
(1) Overview
Introduction
Symbolic computation allows a wider range of expres-
sion for mathematical formulae and their various trans-
formation rules, while computer algebra admits greater 
algorithmic precision as it constructs algorithms for com-
puting algebraic quantities in various arithmetic domains. 
The simplest form of this Fourier transform is the one 
dimensional case and symbolic computer algebra has suc-
cessfully been applied to this case.

In Cartesian coordinates, the 2D case is simply two 
one-dimensional cases (one in each Cartesian direc-
tion). However, there are occasions when a system is best 
expressed in polar coordinates, prompting the need for 
a Fourier transform in polar coordinates. Recently, the 
development of the polar coordinate version of a 2D 
Fourier transform was documented along with the corre-
sponding primary rules [1]. 

In this paper, the development of a Symbolic Computer 
Algebra (Maple) toolbox for the computation of algebraic, 
closed-form versions of the two-dimensional Fourier 
transform in polar coordinates is outlined. 

Brief outline of the theory of 2D Fourier transforms 
in polar coordinates
The 2D Fourier transform of a function f  (x, y) is defined 
as [1]:
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The inverse Fourier transform is given by
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where the shorthand notation of ( , ), ( , )x y r x yw w w= =

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has been used. Polar coordinates can be introduced as x = 
r cos θ, y = r sin θ and similarly in the spatial frequency 
domain as ωx = ρ cos ψ ωy = ρ sin ψ otherwise written as, 
r2 = x2 + y2, θ = arctan (y/x) and ρ2 = ω2

x + ω2
y, ψ = arctan 

(ωy/ωx). It then follows that the two-dimensional Fourier 
transform can be written as 

	 0

cos(( ) ( , .irF f r rdrde
p

p

r y qr y q q
¥

-

- - ), = )ò ò
	

(3)

In terms of polar coordinates, the Fourier transform opera-
tion transforms the spatial position radius and angle (r, θ) 
to the frequency radius and angle (ρ, ψ). The correspond-
ing 2D inverse Fourier transform is written as 
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A function f (r, θ) expressed in polar coordinates, where r 
is the radial variable and θ is the angular variable, can be 
expanded into a Fourier series as
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where the Fourier coefficients are given by
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Similarly, the 2D Fourier transform F (ρ, ψ) of f (r, θ) is a 
function of radial frequency and angular frequency vari-
ables (ρ, ψ), and can also be expanded into its own Fourier 
series so that
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where 
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It is extremely important to note that Fn(ρ) is NOT the 
Fourier transform of fn(r). Complete details of the develop-
ment are given in [1], where it is shown that this relation-
ship is given by
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where Hn{•} denotes an nth order Hankel transform. The 
inverse relationship is given by
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Therefore, the nth term in the Fourier series for the origi-
nal function will Hankel transform into the nth term of the 
Fourier series of the Fourier transform function. However, 
it is an nth order Hankel transform for the nth term, so 
that all the terms are not equivalently transformed.

For reference, the nth order Hankel transform is defined 
by the integral [2]
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where Jn(z) is the nth order Bessel function with the overhat 
indicating a Hankel transform as shown in equation (11). 
Here, n may be an arbitrary real or complex number. The 
Hankel transform is self-reciprocating and the inversion 
formula is the same as that given by the forward formula. 
It is noted that this definition of the Hankel transform is 
not the same as that used by the built-in Maple function 
for defining Hankel transforms, therefore another func-
tion was written in order to match the definition given in 
equation (11).

Implementation of 2D Fourier transform in polar 
coordinates
Most importantly, it can be seen that the operation of 
finding the 2D Fourier transform F (ρ, ψ) of a function 
F (r , θ) is equivalent to

1)	 First finding its Fourier series coefficients in the 
angular variable fn(r), given by equation (6).

2)	 Finding the Fourier series coefficient of the Fourier 
transform, Fn(ρ) via Fn(ρ) = 2π i-n Hn {fn(r)}. That is, 
by finding the nth order Hankel transform (of the 
spatial radial variable to the spatial frequency radial 
variable) of the nth coefficient in the Fourier series 
and appropriately scaling the result. 

3)	 Finally, taking the inverse Fourier series transform 
(summing the series) with respect to the frequency 
angular variable, given by equation (7).

