
Choi, S-C T 2014 MINRES-QLP Pack and Reliable Reproducible Research via
Supportable Scientific Software. Journal of Open Research Software, 2(1):
e22, pp. 1-7, DOI: http://dx.doi.org/10.5334/jors.bb

1 Introduction
Reproducible research (RR) in computational sciences was
pioneered by Claerbout in the Stanford Exploration Project
(SEP) [1]. It has since been championed by Claerbout,
Donoho, and their collaborators in their research areas
of geophysics, signal and image processing [2, 3, 4]. The
leading advocates for RR include Gentleman and Peng in
biostatistics [5, 6], Koenkera in economics, LeVeque in
numerical partial differential equations [7], and Stodden
in legal frameworks that enable RR [8]. The defining prin-
ciple of RR [3] is “When we publish articles containing fig-
ures which were generated by computer, we also publish
the complete software environment which generates the
figures.” Clearly there is an inevitable dependency of RR to
software, hardware, code, and data.

This article has two main messages. First, we contend
that worthy RR in modern computational sciences have
to be built upon strong mathematical, statistical, and
approximation theories leading to rigorous analysis of
statistical and numerical errors, as well as computational
costs. Second, we establish our position that RR can be
made substantially more reliable—hence reliable repro-
ducible research (RRR)—by development of supportable
scientific software (SSS), which we define as a conceptual

framework that encompasses a collection of software devel-
opment methods for promoting the reliability of reproducing
provably correct results in computational sciences. We note
that our discussion of the SSS framework is not restricted
to any particular programming languages.

While the notions of RRR and SSS are not entirely new,
they are not as often observed as hoped. Relatively few
computational scientists seem to practice RR as reflected
in recent survey results put together by Flemisch [9]. It is
also plausible that the community is not as a whole well
aware of the importance of reproducibility. When SSS is
absent, RR risks remaining an ideal. On the other hand,
conscientious adoption of the principles can lead to sub-
stantially more trustworthy research results.

More specifically, in terms of theory, we have a relatively
new suite of algorithms we call MINRES-QLP Pack, for
solving singular or ill-conditioned linear systems of equa-
tions or linear least-squares problems with guaranteed
accuracy. In terms of practice, we do what we advocate;
we borrow a number of strategies and tools from indus-
trial software engineering that lead to more reliable RR.
While this paper focuses on the MINRES-QLP Pack to illus-
trate how to achieve RRR via SSS, we and our collabora-
tors have at least two more suites of accuracy-guaranteed
algorithms developed using similar approaches: First is
the Guaranteed Automatic Integration Library (GAIL) [10,
11] for numerical integration in one or many dimensions
based on the recent groundbreaking work of Hickernell
et al. [12, 13]. Second is the Open-Source CIM-EARTH

* NORC at the University of Chicago, Department of Applied
Mathematics, Illinois Institute of Technology, USA
sctchoi@uchicago.edu

ISSUES IN RESEARCH SOFTWARE

MINRES-QLP Pack and Reliable Reproducible Research via
Supportable Scientific Software
Sou-Cheng (Terrya) Choi*

The MINRES-QLP Pack is a suite of standard and extended Krylov subspace methods for solving large
linear systems and linear least-squares problems in which the coefficient matrices are potentially singular
or ill-conditioned and possibly have special symmetries. Our purpose is to develop robust open-source
MATLAB implementations of these algorithms that are faithful to the theory, following the philosophy of
reproducible research (RR), and practicing development principles of what we call supportable scientific
software (SSS) that promote reliable reproducible research (RRR). In this paper, we review key features
in the ongoing theoretical and software development of our algorithms in the MINRES-QLP Pack. We
highlight the most effective software engineering tools known to us that are potentially useful to other
scientific research areas. We support open calls to create more incentives for practitioners of robust and
reliable scientific software such as citations and grants for quality software. We encourage introducing
principles of RRR via SSS to computational science students in advanced courses of scientific computing
and to computational scientists through seminars, workshops, or conferences. To these ends, we started
an experimental seminar course, “Reliable Mathematical Software” (IIT MATH-573) in our institution, and
organized multiple sessions on “Reliable Computational Science” in the SIAM Annual Meeting 2014. We
share our research practice and pedagogic experiences in this article.

