
(1) Overview

Introduction
Reproducible research, as defined by Jon Claerbout [1],
refers to the discipline of attaching software code and
data to scientific publications, in order to enable inde-
pendent verification and replication of computational
experiments. The so-called “Claerbout’s principle” [2,3]
states that “An article about computational science in
a scientific publication is not the scholarship itself, it is
merely advertising of the scholarship. The actual scholar-
ship is the complete software development environment
and the complete set of instructions which generated the
figures.” The Madagascar software package implements a
computational environment that is designed both for con-
ducting computational experiments in the area of large-
scale geophysical data analysis and for attaching links to
software code and data in scientific publications in order
to enable reproducible research. As of October 2013,
Madagascar includes more than 120 scientific papers and
book chapters complete with software codes necessary
for independent verification and replication of computa-
tional results (see http://www.ahay.org/wiki/Reproduc-
ible_Documents).

The work on the Madagascar project started in 2003,
and the beta version of the package was publicly released

in June 2006. Since then, many people have joined the
project and contributed to the code. The 1.0 version was
released in 2010 and tested by an open community. The
community stays in touch using mailing lists, social net-
works, and annual meetings.

Although the main applications have focused so far on
applied geophysics and exploration seismology in particu-
lar, the core package is suitable for other scientific fields
that require reproducible analysis of large-scale multidi-
mensional data.

Implementation/architecture
The design of Madagascar follows the Unix principle:
“Write programs that do one thing and do it well. Write
programs to work together. Write programs to handle text
streams, because that is a universal interface.” [4] Analysis
of complex multidimensional data, such as those occur-
ring in exploration seismology requires multiple steps. In
addition, the data size can be too large for storing data
objects in memory (a typical modern seismic survey gen-
erates terabytes of data). We break the data analysis chain
into multiple steps by writing short programs that imple-
ment individual steps (“do one thing and do it well”) with
control parameters specified on the Unix command line.
The programs act as filters (“work together”) by taking
input from a file on disk or from a Unix pipe and writing

SOFTWARE METAPAPER

Madagascar: open-source software project for
multidimensional data analysis and reproducible
computational experiments
Sergey Fomel,1 Paul Sava,2 Ioan Vlad,3 Yang Liu,4 Vladimir Bashkardin,5
1 Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas, USA
2 Center for Wave Phenomena, Colorado School of Mines, Golden, Colorado, USA
3 TGS, Houston, Texas, USA
4 College of Geo-exploration Science and Technology, Jilin University, Changchun, Jilin, China
5 BP, Houston, Texas, USA

The Madagascar software package is designed for analysis of large-scale multidimensional data,
such as those occurring in exploration geophysics. Madagascar provides a framework for reproduc-
ible research. By “reproducible research” we refer to the discipline of attaching software codes
and data to computational results reported in publications. The package contains a collection of (a)
computational modules, (b) data-processing scripts, and (c) research papers. Madagascar is distrib-
uted on SourceForge under a GPL v2 license https://sourceforge.net/projects/rsf/. By October 2013,
more than 70 people from different organizations around the world have contributed to the project,
with increasing year-to-year activity. The Madagascar website is http://www.ahay.org/.

Keywords: reproducibility, data analysis, geophysics, seismology, Python

Fomel, S et al 2013 Madagascar: open-source software project for multidimensional data
analysis and reproducible computational experiments. Journal of Open Research Software
1:e8, DOI: http://dx.doi.org/10.5334/jors.ag

Journal of
open research software

http://www.ahay.org/wiki/Reproducible_Documents
http://www.ahay.org/wiki/Reproducible_Documents
http://www.ahay.org/
http://dx.doi.org/10.5334/511ba2c94d661

Fomel et alArt. e8, p.  2 of 4

Figure 1: Madagascar Software Architecture.

either to disk or to another pipe. We adopt a universal
data format, called RSF (regularly sampled file). The RSF
format is based on a text description (“because that is a
universal interface”) that points to the raw binary data
stored in a separate file. Conceptually, an RSF file repre-
sents a regularly sampled multi-dimensional hypercube,
while the corresponding binary data are stored (or passed
through a Unix pipe) in simple contiguous arrays for opti-
mally efficient input/output operations [5].

To assemble data analysis workflows from individual
programs, we have adopted SCons, a Python-based make-
like utility [6]. SCons configuration files (SConstruct
scripts) are written in Python and specify the database of
dependencies between input files, programs, and target
files. SCons supports other useful features, such as multi-
threaded execution. In our extension of SCons, we define
four specific commands for establishing data-processing
dependencies [7]:

•	“Fetch” describes a rule for downloading data files from
a remote data server or a local data directory.

•	“Flow” describes a rule (command or Unix pipeline) for
generating one or more target files from one or more
(or none) source files.

•	“Plot” is similar to “Flow” but the target file is a figure.
•	“Result” is similar to “Plot” but the target file is a final

“result” figure for inclusion in a publication.
One can think of the Madagascar environment as exist-

ing on three different levels that correspond to three dif-
ferent stages of research activities of a computational sci-
entist:

1. Implementing a new computational algorithm for
data analysis. This level involves writing low-level
programs (command-line modules).

