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ABSTRACT
Function approximation, integration, and optimization are three fundamental 
mathematical problems. They are especially challenging when the functions involved 
fluctuate wildly in certain parts of the domain, or if the domain is high dimensional. 
Ideally, algorithms to solve these problems should possess a rigorous mathematical 
framework, data-based (probabilistic) error bounds, and advanced sampling strategies 
for efficiency.

The Guaranteed Automatic Integration Library (GAIL) is our multi-year research 
effort addressing these aforementioned challenges. GAIL is a free, open-source 
MATLAB software library with nine main algorithms undergirded by over a dozen peer-
reviewed publications. GAIL solves problems in univariate and multivariate integration, 
and in univariate function approximation and optimization. GAIL algorithms adaptively 
sample data values of the input function and automatically stop when the error 
tolerance has been reached. In some cases, GAIL algorithms are proven to have 
asymptotically optimal computational cost. We consistently employ good software 
development practices for GAIL such as unit tests, searchable online documentation, 
and Git version control. GAIL is available at https://gailgithub.github.io/GAIL_Dev/.
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(1) OVERVIEW
INTRODUCTION
Function approximation, integration, and optimization 
are fundamental problems requiring numerical solutions 
that come from iterative algorithms. A crucial question is 
how and when to stop the computation.

Theoretical error bounds typically contain unknown 
quantities, such as the norm of the input function. This 
makes them impractical as stopping criteria.

Therefore, practical algorithms that adapt the 
computation to the error requirement are often based on 
heuristics. These include a popular adaptive quadrature 
algorithm of Shampine [25], which is a part of MATLAB 
[27], and the Chebfun library [7]. Heuristics based on 
function data tend to lack theoretical support; one does 
not know when they work and when they do not. A 
warning against commonly used adaptive quadrature 
stopping criteria is given by Lyness [24].

To address these shortcomings, we have developed 
adaptive stopping criteria for univariate function 
approximation, integration, and optimization; and for 
multivariate integration. We have implemented them in 
the Guaranteed Automatic Integration Library (GAIL) [2]. 
In contrast to other automatic or adaptive algorithms, 
our GAIL algorithms have theoretical foundations that 
are detailed in a series of articles and graduate theses [3, 
5, 6, 8, 9, 10, 16, 17, 18, 19, 20, 23, 28, 29].

The underlying idea in our GAIL algorithms is that for 
reasonable functions what you see is nearly what you get. 
The initial sampling of the function to be approximated, 
integrated, or optimized tells us enough about its norm 
so that we can compute data-driven error bounds. For 
each algorithm, there is an associated set of reasonable 
functions corresponding to a cone, C. Mathematically, 
“cone” means that a constant multiple of every function 
in C is also in C. For adaptive simple (i.e., independent and 
identically distributed) Monte Carlo integration algorithms 
[10, 18], C corresponds to a function whose kurtosis is 
no larger than some bound. The bound reflects the 
user’s definition of “reasonable”. For adaptive univariate 
algorithms [3, 5, 6, 28, 29], C corresponds to functions for 
which a stronger norm is bounded in terms of a weaker 
one. For quasi-Monte Carlo integration algorithms [8, 
9, 16, 17, 19, 20], C corresponds to functions whose 
Fourier complex exponential or Walsh coefficients decay 
steadily. For Bayesian quasi-Monte Carlo algorithms 
[16, 17], C corresponds to typical (non-outlier) Gaussian 
processes within the sample space.

IMPLEMENTATION AND ARCHITECTURE
GAIL includes the following algorithms. All core algorithm 
names end with “_g” to denote some form of accuracy 
guarantee. The last one, meanMC_CLT, is the only 
exception and is a stopping criterion based on the Central 
Limit Theorem for pedagogical purposes. Figure 1 shows 
the structure of GAIL.