Journal of
open research software

http://dx.doi.org/10.5334/jors.bb
mailto:sctchoi@uchicago.edu

Choi: MINRES-QLP Pack and Reliable Reproducible Research via Supportable Scientific SoftwareArt. e22, page 2 of 7

Framework (OSCEF) for solving large-scale computable
general equilibrium (CGE) models [14, 15] built on the
design of CIM-EARTH [16, 17, 18].

The outline of this paper is as follows. The next section
gives a compressed description of the algorithms in the
MINRES-QLP Pack. Section 3 recapitulates principles and
benefits of RR, including examples of high-quality soft-
ware and associated highly cited publications. In Section
4, we draw from our computational research experience
and highlight a number of strategies and tools for robust
software package development. Section 5 covers some
existing but rare incentives and our initiatives on con-
ducting a weekly seminar course and organizing themed
meetings, which serves to educate or exchange ideas with
computational researchers about RRR and SSS. In the last
section, we conclude with thoughts for future work.

2 MINRES-QLP Pack
Most Krylov methods for solving large linear systems or lin-
ear least-squares problems have pervasive applications in
science and engineering fields. Nonetheless, they usually
assume nonsingular or full-rank matrices (or linear opera-
tors that are not explicitly represented as matrices). These
methods are generally divided into two classes: Those for
symmetric matrices (e.g., conjugate gradient, MINRES,
SYMMLQ) and those for unsymmetric matrices (e.g., BCG,
GMRES, QMR, BICGSTAB, LSQR, and IDR(s)). Such a divi-
sion is largely due to the fact that historically the most
prevalent matrix structure from practical applications is
symmetric. However, other types of symmetry structures,
notably complex symmetric, skew symmetric, and skew
Hermitian matrices, are becoming increasingly common
in modern applications. Often, these are treated as gen-
eral unsymmetric matrices. In contrast, our algorithms
take advantage of the symmetries to minimize computa-
tional costs such as memory and arithmetic operations.

On a singular linear system such as

 e

=

1 1 1
,

0 1
x

where ε is the machine precision, the pseduoinverse solu-
tion is

=

† 1
.

0
x

Most of MATLAB’s Krylov solvers would abort or return
an exploding solution. To carefully handle singularity and
exploit various symmetry structures, we have designed a
suite of MINRES-QLP [19, 20, 21, 22] algorithms, which
can constructively reveal (numerical) singularity and com-
patibility of a given linear system of equations; users do
not have to know these properties a priori. (We are also
currently developing two related algorithms known as
GMRES-QLP and GMRES-URV for unsymmetric singular
square systems; see [19, 23].)

The key automatic steps of the MINRES-QLP algorithm
are: First, detect special symmetry with an efficient statis-
tical test. Second (optional), construct a symmetric posi-
tive definite preconditioner M whose number of distinct

nonzero eigenvalues M–1/2 AM–1/2 is less than that of A and
hence number of iterations required in the next stage are
reduced. Without loss of generality, let M be the identity
matrix in our subsequent discussion. Third, in the kth
iteration, for k = 1,... , min{p, K}, where p is the smallest
positive integer such that {b, Ab,…, Apb} is linearly depend-
ent, and K is a user-input positive integer, the algorithm
searches for kth in the kth Krylov subspace Kk(A, b) = (b,
Ab,…, Ak–1b), where xk is the minimum-length element of
minimal-residual solutions for the problem

 k∈ −(,) 2
min .

kx A b Ax b

It is known that xk exists and is unique. If either residual
norms ||rk||2 = ||b – Axk||2 or ||Ark||2 is smaller than a sca-
lar multiple of a user-given tolerance, then the algorithm
returns xk as an approximant; otherwise the third step is
repeated with k incremented by one. We note that the
square root M–1/2 is not explicitly constructed and all the
quantities such as xk, ||rk||2, and ||Ark||2 are accurately and
efficiently computed by short recurrences.