2. Testing a new algorithm or a new workflow by
applying them to data. This level involves assem-
bling workflows from existing command-line mod-
ules and tuning their parameters through repeated
computational experiments to achieve the desired
result.

3. Publishing new results. Results from computational
experiments (figures in our case) get referenced in
papers and included in publications.

We adopt SCons for the third level as well, to simplify
creation of documents that include results from the sec-
ond level. Customized SCons commands create docu-
ments from LaTeX sources with output either in PDF or
HTML format. The HTML format is produced using LaTeX-
2HTML [8]. In the HTML version, reproducible figures are
followed by links to SConstruct scripts from level 2 and
low-level programs from level 1 in order to let the reader
verify the details of the computational experiment and
reproduce it.

Quality Control
Testing of scientific research codes is important not only
for detecting software bugs but also for assuring compu-
tational reproducibility and enabling other researchers to
expand on published research results [9,10].

The design of Madagascar turns every documented com-
putational experiment into a regression test. The results
of an experiment are figures in a custom Vplot format,
which are saved in a Subversion repository. When the
experiment is repeated, new figures are compared with
the saved ones. Testing is simplified by implementing
SCons commands “scons test” for testing all results or
“scons <result>.test” for testing an individual result and
“scons <result>.flip” for visual flipping between the new
figure and the previous stored figure in the event that the
test fails. The comparison (implemented with sfvplotdiff
utility) distinguishes between changes in decoration ele-
ments and scientific-content elements and has a toler-
ance for possible floating-point differences from compu-
tational experiments on different architectures.

For providing stable releases, Madagascar installation is
tested on a variety of Unix-compliant platforms: different
versions of Lunux, Solaris, and MacOS X operating sys-
tems, and on Windows under the Cygwin environment.

(2) Availability

The package is currently available in the source format.

Operating system
Unix (including Linux, MacOS X, and Unix emulations on
Windows such as Cygwin).

Programming language
Most of the data-processing computational modules are
currently written in C. Additional interfaces to the Mada-
gascar library are provided for C++, Java, Python, For-
tran-77, Fortran-90, and MATLAB.

Data-processing scripts are written in Python, using
SCons, a Python-based make-like building utility [7].

Papers are written in LaTeX.

Additional system requirements
Certain optional components of the package have addi-
tional requirements. For example, CUDA codes require
GPU units, large-scale MPI programs require computer
clusters, etc. Computations experiments using such
resources are “conditionally reproducible” [11].

Fomel et al Art. e8, p.  3 of 4

Dependencies
The minimal dependency for installation is a C compiler
and Python. Other, optional dependencies are configured
during the installation process using SCons.

List of contributors
The full list of contributors is in the AUTHORS.txt file
http://sourceforge.net/p/rsf/code/HEAD/tree/trunk/
AUTHORS.txt. As of October 2013, the list contains 57
names, not counting authors of additional software com-
ponents included in the package. Ohloh counts 74 con-
tributors, with the record activity of 18 contributors per
month in April 2013 (see http://www.ohloh.net/p/m8r).

Madagascar uses codes from Vplot, a graphics package
developed at Stanford University in the 1980s. The Vplot
authors include Jon Claerbout, Steve Cole, Dave Hale, Joe
Dellinger, Chuck Karish, Stewart Levin, Dave Nichols, and
Shuki Ronen.

Archive

Name
SourceForge

Persistent identifier
https://sourceforge.net/projects/rsf/files/madagascar/

License
GPL version 2

Publisher
Sergey Fomel

Date published
09/06/2006

Code Repository

Name
SourceForge

Identifier
https://sourceforge.net/p/rsf/code/HEAD/tree/trunk/

License
GPL version 2

Date published
17/03/2006

Language
Subversion repository; Python/SCons scripts for configu-
ration, compilation, and workflow recipes; C libraries, with
interfaces to C++, Java, Python, Fortran-77, Fortran-90,
and MATLAB.

(3) Reuse potential

The main goal of community-maintained computa-
tional reproducibility in the Madagascar project is to
enable other researchers to reuse “computational recipes“
from previous numerical experiments and to build new
research results on top of previous ones. In the 10-year
history of the Madagascar project, there have indeed been
several examples of such expansion: one paper generat-
ing new results by building on top of results from another
paper, sometimes involving scientific collaboration across

different continents. We expect more examples of such
collaboration in the future.

Although GPL license is more restrictive than BSD-style
attribution-only licenses, we find it to be adequate for
our needs, because it allows us to protect the integrity of
the package and to integrate Madagascar with other GPL-
licensed scientific software packages, such as FFTW [12].

Acknowledgements
We thank all the contributors for making Madagascar a
viable open-source research-software project. In addition,
we thank Jon Claerbout for promoting the idea of repro-
ducible research and its initial implementation at Stan-
ford, which served both as an inspiration for the Mada-
gascar project and as the source of some of the codes and
papers included in the package. Robert Clapp, Martin Kar-
renbach, Dave Nichols, Matthias Schwab, and other Ph.D.
students of Claerbout’s participated in the early reproduc-
ibility efforts and made invaluable contributions.