1. One-dimensional algorithms:
(a) funappx_g [3, 5, 6]: One-dimensional function 

approximation on a closed, bounded interval;
(b) funmin_g [3, 28]: Global minimum value of 

univariate function on a closed, bounded interval;
(c) integral_g [5, 29]: One-dimensional integration 

on a bounded interval.
2. Multi-dimensional algorithms:

(a) meanMC_g [10, 18]: simple Monte Carlo method 
for estimating mean of a random variable;

(b) cubMC_g [10, 18]: simple Monte Carlo method for 
numerical multiple integration;

(c) cubLattice_g [20]: Quasi-Monte Carlo method 
using rank-1 lattice cubature for d-dimensional 
integration;

(d) cubSobol_g [9, 20, 23]: Quasi-Monte Carlo 
method using Sobol’ cubature for d-dimensional 
integration;

(e) cubBayesLattice_g [17]: Bayesian cubature 
method for d-dimensional integration using 
lattice points;

(f) cubBayesNet_g [16, 17]: Bayesian cubature method 
for d-dimensional integration using Sobol points;

(g) meanMC_CLT: Monte Carlo method with Central 
Limit Theorem (CLT) confidence intervals for 
estimating mean of a random variable.

Figure 2 shows the architectural design of GAIL 
algorithms. A GAIL algorithm typically takes in

•	 a real-valued function, f,
•	 its domain, D (e.g., finite interval or hyperbox),
•	 user tolerance, ϵ > 0,
•	 an initial number and a maximum number of sample 

points in D at which f are evaluated, n0,
•	 a maximum number of sample points nN, and
•	 a maximum number of iterations, I.

Among all the inputs, only f is compulsory. Other inputs 
are optional and implemented with default values as 
specified in the documentation. We note that in some 
multiple integration algorithms, the user tolerance may 
be a generalized error tolerance function, max(ϵa, |y|ϵr), 
where ϵa > 0 and ϵr > 0 are respectively absolute and 
relative tolerances, and y is the unknown true solution. 
Each algorithm may have its unique additional inputs. For 
instance, a (quasi-)Monte Carlo algorithm typically has 
an input dimension, d.

In the ith iteration, a GAIL algorithm evaluates an 
estimated solution soli and its error bound, ei, using ni 
function samples. When ei  ≤ ϵ, the algorithm designates 
the iteration as the last iteration, l and returns the outputs 
sol = soll, e = el, and an exit flag that indicates algorithmic 
success, along with other outputs that are specific to the 
algorithm. Other less satisfactory stopping conditions are 
i == I or ni == nN, and the returned exit flag would note 
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such non-success. We refer readers to [11] for details of 
stopping criteria in GAIL’s algorithms.

Each one of our key GAIL algorithms, except for 
cubBayesLattice_g and cubBayesNet_g, can parse 
inputs with the following three patterns of Application 
Programming Interfaces (APIs), where f is a real-valued 
MATLAB function or function handle; in_param and out_
param are MATLAB structure arrays; and x is an estimated 
output:

1. Ordered input values: [x, out_param] = algo(f, 
val1, val2, val3,...)

2. Input structure array: [x, out_param] = algo(f, 
in_param)

3. Ordered input values, followed by optional name-
value pairs: [x, out_param] = algo(f, ‘input1’, 
val1, ‘input2’, val2,...)

For cubBayesLattice_g and cubBayesNet_g, they are 
implemented in object-oriented design (whereas others 
are in modular functions). Hence, their interfaces are 
slightly different. We refer readers to Table 4 for an 
example and GAIL documentation for details. The three 
forms of aforementioned inputs are still applicable, but 
the outputs of the Bayes methods are [obj, x] instead, 
where obj is an instance of the object class. To obtain 
the same output form of other algorithms, users can 
simply do an additional, optional step: [x, out_param] 
= compInteg(obj). Another small difference is that the 
second input parameter, dimension d, in the two Bayes 
algorithms is compulsory.

We note that almost all high-dimensional integration 
algorithms in GAIL have been re-implemented (with 
extensions) in the open-source Python software library, 
QMCPy [4].