In the MINRES-QLP Pack, our goals are to have MATLAB
routines well-documented, well-tested, optimized for
speed, accompanied by examples, and stored in a reposi-
tory [24] where they can be modified, extended, and
re-tested as needed by the originators or any public mem-
bers. Over time we will work to improve existing algo-
rithms and add new methods in the package. If resources
permit, we will implement them in other languages such
as Fortran 90/95 [21] and PETSc [25], which is a parallel
mathematical library capable of peta-scale computations.

3 Reproducible research and challenges
RR for modern computational sciences as originally
proposed by Claerbout is not simply a form of ideologi-
cal rhetoric. It actually has rather specific instructions.
Claerbout encouraged every author of computational
research papers to mark each figure with the tags [ER]
for “easily reproducible,” [CR] for “conditionally reproduc-
ible,” or [NR] for “non-reproducible” to indicate the extent
of reproducibility. To qualify for [ER], a figure is generated
and accompanied by programs with parameters and input
data, as well as “makefiles executable on Linux and port-
able to other operating systems.” A conditionally repro-
ducible figure is often time consuming to reproduce from
scratch and depends on the availability of computational
resources such as memory, commercial applications,
or large input datasets. Non-reproducible figures may
include images drawn or photographs taken—not com-
puted—to illustrate scientific ideas. Today there is no rea-
son not to extend the tags to other computational results
or online resources such as interactive figures, video clips,
tables, or online databases produced or referenced by a
report [26].

Paraphrasing Claerbout, Buckheit and Donoho [3]
stated that “an article about computational result is adver-
tising, not scholarship. The actual scholarship comprises
the full software environment, code and data, that
produced the result.” Donoho et al. produced multiple
MATLAB packages, WaveLab (1995), BeamLab (2004),

Choi: MINRES-QLP Pack and Reliable Reproducible Research via Supportable Scientific Software Art. e22, page 3 of 7

SparseLab (2007), and MCALab (2008). Some of the most
highly cited papers Donoho co-authored such as [27, 28]
are accompanied by well-crafted MATLAB software. It is
reasonable to posit that reproducible research with qual-
ity code contributes significantly to the citation statistics
of the associated papers.

Nevertheless, we ask in practice, how reliable is RR? It
would be at most as dependable as the strength and avail-
ability of its underlying theories, data, code, software, and
hardware. Obviously, it is a “decreasing function” of time
due to emergence of new software (versions), phasing out
of old computer architecture, unaffordability of commer-
cial software, or lack of quality software. Often, authors
release only partial data, code fragments, or incomplete
environment specification. It is not uncommon to see loss
of data or code due to insufficiently frequent backup or
unstable transfer processes. Algorithms of suboptimal
design, with insufficient documentation, inadequate test-
ing, and infrequent release of bug fixes—all understand-
able due to limited human resources or expertise—may
render the computational software practically unusable
even to the original creators not too much later in time.
Modern complex applications with big data and big code,
as well as emphasis on global team collaboration only add
to these difficulties.

The process of software development by itself is often
exceedingly challenging for programmers with moder-
ate or even abundant experience. A common software
development cycle such as the one shown on the left of
Figure 1 is oversimplified. In practice, the “disorder” on
the right of the same figure depicts much more accu-
rately the potential multitude of cycles and transitions
among the key phases. In the next section, we show how
to restore partial order to the process via what we call the
SSS principles.

4 Supportable scientific software: principles
and tools
Flemisch’s 2013 survey [9] on reproducible research
received feedback from only about 10% of targeted
recipients. Among those who responded, more than 70%
reported that the efforts to reproduce own or others’
computational results are between average to very high.
The survey results also convey that RR is perceived as
“unrewarding” hard work. The survey suggested the cen-
tral roles of strategic tools such as the use of a repository
(e.g., SVN, CVS, GIT, Mercurial). The survey results are in
line with our understanding and experiences. Despite the
burden of RR, we maintain our position and belief in the
importance of enhancing its reliability.