Implementation and architecture
The toolbox created for the evaluation of 2D polar Fourier 
transforms is called SCAToolbox. It is a symbolic computer 
algebra toolbox that provides a comprehensive collection 
of interactive tools suitable for computing mainly the two 
dimensional Fourier transform of expressions in polar 
coordinates. SCAToolbox consists of several procedures 
(this is the term used for “functions” in Maple) and opera-
tions as well as tables. One of the packages in SCAToolbox 
is named the IntegralTrans package. This package contains 
the procedures, tables and operations necessary for com-
puting some integral transforms. 

Set-up of the SCAToolbox
The SCAToolbox is broken into sub packages allowing it to 
be easy to use and maintain. The code structure is made 
up of four main sections: 1) creating the toolbox, 2) sup-
porting functions, 3) integral transforms and 4) testing 
and verification. Creating the toolbox depends on the CAS 
software being used, in this case Maple.

Supporting functions
Many operations and procedures have been designed and 
implemented as part of this toolbox. The supporting func-
tions are those operations that do not constitute the core 
of the toolbox but are vital for the complete and effective 
functionality of the system. These supporting functions 
help manage other structures within the toolbox. There 
are two types of supporting functions within the toolbox. 

The first type consists of procedures that perform opera-
tions on functions. All the procedures in this group are 
convolutions (one of the major reasons to implement a 
Fourier transform). The convolutions implemented include 
one dimensional and two dimensional convolutions in 
Cartesian coordinates, angular/circular convolution, radial 
convolution, two dimensional convolution in polar coor-
dinates and series convolution. As their names suggest, 
these convolutions convolve different function types and 
so have different rules that apply to their evaluation. A 
“Bracket” convolution is implemented to make these con-
volutions easily accessible and usable – that is, one convo-
lution procedure is defined and the type of convolution 
desired is passed as an option to the procedure. This makes 
for less error when trying to evaluate a convolution since 
the syntax becomes uniform for six different types of con-
volution. Convolutions can be stand-alone procedures and 
as such are not placed in the IntegralTrans package of the 
SCAToolbox. Using these operations therefore does not 
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require loading the IntegralTrans package; downloading 
and loading the SCAToolbox is sufficient.

Procedures that help manage/manipulate other struc-
tures in the toolbox form the other type of supporting 
functions. These are important to the inner workings of 
the integral transforms and are stored in the IntegralTrans 
package within the SCAToolbox. Among these procedures 
are the takeAlook procedure, addToTable procedure, 
Ekronecker procedure and EdDirac procedure. The former 
two procedures help manage the toolbox by manipulat-
ing tables. 

The takeAlook procedure manipulates tables by compar-
ing the entered function with the list of functions in the 
first column of the lookup table of interest and returning 
the mapping result in the second column of the table. A 
process named pattern matching is used to compare the 
functions. The entered function has particular properties 
(arithmetic and variable types, etc.) that are matched to a 
fitting pattern in the table. With the concept of a lookup 
table comes the need to add to the table. This is accom-
plished by implementing the addToTable procedure. This 
procedure adds an expression and its corresponding trans-
form to a given transform table and makes extending an 
existing table quite simple.

The Ekronecker procedure provides the Kronecker delta 
function given the appropriate variables. The need for this 
operation arose when the built-in kronecker function did 
not work as expected. In Maple, the integral of a shifted 
Dirac function is halved at the end points. However, in 
our theoretical work, the desired result at the endpoints 
is not halved. The EdDirac procedure therefore redefines 
the built-in Dirac function so that the result matches the 
theoretical development.

Integral transforms
The integral transforms implemented in this toolbox 
include the forward nth order Hankel transform (equation 
(11)) and its inverse, the forward and inverse one dimen-
sional Fourier series transform (equation (5) and (6)) and 
the forward and inverse two dimensional Fourier trans-
form in polar coordinates (equations (3) and (4)). When 
lookup and remember tables fail to return a result, the 
transforms are evaluated directly by integration. A sepa-
rate function that calls the direct 2D Fourier transform 
(which attempts to implement the transform by direct 
integration, equation (3)) is also included, although we 
found this approach to be ineffective. If evaluation is 
unsuccessful, the outputs of the transform procedures 
are written as they are entered except in the case of the 
Fourier Series transform and its inverse where the actual 
integral and sum respectively are returned. 

The Hankel transform and 1D Fourier series are imple-
mented by using lookup tables. The 2D Fourier transform 
in polar coordinates is implemented via the two preceding 
transforms. Here, it draws on the modular nature of the 
code to implement the transform. This method is part of 
the core foundation of this work and involves breaking 
the 2D polar Fourier transform into three steps.

