
(1) Overview

Introduction
Reproducible research, as defined by Jon Claerbout [1], 
refers to the discipline of attaching software code and 
data to scientific publications, in order to enable inde-
pendent verification and replication of computational 
experiments. The so-called “Claerbout’s principle” [2,3] 
states that “An article about computational science in 
a scientific publication is not the scholarship itself, it is 
merely advertising of the scholarship. The actual scholar-
ship is the complete software development environment 
and the complete set of instructions which generated the 
figures.” The Madagascar software package implements a 
computational environment that is designed both for con-
ducting computational experiments in the area of large-
scale geophysical data analysis and for attaching links to 
software code and data in scientific publications in order 
to enable reproducible research. As of October 2013, 
Madagascar includes more than 120 scientific papers and 
book chapters complete with software codes necessary 
for independent verification and replication of computa-
tional results (see http://www.ahay.org/wiki/Reproduc-
ible_Documents).

The work on the Madagascar project started in 2003, 
and the beta version of the package was publicly released 

in June 2006. Since then, many people have joined the 
project and contributed to the code. The 1.0 version was 
released in 2010 and tested by an open community. The 
community stays in touch using mailing lists, social net-
works, and annual meetings.

Although the main applications have focused so far on 
applied geophysics and exploration seismology in particu-
lar, the core package is suitable for other scientific fields 
that require reproducible analysis of large-scale multidi-
mensional data.

Implementation/architecture
The design of Madagascar follows the Unix principle: 
“Write programs that do one thing and do it well. Write 
programs to work together. Write programs to handle text 
streams, because that is a universal interface.” [4] Analysis 
of complex multidimensional data, such as those occur-
ring in exploration seismology requires multiple steps. In 
addition, the data size can be too large for storing data 
objects in memory (a typical modern seismic survey gen-
erates terabytes of data). We break the data analysis chain 
into multiple steps by writing short programs that imple-
ment individual steps (“do one thing and do it well”) with 
control parameters specified on the Unix command line. 
The programs act as filters (“work together”) by taking 
input from a file on disk or from a Unix pipe and writing 
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Figure 1: Madagascar Software Architecture.

either to disk or to another pipe. We adopt a  universal 
data format, called RSF (regularly sampled file). The RSF 
format is based on a text description (“because that is a 
universal interface”) that points to the raw binary data 
stored in a separate file. Conceptually, an RSF file repre-
sents a regularly sampled multi-dimensional hypercube, 
while the corresponding binary data are stored (or passed 
through a Unix pipe) in simple contiguous arrays for opti-
mally efficient input/output operations [5].

To assemble data analysis workflows from individual 
programs, we have adopted SCons, a Python-based make-
like utility [6]. SCons configuration files (SConstruct 
scripts) are written in Python and specify the database of 
dependencies between input files, programs, and target 
files. SCons supports other useful features, such as multi-
threaded execution. In our extension of SCons, we define 
four specific commands for establishing data-processing 
dependencies [7]:

•	“Fetch” describes a rule for downloading data files from 
a remote data server or a local data directory.

•	“Flow” describes a rule (command or Unix pipeline) for 
generating one or more target files from one or more 
(or none) source files.

•	“Plot” is similar to “Flow” but the target file is a figure. 
•	“Result” is similar to “Plot” but the target file is a final 

“result” figure for inclusion in a publication.
One can think of the Madagascar environment as exist-

ing on three different levels that correspond to three dif-
ferent stages of research activities of a computational sci-
entist: 

1. Implementing a new computational algorithm for 
data analysis. This level involves writing low-level 
programs (command-line modules).

2. Testing a new algorithm or a new workflow by 
applying them to data. This level involves assem-
bling workflows from existing command-line mod-
ules and tuning their parameters through repeated 
computational experiments to achieve the desired 
result.

3. Publishing new results. Results from computational 
experiments (figures in our case) get referenced in 
papers and included in publications.

We adopt SCons for the third level as well, to simplify 
creation of documents that include results from the sec-
ond level. Customized SCons commands create docu-
ments from LaTeX sources with output either in PDF or 
HTML format. The HTML format is produced using LaTeX-
2HTML [8]. In the HTML version, reproducible figures are 
followed by links to SConstruct scripts from level 2 and 
low-level programs from level 1 in order to let the reader 
verify the details of the computational experiment and 
reproduce it.