We define supportable scientific software (SSS)1 as a con-
ceptual framework that encompasses a collection of soft-
ware development methods for promoting the reliability
of reproducing provably correct results in computational
sciences. There are four critical elements of SSS [29]:

•	 Justified: Scientific software should be based on theo-
retical guarantees that specify sufficient precondi-
tions leading to success in satisfying error tolerance or
uncertainty level. There are lower and upper bounds
of computational cost functions of input size n in
terms of memory or storage, as well as computational
and communication time (these functions are prefer-
ably low-degree polynomials of n).

•	 Efficient: In theory, complexity analysis is an important
tool for gauging efficiency. Nevertheless, its nature is
asymptotic. Even polynomial-time algorithms can be
costly if they have large leading coefficients or are of
high degrees. In practice, a profiler can be utilized to
measure and pinpoint code lines that consume the
most resources, such as time and memory. Code reuse

Figure 1: Left: A standard software development cycle. Right: Software development cycles in reality.

Choi: MINRES-QLP Pack and Reliable Reproducible Research via Supportable Scientific SoftwareArt. e22, page 4 of 7

is another measure of efficiency; it can be achieved
through refactoring of duplicate code patterns into
functions to save development time.

•	 Robust/Durable: A robust software package is tested
under a wide variety of conditions and ranges of inputs.
The design of a robust software package should ideally
be durable under changing computing hardware and
software environments. In addition, we recommend
persisting and maintaining source code and research
data via repositories with version control.

•	 Intelligible: At the minimum, we expect clear docu-
mentation of key algorithmic function and steps,
inputs and outputs, parameters, usage examples, and
related references.

From the practice of reproducible research in our work,
we affirm that RRR via SSS can be done. Many rudimen-
tary examples already exist even though it is probably
extremely hard to find “a general solution” for a given sci-
entific field. The tools we highlight in Table 1 are avail-
able with MATLAB and similar counterparts can be found
with other modern programming languages such as C++,
Java, and Python, enabling researchers to develop func-
tional and polished algorithms.

We recommend the use of a code repository for every
project from the beginning. We also employ Integrated
Development Environment (IDE) software. In the case
of MATLAB, it has its own IDE built in Java, with visually
appealing automated reports on code dependency, docu-
mentation evaluation, and performance analysis, which
together can help pinpoint at line level or character posi-
tion where the code base can be improved.

We emphasize on the importance of designing simple
application programming interfaces (APIs) from the out-
set. If we were allowed to communicate only one thing
to expert or application users about our implementation,
our choice would be its API, which consists of function
name, required and optional inputs, outputs, and our
parsing schemes. Our algorithms parse user inputs and
ensure that they fall in the correct ranges; in some cases
we supply default values for missing optional parameters
and gently correct invalid input values. We craft detailed
and readable documentation in both text and searchable
HTML formats with specification of APIs, syntax, default
input values, examples of usage, and further references.

Lastly, to ensure the correctness of computational
results from our software and examples in the documen-
tation, we create unit tests [30], doctests [31], and stress
tests. An effective unit test or doctest would be demon-
strative of API usage, and run in less than a small fraction
of a second. Without these tests in place, our experience
is that even minor changes to our code or documentation
could quickly and unknowingly depart from the original
design and theory. These two kinds of tests effectively
safeguard most changes we make to our algorithms. We
adhere to the following test practices:

Every time before code is checked into the repository,
unit tests and doctests are run.
Every time a bug is found, unit tests are expanded.

All unit tests and doctests have to pass at 100% success rate
for each code check-in and software release. The diligent
execution of an expanding test suite serves to verify and
strengthen the software functions, and to simplify the soft-
ware development cycles; see Figure 2. On the other hand,
stress tests check if the software performs under load.

