internet]; [cited 26 Feb. 2015]. Available from:
http://www.sphinx-doc.org.

13. Exhuberant ctags [homepage on the Internet]; [cited
26 Feb. 2015]. Available from: http://ctags.sourceforge.net/.

14. Bacus J 1978 Can programming be liberated from the
von Neuman style. Comm ACM, 21: 899.

15. Orchard, D and Rice, A 2014 A computational science
agenda for programming language research. Procedia
Computer Science, 29: 713–727. DOI: http://dx.doi.
org/10.1016/j.procs.2014.05.064

16. Ray, B, Posnett, D, Filkov, V and Devanbu, P 2014 A
large scale study of programming languages and code
quality in github. In: Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of
Software Engineering. ACM, pp. 155–165. DOI: http://
dx.doi.org/10.1145/2635868.2635922

17. The HDF Group 2000–2010 Hierarchical data format ver-
sion 5. Available from: http://www.hdfgroup.org/HDF5.

18. Saito, M and Matsumoto, M 2008 SIMD-Oriented
Fast Mersenne Twister: a 128-bit Pseudorandom Num-
ber Generator. In: Keller A, Heinrich S, Niederreiter H,
editors. Monte Carlo and Quasi-Monte Carlo Methods
2006. Springer Berlin Heidelberg, pp. 607–622. DOI:
http://dx.doi.org/10.1007/978-3-540-74496-2_36.
PMid: 18702352.

19. van der Walt, S, Colbert, S C and Varoquaux, G 2011
Computing in Science & Engineering, 13(2): 22–30.

20. McKinney, W 2010 In: van der Walt S, Millman J,
editors. Proceedings of the 9th Python in Science
 Conference, pp. 51–56.

21. Hunter, J D 2007 Computing in Science & Engineering,
9(3): 90–95. DOI: http://dx.doi.org/10.1109/MCSE.2007.55

22. Spencer, J S Fortran 2003 interface to dSFMT [home-
page on the Internet]; [cited 26 Feb. 2015]. Available
from: https://github.com/jsspencer/dSFMT_F03_
interface.

23. Spencer, J S testcode [homepage on the Internet];
[cited 26 Feb. 2015]. Available from: https://github.
com/jsspencer/testcode.

24. Spencer, J S pyblock: a python module for reblocking
analysis [homepage on the Internet]; [cited 26 Feb.
2015]. Available from: https://github.com/jsspencer/
pyblock.

25. Driessen, V A successful Git branching model
[homepage on the Internet]; [cited 26 Feb. 2015].
Available from: http://nvie.com/posts/a-successful-
git-branching-model/.

26. Mood, N H watson-ruby: an inline issue manager
[homepage on the Internet]; [cited 26 Feb. 2015]. Avail-
able from: https://github.com/nhmood/watson-ruby.

27. Gaston, D R, Peterson, J W, Permann, C J, Andrs, D,
Slaughter, A E and Miller, J M 2014 Continuous inte-
gration for concurrent computational framework and
application development. Journal of Open Research
Software, 2(1): e10. DOI: http://dx.doi.org/10.5334/jors.as

28. CASTEP Available from: http://castep.org [cited
14 Jul. 2015].

29. Pérez, F and Granger, B E 2007 May IPython: a System
for Interactive Scientific Computing. Computing in
Science and Engineering, 9(3): 21–29. Available from:
http://ipython.org. DOI: http://dx.doi.org/10.1109/
MCSE.2007.53

30. ARCHER [homepage on the Internet]; [cited 26 Feb.
2015]. Available from: http://archer.ac.uk.

31. Software Carpentry [homepage on the Internet];
[cited 26 Feb. 2015]. Available from: http://software-
carpentry.org/.

32. Crawford, T D C++ Programming Tutorial Chemis-
try [homepage on the Internet]; [cited 26 Feb. 2015].
Available from: http://sirius.chem.vt.edu/wiki/doku.
php?id= crawdad:programming.

How to cite this article:	Spencer,	J	S,	Blunt,	N	S,	Vigor,	W	A,	Malone,	F	D,	Foulkes,	W	M	C,	Shepherd,	J	J	and	Thom,	A	J	W	
2015	Open-Source	Development	Experiences	in	Scientific	Software:	The	HANDE	Quantum	Monte	Carlo	Project.	Journal of Open
Research Software	3:	e9,	DOI:	http://dx.doi.org/10.5334/jors.bw

Published: 17 November 2015

Copyright:	©	2015	The	Author(s).	This	is	an	open-access	article	distributed	under	the	terms	of	the	Creative	Commons	
Attribution	3.0	Unported	License	(CC-BY	3.0),	which	permits	unrestricted	use,	distribution,	and	reproduction	in	any	medium,	
provided the original author and source are credited. See http://creativecommons.org/licenses/by/3.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

http://dx.doi.org/10.1103/PhysRevB.90.155130
http://dx.doi.org/10.1103/PhysRevB.90.155130
http://dx.doi.org/10.1103/PhysRevLett.105.263004
http://dx.doi.org/10.1103/PhysRevB.89.245124
http://dx.doi.org/10.1103/PhysRevB.89.245124
http://github.com/hande-qmc/hande
http://github.com/hande-qmc/hande
https://github.com/hande-qmc/hande/blob/master/src/ccmc.F90
https://github.com/hande-qmc/hande/blob/master/src/ccmc.F90
http://www.sphinx-doc.org
http://ctags.sourceforge.net/
http://dx.doi.org/10.1016/j.procs.2014.05.064
http://dx.doi.org/10.1016/j.procs.2014.05.064
http://dx.doi.org/10.1145/2635868.2635922
http://dx.doi.org/10.1145/2635868.2635922
http://www.hdfgroup.org/HDF5
http://dx.doi.org/10.1007/978-3-540-74496-2_36
http://dx.doi.org/10.1109/MCSE.2007.55
https://github.com/jsspencer/dSFMT_F03_interface
https://github.com/jsspencer/dSFMT_F03_interface
https://github.com/jsspencer/testcode
https://github.com/jsspencer/testcode
https://github.com/jsspencer/pyblock
https://github.com/jsspencer/pyblock
http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/
https://github.com/nhmood/watson-ruby
http://dx.doi.org/10.5334/jors.as
http://castep.org
http://ipython.org
http://dx.doi.org/10.1109/MCSE.2007.53
http://dx.doi.org/10.1109/MCSE.2007.53
http://archer.ac.uk
http://software-carpentry.org/
http://software-carpentry.org/
http://sirius.chem.vt.edu/wiki/doku.php?id=crawdad:programming
http://sirius.chem.vt.edu/wiki/doku.php?id=crawdad:programming
http://dx.doi.org/10.5334/jors.bw
http://creativecommons.org/licenses/by/3.0/

	bookmark0
	bookmark1
	bookmark2
	bookmark3
	bookmark4
	bookmark5
	bookmark6
	bookmark7
	bookmark8
	bookmark9
	bookmark10
	bookmark11
	bookmark12
	bookmark13
	bookmark14
	bookmark15
	bookmark16
	bookmark17
	bookmark18
	bookmark19
	bookmark20
	bookmark21
	bookmark22
	bookmark23
	bookmark24
	bookmark25
	bookmark26