A summary of the contents of the toolbox is shown in 
Table 1 where f and g are functions of x, ff and gg are 

functions of x and y, p and q are functions of r, u and v is a 
function of ϑ, and pp and qq are functions of r and ϑ. Also, 
s and w are series in n. Additionally, expr is an arbitrary 
expression, tablename is the name of the table to consider, 
procname is the name of the procedure to consider, and 
ans is the result that maps to expr.

Quality control
To ensure that these operations and procedures work 
well, they have been tested and verified with known 
examples/data. 

Below are examples of some simple functions and 
their transforms. The results shown in this section 
involve Maple outputs. ‘MapleIn’ is used to indicate the 
queries and ‘MapleOut’ gives the output of the toolbox. 
‘MapleCommand’ represents executable commands.

Example 1
First to be tested is the 1D convolution in Cartesian 
coordinates. Theory: A Dirac function convolved (single 
dimension Cartesian convolution) with any other function 
returns the function i.e. f (x)*δ(x) = f (x). This is confirmed 
via the procedure OneDCartConv.
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The equivalent statement using the “Bracket” version of 
the convolution is 
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It also follows that a shifted Dirac function convolved with 
any other function gives back the function shifted by the 
same value i.e. f (x)*δ(x-x0) = f (x-x0). The OneDCartConv 
procedure also confirms this:
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The above computation shows that the “Bracket” con-
volution works and that the operation does indeed 
commute.

Example 2
A list of functions is entered for which the Hankel trans-
form of order 0 of the contents is sought. The output list 
has the correct order of the transforms within it.
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Function/Procedure name Calling Sequence Description

takeAlook takeAlook(expr, tablename) Obtain what maps to expr in tablename

addToTable addToTable(procname, expr, ans) Add expró ans to table associated with procedure, 
procname

Ekronecker EKronecker(n, m) Obtain Kronecker delta function i.e. δmn=1, when n=m

EdDirac EdDirac(a) Redefines Dirac function so that integral at end points is 
NOT halved

Conv Conv(f, g, [x], 1dcartesian) Bracket Convolution: obtain 1D convolution of f(x) and g(x) 
in Cartesian coordinates

Conv(ff, gg, [x, y], 2dcartesian) obtain 2D convolution of ff(x) and gg(x) in Cartesian coords.

Conv(pp, qq, [r, ϑ], 2dpolar) obtain 2D convolution of pp( r, ϑ) and qq( r, ϑ) in polar 
coords.

Conv(u, v, [ϑ], angular) obtain angular convolution of u(ϑ) and v(ϑ)

Conv(p, q, [r], radial) obtain radial convolution of p(r) and q(r)

Conv(s, w, [n], series) obtain convolution of the infinite series, s(n) and w(n)

OneDCartConv OneDCartConv(f, g, x) Obtain 1D convolution of f(x) and g(x) in Cartesian 
coordinates

TwoDCartConv TwoDCartConv(ff, gg, x, y) Obtain 2D convolution of ff(x) and gg(x) in Cartesian coords.

TwoDPolarConv TwoDPolarConv(pp, qq, r, ϑ) Obtain 2D convolution of pp( r, ϑ) and qq( r, ϑ) in polar 
coords.

RadConv RadConv(p, q, r) Obtain radial convolution of p(r) and q(r)

AngConv AngConv(u, v, ϑ) Obtain angular convolution of u(ϑ) and v(ϑ)

SerConv SerConv(s, w, n) Obtain convolution of the infinite series, s(n) and w(n)

Hankel Hankel(p, r, s, n) Obtain Hankel transform of p(r) (an expression or list)

InvHankel InvHankel(P, s, r, n) Obtain Inverse Hankel transform of P(s) (expression or list)

FS1D FS1D (f, x, n, range, condition) Obtain 1D Fourier Series of f(x).

condition = “coefficientComplex” Returns complex Cn coefficients

condition = “coefficientReal” Returns A0, An, Bn coefficients

condition = “series” Returns full sum

InvFS1D InvFS1D(F, n, x) Obtain Inverse 1D Fourier Series of F[n]

Polar2DFT Polar2DFT(pp, r, ϑ, ρ, ψ) Obtain 2D Polar Fourier transform of pp(r, ϑ) by applying 
2πi-n*(FS + nth order HT) + iFS

InvPolar2DFT InvPolar2DFT(PP, ρ, ψ, r, ϑ) Obtain Inverse 2D Polar Fourier transform of PP(ρ, ψ) by 
applying (in/2π)*(FS + nth order HT) + iFS 