5 Incentives and educational efforts for RRR
and SSS
Practitioners of RRR and SSS need more incentives in terms
of specialized software citation [32], comprehensive jour-
nal review policies for software publication such as ACM
TOMS’ [33], and research funding schemes such as NSF’s
SSE & SSI program [34] that gives significant weightage to
quality scientific software infrastructure at all scales. We
urge members of the scientific community to cite high-
quality software and online resources; the following are
two examples of referencing the software GAIL [10] and
MINRES-QLP community website [24] in BibTeX format:
@misc{CDHJZ14gail,
 title={{GAIL}: {G}uaranteed {A}utomatic {I}
 ntegration {L}ibrary (Version 1.3),
 {MATLAB} Software},
 author={Choi, Sou-Cheng T. and Ding, Yuhan and
 Hickernell, Fred J. and Jiang, Lan and Zhang,
 Yizhi},
 year={2014},
howpublished={\url{http://code.google.com/p/gail/},
}

@misc{MinresqlpWebsite,
 author={Choi, Sou-Cheng T.},
 title={{MINRES-QLP} Project and Community
 Website},
howpublished={\url{http://code.google.com/p/
minres-qlp/}},
 year={2013},
 notes={Website},
}

To maximize quality software’s exposure and usage, we
support free software and open source movement, but are
also open to having our software included in quality com-
mercial software. There are also viable open source pack-
ages sustained by provision of commercial services.

In Summer 2013, we started a team devoted to develop-
ment of a MATLAB research software package GAIL [11]
for numerical integration with guarantee of accuracy.
Our members role play a team of software engineers with
specializations in three of the critical software functions,
namely testing, documentation, and release. We make
use of a private wiki to strengthen team communication,
recording key steps of important scientific routine pro-
cess and procedures; maintaining checklists of day-to-day

Figure 2: Test-driven software development cycles.

http://code.google.com/p/gail/
http://code.google.com/p/minres-qlp/
http://code.google.com/p/minres-qlp/

Choi: MINRES-QLP Pack and Reliable Reproducible Research via Supportable Scientific Software Art. e22, page 5 of 7

tasks; and sharing of intermediate results, knowledge,
and expertise. We prepare our students of applied math-
ematics to become practitioners of RRR via SSS. As a ben-
eficial side effect, as they gain software engineering skills
that are usually obtainable only in information-technol-
ogy driven companies, they become more attractive job
candidates. In fact, one of our five student members was
employed as a part-time software test engineer the fol-
lowing semester.

We say, “Those who can, do and teach.” Principles and
novel ideas behind the research work would ideally be
propagated in beginning and advanced courses in sci-
entific computing, whereas the practices of engineering
supportable software promoted to computational scien-
tists and researchers through workshops such as WSSSPE
[35, 36] To this end, we started an experimental seminar
course, “Reliable Mathematical Software” (IIT MATH-573)
[29] in our home institution. We drew teaching materials
from exemplary mathematical software such as Chebfun
(http://www2.maths.ox.ac.uk/chebfun). The class met
weekly for 75 minutes for a total of 10 weeks; each time
we demonstrated one or two tools in Table 1 with moti-
vating scenarios and finished the last two weeks with each
student presenting a research algorithm implemented
with some of the SSS principles. After the course, a master
student completed her thesis and five doctoral students
are developing research papers following the principles
of RRR via SSS. In addition, we serve the computational
community by organizing a two-session minisymposium
“Reliable Computational Science” in the upcoming SIAM
Annual Meeting 2014 (http://meetings.siam.org/pro-
gram.cfm?CONFCODE=AN14) and co-authoring a com-
prehensive summary report for WSSSPE1 [35, 36].

6 Conclusions
We agree with the importance of reproducible research
at all scales, and recommend to strengthen it with sup-
portable scientific software development practices. In the
short term, RRR via SSS may seem more time consuming.
In the medium or long run, the investment of time and
efforts gives valuable software a better chance to “survive”
and make a greater impact in the research area. Some
researchers may actually find that our approach of RRR
via SSS provides to some extent a structured course for
investigating and attacking complex computational prob-
lems. More reliable incremental research can be built on

supportable software packages, leading to stably upward
spirals of progress in scientific knowledge. As a commu-
nity, we need more time to reflect, brainstorm, and experi-
ment specific operations. We also need more ongoing
dialogue on the topic in the community.