Quality Control
Testing of scientific research codes is important not only 
for detecting software bugs but also for assuring compu-
tational reproducibility and enabling other researchers to 
expand on published research results [9,10].

The design of Madagascar turns every documented com-
putational experiment into a regression test. The results 
of an experiment are figures in a custom Vplot format, 
which are saved in a Subversion repository. When the 
experiment is repeated, new figures are compared with 
the saved ones. Testing is simplified by implementing 
SCons commands “scons test” for testing all results or 
“scons <result>.test” for testing an individual result and 
“scons <result>.flip” for visual flipping between the new 
figure and the previous stored figure in the event that the 
test fails. The comparison (implemented with sfvplotdiff 
utility) distinguishes between changes in decoration ele-
ments and scientific-content elements and has a toler-
ance for possible floating-point differences from compu-
tational experiments on different architectures.

For providing stable releases, Madagascar installation is 
tested on a variety of Unix-compliant platforms: different 
versions of Lunux, Solaris, and MacOS X operating sys-
tems, and on Windows under the Cygwin environment.

(2) Availability

The package is currently available in the source format.

Operating system
Unix (including Linux, MacOS X, and Unix emulations on 
Windows such as Cygwin).

Programming language
Most of the data-processing computational modules are 
currently written in  C. Additional interfaces to the Mada-
gascar library are provided for C++, Java, Python, For-
tran-77, Fortran-90, and MATLAB.

Data-processing scripts are written in Python, using 
SCons, a Python-based make-like building utility [7].

Papers are written in LaTeX. 

Additional system requirements
Certain optional components of the package have addi-
tional requirements. For example, CUDA codes require 
GPU units, large-scale MPI programs require computer 
clusters, etc. Computations experiments using such 
resources are “conditionally reproducible” [11].
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Dependencies
The minimal dependency for installation is a C compiler 
and Python. Other, optional dependencies are configured 
during the installation process using SCons.

List of contributors
The full list of contributors is in the AUTHORS.txt file 
http://sourceforge.net/p/rsf/code/HEAD/tree/trunk/
AUTHORS.txt. As of October 2013, the list contains 57 
names, not counting authors of additional software com-
ponents included in the package. Ohloh counts 74 con-
tributors, with the record activity of 18 contributors per 
month in April 2013 (see http://www.ohloh.net/p/m8r ).

Madagascar uses codes from Vplot, a graphics package 
developed at Stanford University in the 1980s. The Vplot 
authors include Jon Claerbout, Steve Cole, Dave Hale, Joe 
Dellinger, Chuck Karish, Stewart Levin, Dave Nichols, and 
Shuki Ronen.

Archive

Name
SourceForge

Persistent identifier
https://sourceforge.net/projects/rsf/files/madagascar/

License
GPL version 2

Publisher
Sergey Fomel

Date published
09/06/2006

Code Repository

Name
SourceForge

Identifier
https://sourceforge.net/p/rsf/code/HEAD/tree/trunk/

License
GPL version 2

Date published
17/03/2006

Language
Subversion repository; Python/SCons scripts for configu-
ration, compilation, and workflow recipes; C libraries, with 
interfaces to C++, Java, Python, Fortran-77, Fortran-90, 
and MATLAB.

(3) Reuse potential

The main goal of community-maintained computa-
tional reproducibility in the Madagascar project is to 
enable other researchers to reuse “computational recipes“ 
from previous numerical experiments and to build new 
research results on top of previous ones. In the 10-year 
history of the Madagascar project, there have indeed been 
several examples of such expansion: one paper generat-
ing new results by building on top of results from another 
paper, sometimes involving scientific collaboration across 

different continents. We expect more examples of such 
collaboration in the future.

Although GPL license is more restrictive than BSD-style 
attribution-only licenses, we find it to be adequate for 
our needs, because it allows us to protect the integrity of 
the package and to integrate Madagascar with other GPL-
licensed scientific software packages, such as FFTW [12].
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