Figure 1 Structure of GAIL Algorithms.
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In the following, we showcase GAIL’s performance 
with two examples on univariate function optimization 
and cubature.

Example 1. We want to find the global minimum of 
the following function:

 
2 2100( 0.15) 80( 0.65)( ) 5e e  for [0,1].x xf x x− − − −= − − ∈  (1)

We plot the function f in (1), along with the sampling 
points and best estimates, (x̂, f(x ̂)) of true minimum (x*, 
f(x*)) from three solvers, MATLAB’s fminbnd, Chebfun’s 
min, and GAIL’s funmin_g in Figure 3. For (1), funmin_g 
automatically samples the function more often in spiky 
areas and locates the global minimum accurately. 
In contrast, MATLAB’s fminbnd [1, 12] returns a local 
minimum that is not a global minimum. That said, 
fminbnd is designed for seeking a local minimum. 
Chebfun [14] approximates f with Chebyshev polynomials 
and samples f at Chebyshev points. Its min function is 
capable of returning all local minima that it can find, out 
of which we extract the global minimum. Both min and 
funmin_g succeeded in locating the global minimum 
to the required accuracy, with the former being more 
efficient using fewer sampling points and the latter 
more accurate, but both met the tolerance of ϵ = 10–6. In 
addition, Table 1 summarizes the solvers’ performance. 
In Table 2, we show the essential code for setting up 
funmin_g for this example.

Example 2.  In this example, we compare GAIL’s 
Monte Carlo and quasi-Monte Carlo methods in similar 
ways as in Section 4 in [15] with the Keister integrals [21]:
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where x represents vectors in the d-dimensional unit 
hypercube. In Table 3, we summarize the performance 
of the methods MC, Lattice, Sobol, Bayes Lattice, and 
Bayes Net—they refer to the GAIL cubatures, cubMC_g, 
cubLattice_g, cubSobol_g, cubBayesLattice_g, and 
cubBayesNet_g, respectively. In the case of d = 3, all five 
methods succeeded completely meaning the absolute 
error is less than given tolerance, i.e., |µ – µ̂| ≤ ϵ, where µ̂ is 
a cubature’s approximated value and µ is the true value 
of (2). In the case of d = 8, success rate is at least 98% for 
each GAIL cubature. The fastest method was cubSobol_g 
for the two cases, whereas cubBayesNet_g used the least 
number of sampling points. cubBayesLattice_g and 
cubSobol_g achieved the smallest average absolute error 
for d = 3 and d = 8, respectively. The code in Table 4 shows 
how the problem with d = 3 is solved with the GAIL solvers.

QUALITY CONTROL
The testing of GAIL library is automated as scheduled 
tasks. There are two kinds of tests run: fast tests and long 
tests.

As aptly named, the fast tests take a relatively short 
time to run so that a user can quickly test the sanity of 
the library and the installation. Essential capabilities of 

Figure 2 GAIL architectural design. The largest yellow circle 
contains a compulsory input function f. The other inputs in 
small yellow circles are typically optional and, when absent, 
set to default values in the GAIL algorithms. Each GAIL 
algorithm is iterative in nature. In the ith iteration, a solution 
estimate soli is computed along with its error estimate ei 
obtained by ni sampling points in the input domain D. When 
ei is not greater than the tolerance, ϵ, GAIL iterations stop 
and return the final numerical solution sol (in the largest blue 
circle). Other outputs (in small blue circles) are bundled in a 
MATLAB structure array.