Acknowledgments
The author thanks David Donoho and Ron Yang, from
whom she was introduced to the key principles and
best practices of reproducible research in production of
BeamLab [37] and robust enterprise software develop-
ment, respectively. She is grateful to Michael Saunders and
Chris Paige, her co-authors of MINRES-QLP [20, 21]. She
also thanks Fred Hickernell for introducing her to Doctest
[31], co-developing the definition of SSS and the princi-
ples of RRR via SSS during the development of GAIL [10,
11] and the course Reliable Mathematical Software [29].
The author is thankful for the comments and feedback for
an earlier version of this work from the reviewers of the
JORS and the First Workshop on Sustainable Software for
Science [35, 36].

Notes
 1 SSS originally stands for staunch scientific software in

[29].

References
1. Claerbout, J REPRODUCIBLE COMPUTATIONAL

RESEARCH: A history of hurdles, mostly overcome. Avail-
able at: http://sepwww.stanford.edu/data/media/
public/sep/jon/reproducible.html [Last accessed 21
April 2014].

2. Fomel, S and Claerbout, J F 2009 Guest Editors’ Intro-
duction: Reproducible Research. Computing in Sci-
ence and Engineering, 11(1): 5–7. DOI: http://dx.doi.
org/10.1109/MCSE.2009.14

3. Buckheit, J B and Donoho, D L 1995 Wavelab and
reproducible research. Springer.

4. Donoho, D L, Maleki, A, Rahman, I U, Shahram,
M and Stodden, V 2009 Reproducible Research in
Computational Harmonic Analysis. Computing in Sci-
ence and Engineering, 11(1): 8–18. DOI: http://dx.doi.
org/10.1109/MCSE.2009.15

5. Robert, G 2005 Reproducible Research: A Bioinfor-
matics Case Study. Statistical Applications in Genetics
and Molecular Biology, 4(1): 1–25.

Justified Efficient Durable/Robust Intelligible
Repository
Editor (IDE)
Code Analyzer
Help Report, Contents Report
Searchable HTML documentation
Doctest
Unit Testing Framework
Debugger
Profiler

Table 1: Tools compatible with or available in MATLAB 2014a that can be employed to enhance the defining elements
of SSS.

http://www2.maths.ox.ac.uk/chebfun
http://meetings.siam.org/program.cfm?CONFCODE=AN14
http://meetings.siam.org/program.cfm?CONFCODE=AN14
http://sepwww.stanford.edu/data/media/public/sep/jon/reproducible.html
http://sepwww.stanford.edu/data/media/public/sep/jon/reproducible.html
http://dx.doi.org/10.1109/MCSE.2009.14
http://dx.doi.org/10.1109/MCSE.2009.14
http://dx.doi.org/10.1109/MCSE.2009.15
http://dx.doi.org/10.1109/MCSE.2009.15

Choi: MINRES-QLP Pack and Reliable Reproducible Research via Supportable Scientific SoftwareArt. e22, page 6 of 7

6. Peng, R D 2011 Reproducible Research In Computa-
tional Science. Science, 334(6060): 1226–1227. DOI:
http://dx.doi.org/10.1126/science.1213847

7. LeVeque, R J 2009 Python Tools for Reproducible
Research on Hyperbolic Problems. Computing in Sci-
ence and Engineering, 11(1): 19–27. DOI: http://dx.doi.
org/10.1109/MCSE.2009.13

8. Stodden, V 2009 The Legal Framework for Reproduc-
ible Scientific Research: Licensing and Copyright. Com-
puting in Science and Engineering, 11(1): 35–40. DOI:
http://dx.doi.org/10.1109/MCSE.2009.19

9. Flemisch, B 2013 Online Survey: Reproducibility in
Computational Science and Engineering. Available at:
SIAM-CSE@siam.org

10. Choi, S C T, Ding, Y, Hickernell, F J, Jiang, L and
Zhang, Y 2014 GAIL: Guaranteed Automatic Integra-
tion Library (Version 1.3). MATLAB Software. Available
at: http://code.google.com/p/gail/