DirectPolar2DFT DirectPolar2DFT(pp, r, ϑ, ρ, ψ) Evaluate 2D Polar Fourier transform of pp(r, ϑ) from the 
integral definition

FSH FSH(pp, r, ϑ, ρ, ψ) Obtain step-by-step results for 2D Polar Fourier Series-
Hankel Transform of pp(r, ϑ) i.e. 2πi-n*(FS + nth order HT)

InvFSH InvFSH(PP, ρ, ψ, r, ϑ) Obtain step-by-step results for Inverse 2D Polar Fourier 
Series-Hankel Transform of PP(ρ, ψ) i.e. (in/2π)*nth order HT 
+ iFS

Table 1: Summary of the contents of the toolbox.
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The results of the inverse Hankel transform for the same 
functions as above are evidence that the Hankel transform 
is indeed self-reciprocating.
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Example 3
The direct form of the 2D polar Fourier transform for 
the function f =1 is evaluated and tested against the 
indirect approach using the Hankel and Fourier series 
transforms.
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The direct method above produces an indeterminate 
result whereas the indirect method that follows gives a 
definite and accurate result.
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A Maple worksheet demonstrating how the toolbox 
may be used (and including the examples shown above) 
can be downloaded from http://dx.doi.org/10.6084/
m9.figshare.1004937. 

Figure 1 gives a summary of a few functions (includ-
ing the example above) that were tested and their 
transforms.

(2) Availability 
Operating system
Windows XP and higher.

Programming language
Maple version 12 and higher.

Additional system requirements
If using Maple 12, minimum system requirements are 
512MB of RAM and 1GB of hard disk space. Higher ver-
sions of Maple will required additional memory and disk 
space.

Dependencies
Maple version 12 and higher

List of contributors
Edem Dovlo and Natalie Baddour

Software location
Archive

Name
figshare

Persistent identifier
http://dx.doi.org/10.6084/m9.figshare.1004937

Licence
MIT 

Publisher
Natalie Baddour

Date published
23/04/14

The persistent identifier provided above is a link to a 
complete fileset that includes the toolbox, instructions 
for downloading and using the toolbox and sample Maple 
code for using the toolbox. 

License
This software is released under the MIT license.

Language
English

Support
Please send email to nbaddour@uottawa.ca or 
senaedem@gmail.com. 

Figure 1: Testing the toolbox on the Fourier transform of 
some common functions.
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(3) Reuse potential
This software can be used and extended by any research-
ers who require the use of 2D Fourier Transforms in polar 
coordinates within a Computer Algebra System environ-
ment. The toolbox has only been implemented in the 
Maple programming language. In particular, the toolbox 
contains several ‘standalone’ procedures or functions that 
may be re-used in other code, independently of the tool-
box as a whole, in particular all the various forms of con-
volution that have been implemented.

References
	 1.	N. Baddour, “Operational and convolution prop-

erties of two-dimensional Fourier transforms in 
polar coordinates,” J. Opt. Soc. Am. A, vol. 26, no. 
8, pp. 1767–1777, Aug. 2009. DOI: http://dx.doi.
org/10.1364/JOSAA.26.001767 

	 2.	R. Piessens, “The Hankel Transform,” in The Trans-
forms and Applications Handbook, vol. Second, Boca 
Raton: CRC Press, 2000, pp. 9.1–9.30. http://bit.ly/
Qg4VwA

How to cite this article: Dovlo, E and Baddour, N 2015 Toolbox for the Computation of 2D Fourier Transforms in Polar 
Coordinates via Maple. Journal of Open Research Software, 3: e3, DOI: http://dx.doi.org/10.5334/jors.bo

Published: 05 February 2015

Copyright: © 2015 The Author(s). This is an open-access article distributed under the terms of the Creative Commons 
Attribution 3.0 Unported License (CC-BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original author and source are credited. See http://creativecommons.org/licenses/by/3.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by 
Ubiquity Press. OPEN ACCESS

http://dx.doi.org/10.1364/JOSAA.26.001767
http://dx.doi.org/10.1364/JOSAA.26.001767
http://bit.ly/Qg4VwA
http://bit.ly/Qg4VwA
http://dx.doi.org/10.5334/jors.bo
http://creativecommons.org/licenses/by/3.0/

	_Ref299054945
	ZEqnNum601971
	ZEqnNum126666
	ZEqnNum182998
	ZEqnNum828439
	ZEqnNum612440
	_Ref299055235