Figure 3 Function f defined in (1), sampling points and best 

estimates retured by solvers MATLAB’s fminbnd, Chebfun’s 

min, and GAIL’s funmin_g. This figure is reproducible by 

the MATLAB script, demo_funmin_g2_samplepoints.m 
available in GAIL’s ‘develop’ branch at https://github.com/
GailGithub/GAIL_Dev/tree/develop/GAIL_Matlab/Papers/
GAIL_JORS. 

https://github.com/GailGithub/GAIL_Dev/tree/develop/GAIL_Matlab/Papers/GAIL_JORS
https://github.com/GailGithub/GAIL_Dev/tree/develop/GAIL_Matlab/Papers/GAIL_JORS
https://github.com/GailGithub/GAIL_Dev/tree/develop/GAIL_Matlab/Papers/GAIL_JORS
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METHOD FUNMIN_G FMINBND MIN

|x̂ – x*| 1.0 × 10–10 0.5 1.0 × 10–8

|f(x̂) – f(x*)| 0 4.0 1.3 × 10–7

n 113 10 37

Time (seconds) 0.042 0.048 0.022

Table 1 Performance of funmin_g, fminbnd, and min with automatic stopping criteria for optimizing the function defined in 

Example 1. This table is reproducible by the MATLAB script, demo_funmin_g2_samplepoints.m.

f = @(x) -5*exp ( -100*(x -0.15) .^2) - exp( -80*(x -0.65) .^2);

[fmin ,out] = funmin_g(f);

Table 2 Essential code in the MATLAB script, gail_jors_eg1.m, for invoking funmin_g in Example 1.

d = 3, ∈ = 0.005

METHOD MC LATTICE SOBOL BAYES LATTICE BAYES NET

Absolute Error 1.1 × 10–3 5.2 × 10–4 5.2 × 10–4 3.4 × 10–7 5.8 × 10–4

Tolerence Met 100% 100% 100% 100% 100%

n 2500000 4100 3900 4100 1800

Time (seconds) 0.1700 0.0097 0.0065 0.0100 0.1200

d = 8, ∈ = 0.050

METHOD MC LATTICE SOBOL BAYES LATTICE BAYES NET

Absolute Error 1.2 × 10–2 1.4 × 10–2 6.9 × 10–3 2.1 × 10–1 8.8 × 10–3

Tolerence Met 100% 99% 100% 98% 100%

n 7400000 15000 16000 1000000 8200

Time (seconds) 1.1000 0.0380 0.0240 2.4000 0.3600

Table 3 Average performance of cubatures with automatic stopping criteria for estimating the integrals in (2) for 1000 independent 

runs. These results can be conditionally reproduced with the MATLAB command, KeisterCubatureExampleJORS(1000), in GAIL.

Table 4 Essential code in the MATLAB script, gail_jors_eg2.m, for invoking GAIL’s (Q)MC algorithms in Example 2.

a = 1/sqrt (2);

d = 3;

abstol = 0.005;

reltol = 0;

normsqd = @(t) sum(t.*t,2); % squared l_2 norm of t

replaceZeros = @(t) (t+(t==0)*eps); % to avoid getting Inf

yinv = @(t) erfcinv(replaceZeros(abs(t)));

f1 = @(t,d) cos(sqrt(normsqd(yinv(t)))) * (sqrt(pi))^d;

fKeister = @(x) f1(x,d);

inputArgs = {’absTol ’, abstol , ’relTol ’, reltol };

hyperbox = [zeros(1,d); ones(1,d)];

[u1 ,~] = cubMC_g(fKeister , hyperbox , inputArgs {:});

[u2 ,~] = cubSobol_g(fKeister , hyperbox , inputArgs {:});

[u3 ,~] = cubLattice_g(fKeister , hyperbox , inputArgs {:});

[~,u4] = cubBayesNet_g(fKeister , d, inputArgs {:});

[~,u5] = cubBayesLattice_g(fKeister , d, inputArgs {:});
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the algorithms are quickly checked with carefully chosen 
tests to make sure the new code has not broken existing 
algorithms.

The long tests are more rigorous use cases that take 
much longer time, up to several hours to finish. These 
tests also typically include the examples from the 
papers and theses associated with the GAIL algorithms. 
The long tests are meant to test all the features and 
capabilities of the algorithms which cannot be covered 
in the fast tests.