11. Choi, S C T, Ding, Y, Hickernell, F J, Jiang, L and
Zhang, Y 2013 GAIL: Guaranteed Automatic Integra-
tion Library (Version 1.0). MATLAB Software. Available
at: http://code.google.com/p/gail/

12. Clancy, N, Ding, Y, Hamilton, C, Hickernell, F J
and Zhang, Y 2014 The Cost of Deterministic, Adap-
tive, Automatic Algorithms: Cones, Not Balls. Jour-
nal of Complexity, 30(1): 21–45. DOI: http://dx.doi.
org/10.1016/j.jco.2013.09.002

13. Hickernell, F J, Jiang, L, Liu, Y and Owen, A B 2014
Guaranteed Conservative Fixed Width Confidence
Intervals via Monte Carlo Sampling. Available at:
http://arxiv.org/abs/1208.4318

14. Choi, S C T and Munson, T S 2014 OSCEF 1.1 APIs.
Available at: http://code.google.com/p/oscef/

15. Choi, S C T and Munson, T S 2014 OSCEF (Open-
Source CIM-EARTH Framework), Version 1.1. Available
at: http://code.google.com/p/oscef/

16. Elliott, J, Foster, I, Judd, K, Moyer, E and Munson,
T 2010 CIM-EARTH: Community Integrated Model of
Economic and Resource Trajectories for Humankind.
Argonne, Illinois: Argonne National Laboratory. ANL/
MCS-TM-307.

17. Choi, S C T and Munson, T S 2013 OSCEF: The Open-
Source CIM-EARTH Framework User Manual for Version
1.0. IL: Computation Institute, University of Chicago.
ANL/MCS-TM-339.

18. Choi, S C T 2014 A Complementarity Approach to
Solving Computable General Equilibrium Models.
Computational Economics, (in review).

19. Choi, S C T 2006 Iterative Methods for Singular Linear
Equations and Least-Squares Problems. ICME, Stanford
University.

20. Choi, S C T, Paige, C C and Saunders, M A 2011
MINRES-QLP: A Krylov subspace method for indefinite
or singular symmetric systems. SIAM Journal on Scien-
tific Computing, 33(4): 1810–1836. DOI: http://dx.doi.
org/10.1137/100787921

21. Choi, S C T and Saunders, M A 2014 Algorithm 937:
MINRES-QLP for symmetric and Hermitian linear
equations and least-squares problems. ACM Transac-
tions on Mathematical Software. 2014; 40(2).

22. Choi, S C T 2013 Minimal Residual Methods for Com-
plex Symmetric, Skew Symmetric, and Skew Hermitian
Systems. Chicago, IL: CI, University of Chicago. ANL/
MCS-P3028–0812.

23. Choi, S C T 2014 Generalized Minimal Residual Meth-
ods for Singular Linear Systems or Linear Least-Squares
Problems. (working).

24. MINRES-QLP 2013 MINRES-QLP Project and Commu-
nity Website. Available at: http://code.google.com/p/
minres-qlp/

25. PETSc: Portable, Extensible Toolkit for Scientific Com-
putation. Available at: http://www.mcs.anl.gov/petsc/
[Last accessed 21 April 2014].

26. Claerbout, J and Karrenbach, M 1992 Electronic
Documents Give Reproducible Research a New Mean-
ing. Available at: http://sepwww.stanford.edu/doku.
php?id=sep:research:reproducible:seg92

27. Chen, S S, Donoho, D L and Saunders, M A 1998
Atomic decomposition by basis pursuit. SIAM Journal
on Scientific Computing, 20(1): 33–61. DOI: http://
dx.doi.org/10.1137/S1064827596304010

28. Starck, J L, Candès, E J and Donoho, D L 2002 The
curvelet transform for image denoising. Image Process-
ing, IEEE Transactions on, 11(6): 670–684.