References
1. Fomel, S and Claerbout, J F 2009 Guest Editors’ In-

troduction: Reproducible Research. Computing in Sci-
ence & Engineering 11(1): 5-7. DOI: http://dx.doi.org/
10.1109/MCSE.2009.14

2. Buckheit, J B and Donoho, D L 1995 WaveLab and
reproducible research. In: Antoniadis, A and Oppen-
heim, G Wavelets in Statistics. New York: Springer. pp.
55-81.

3. de Leeuw 2001 Reproducible research: the bottom
line. Technical Report 2001031101. Los Angeles: De-
partment of Statistics Papers, University of California.
Available at: http://repositories.cdlib.org/uclastat/pa-
pers/2001031101

4. Salus, P H 1994 A quarter century of UNIX. Reading,
Massachusetts: Addison-Wesley.

5. Guide to RSF file format. Available at http://www.ahay.
org/wiki/Guide_to_RSF_file_format [Last accessed on
7 October 2013].

6. Knight, S 2005 Building software with SCons. Comput-
ing in Science & Engineering 7(1): 79-88. DOI: http://
dx.doi.org/10.1109/MCSE.2005.11(410)%207

7. Fomel, S and Hennenfent, G 2007 Reproducible
computational experiments using SCons. In: Proceed-
ings of the 2007 IEEE International Conference on
Acoustics, Speech and Signal Processing 4: iv-1257.
DOI: http://dx.doi.org/10.1109/ICASSP.2007.367305

8. Drakos, N 1994 From text to hypertext: a post-hoc
rationalisation of latex2html. Computer networks
and ISDN systems 27(2): 215-224. DOI: http://dx.doi.
org/10.1016/0169-7552(94)90135-X

9. Donoho, D L, Maleki, A, Rahman, I U, Shahram,
M, and Stodden, V 2009 Reproducible research in
computational harmonic analysis. Computing in Sci-
ence & Engineering 11(1): 8–18. DOI: http://dx.doi.
org/10.1109/MCSE.2009.15

10. LeVeque, R J, Mitchell, I M, and Stodden, V 2009
Reproducible research for scientific computing: Tools
and strategies for changing the culture. Computing

http://sourceforge.net/p/rsf/code/HEAD/tree/trunk/AUTHORS.txt
http://sourceforge.net/p/rsf/code/HEAD/tree/trunk/AUTHORS.txt
http://www.ohloh.net/p/m8r
https://sourceforge.net/projects/rsf/files/madagascar/
https://sourceforge.net/p/rsf/code/HEAD/tree/trunk/
http://dx.doi.org/ 10.1111/j.1467-985X.2007.00466.x
http://repositories.cdlib.org/uclastat/papers/2001031101
http://repositories.cdlib.org/uclastat/papers/2001031101
http://www.ahay.org/wiki/Guide_to_RSF_file_format
http://www.ahay.org/wiki/Guide_to_RSF_file_format
http://dx.doi.org/10.1109/MCSE.2005.11(410)%207
http://dx.doi.org/10.1109/MCSE.2005.11(410)%207
http://dx.doi.org/10.1109/ICASSP.2007.367305
http://dx.doi.org/10.1016/0169-7552(94)90135-X
http://dx.doi.org/10.1016/0169-7552(94)90135-X
http://dx.doi.org/10.1109/MCSE.2009.15
http://dx.doi.org/10.1109/MCSE.2009.15

Fomel et alArt. e8, p.  4 of 4

How to cite this article: Fomel, S et al 2013 Madagascar: open-source software project for multidimensional data
analysis and reproducible computational experiments. Journal of Open Research Software 1:e8, DOI: http://dx.doi.
org/10.5334/jors.ag

Published: 21 November 2013

Copyright: © 2013 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 3.0 Unported License (CC-BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/3.0/.

The Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

in Science & Engineering 14(4):13. DOI: http://dx.doi.
org/10.1109/MCSE.2012.38

11. Schwab, M, Karrenbach, M and Claerbout, J 2009
Making scientific computations reproducible. Comput-
ing in Science & Engineering 2(6): 61–67. DOI: http://
dx.doi.org/10.1109/5992.881708

12. Frigo, M and Johnson, S G 1998 FFTW: An adaptive
software architecture for the FFT. In: Proceedings of
the 1998 IEEE International Conference on Acous-
tics, Speech and Signal Processing 3: 1381–1384. DOI:
http://dx.doi.org/10.1109/ICASSP.1998.681704

http://dx.doi.org/10.5334/511ba2c94d661
http://dx.doi.org/10.5334/511ba2c94d661
http://dx.doi.org/10.1109/MCSE.2012.38
http://dx.doi.org/10.1109/MCSE.2012.38
http://dx.doi.org/10.1109/5992.881708
http://dx.doi.org/10.1109/5992.881708
http://dx.doi.org/10.1109/ICASSP.1998.681704