29. Choi, S C T and Hickernell, F J 2013 IIT MATH-573 Reli-
able Mathematical Software [Seminal Course]. Avail-
able at: http://mypages.iit.edu/~schoi32/MATH573
Slides.pdf

30. MATLAB Unit Testing Framework, 2013. Available at:
http://www.mathworks.com/help/

31. Doctest, 2010. Available at: http://www.mathworks.
com/matlabcentral/

32. Purdue Online Writing Lab, 2013. Available at: http://
owl.english.purdue.edu/owl/resource/560/10/.

33. ACM Algorithms Policy. Available at: http://toms.acm.
org/AlgPolicy.html [Last accessed 21 April 2014].

34. NSF 13–525 2013 Software Infrastructure for Sus-
tained Innovation - SSE and SSI. Available at: http://
www.nsf.gov/pubs/2013/nsf13525/nsf13525.htm

35. Workshop on Sustainable Software for Science: Prac-
tice and Experiences, 2013. Available at: http://wssspe.
researchcomputing.org.uk/

36. Katz, D S, Choi, S C T, Lapp, H, Maheshwari, K, Löf-
fler, F, Turk, M, et al 2014 Summary of the First Work-
shop on Sustainable Software for Science: Practice
and Experiences (WSSSPE1). Journal of Open Research
Software, 2(1):e6. DOI: http://dx.doi.org/10.5334/
jors.an

37. Choi, S C, Donoho, D L, Flesia, A G, Huo, X, Levi, O
and Shi, D 2002 About BeamLab—a Toolbox for New
Multiscale Methodologies. Available at: http://www-
stat.stanford.edu/~beamlab/

http://dx.doi.org/10.1126/science.1213847
http://dx.doi.org/10.1109/MCSE.2009.13
http://dx.doi.org/10.1109/MCSE.2009.13
http://dx.doi.org/10.1109/MCSE.2009.19
mailto:SIAM-CSE@siam.org
http://code.google.com/p/gail/
http://code.google.com/p/gail/
http://dx.doi.org/10.1016/j.jco.2013.09.002
http://dx.doi.org/10.1016/j.jco.2013.09.002
http://arxiv.org/abs/1208.4318
http://code.google.com/p/oscef/
http://code.google.com/p/oscef/
http://dx.doi.org/10.1137/100787921
http://dx.doi.org/10.1137/100787921
http://code.google.com/p/minres-qlp/
http://code.google.com/p/minres-qlp/
http://www.mcs.anl.gov/petsc/
http://sepwww.stanford.edu/doku.php?id=sep:research:reproducible:seg92
http://sepwww.stanford.edu/doku.php?id=sep:research:reproducible:seg92
http://dx.doi.org/10.1137/S1064827596304010
http://dx.doi.org/10.1137/S1064827596304010
http://mypages.iit.edu/~schoi32/MATH573Slides.pdf
http://mypages.iit.edu/~schoi32/MATH573Slides.pdf
http://www.mathworks.com/help/
http://www.mathworks.com/matlabcentral/
http://www.mathworks.com/matlabcentral/
http://owl.english.purdue.edu/owl/resource/560/10/
http://owl.english.purdue.edu/owl/resource/560/10/
http://toms.acm.org/AlgPolicy.html
http://toms.acm.org/AlgPolicy.html
http://www.nsf.gov/pubs/2013/nsf13525/nsf13525.htm
http://www.nsf.gov/pubs/2013/nsf13525/nsf13525.htm
http://wssspe.researchcomputing.org.uk/
http://wssspe.researchcomputing.org.uk/
http://dx.doi.org/10.5334/jors.an
http://dx.doi.org/10.5334/jors.an
http://www-stat.stanford.edu/~beamlab/
http://www-stat.stanford.edu/~beamlab/

Choi: MINRES-QLP Pack and Reliable Reproducible Research via Supportable Scientific Software Art. e22, page 7 of 7

How to cite this article: Choi, S-C T 2014 MINRES-QLP Pack and Reliable Reproducible Research via Supportable Scientific
Software. Journal of Open Research Software, 2(1): e22, pp. 1-7, DOI: http://dx.doi.org/10.5334/jors.bb

Published: 9 July 2014

Copyright: © 2014 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 3.0 Unported License (CC-BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/3.0/.

 OPEN ACCESS Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press.

http://dx.doi.org/10.5334/jors.bb
http://creativecommons.org/licenses/by/3.0/