Both types of tests are executed on the Karlin 
computing cluster hosted at the Illinois Institute of 
Technology (IIT). These machines run Centos Release 
6.10. The Portable Batch System (PBS) is used to schedule 
the tasks. GAIL library is tested with seven recent MATLAB 
versions at least. The fast tests are automatically run 
once everyday.

The fast tests take less than two minutes to finish 
in our test setup. The long tests are run everyday for 
at least one version of MATLAB so that all the recent 
seven MATLAB release versions are covered in a circular 
rotation. As of this writing, both the fast tests and long 
tests are run with these MATLAB versions: R2017a, 
R2017b, R2018a, R2018b, R2019a, R2019b, and R2020a.

Before the tests begin, the ‘develop’ branch of the 
GAIL git repository is pulled in. Then the fast tests are run 
first, followed by the long tests. Automatically the test 
results are sent as emails to the maintainers.

All of the GAIL code-base is hosted and version-
controlled in GitHub at https://github.com/GailGithub/
GAIL_Dev. There are three major git branches used: 1) 
master, 2) develop and, 3) feature. The major releases 
come out of the ‘master’ branch after regression testing. 
A ‘feature’ branch is where one or more developers 
host their own rudimentary work and start developing 
an algorithm. Once the feature branch code reaches 
a satisfactory level of completion with all the tests 
passing, it gets merged into the ‘develop’ branch. The 
‘develop’ branch is used to curate the candidate release 
algorithms. Periodically, all the developers get together 
and review the status of the ‘develop’ branch such as the 
documentation, code cleanliness, and tests completion 
before voting to merge with ‘master’.

(2) AVAILABILITY
OPERATING SYSTEM
Our software is expected to run on multiple operating 
systems including but not limited to Windows, Mac, 
and Linux. Any operating system that is compatible 
with the MATLAB versions below should be able to run 
GAIL successfully; please see System Requirements 
and Supported Compilers at https://www.mathworks.
com/support/requirements/previous-releases.html. Our 
automated test suites are executed daily on CentOS 
Linux release 6.10.

PROGRAMMING LANGUAGE
MATLAB, versions R2017a–R2021a.

ADDITIONAL SYSTEM REQUIREMENTS
We refer readers to the following page for MATLAB 
system requirements, which depend on MATLAB version 
and machine type: https://au.mathworks.com/support/
requirements/previous-releases.html.

In addition, the installation of GAIL requires 
approximately 42 megabytes (MB) of disk space. The 
memory requirement of executing GAIL applications 
depends on various factors such as choice of algorithms, 
user tolerance, and the number of function sampling 
points. We recommend at least 2 gigabytes (GB) of 
memory allocated for MATLAB and GAIL.

DEPENDENCIES
GAIL is developed in MATLAB versions R2016a to R2021a. 
In particular, three of our core algorithms, cubSobol_g, 
cubBayesNet_g, and cubBayesLattice_g require the 
following MATLAB add-on toolboxes: Signal Processing 
Toolbox, Optimization Toolbox, Statistics and Machine 
Learning Toolbox. As each MATLAB release is associated 
with a specific version of a MATLAB toolbox, we do not 
detail the toolbox versions here — if necessary, the 
toolbox version numbers can be simply determined with 
the MATLAB command ver.

For development and testing purposes, we use the 
third-party toolboxes, Chebfun [14] and Doctest for 
MATLAB [26].
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(3) REUSE POTENTIAL
GAIL is publicly available as a Git repository hosted 
on GitHub at https://gailgithub.github.io/GAIL_Dev/. 
Since GAIL is written in MATLAB, it is accessible by all 
MATLAB users whose work requires numerical function 
approximation, integration, or optimization. Multivariate 
integration arises in fields such as quantitative finance 
[13] and uncertainty quantification [22].

Users with questions can submit an issue through 
GitHub Issues. Developers who wish to add algorithms 
to or enhance GAIL can submit a pull request, or email to 
the mailing list, gail-users@googlegroups.com.

ADDITIONAL FILE

The additional files for reproducing the results in Tables 1 – 4 
and Figure 3 this article can be found as follows:

•	 GAIL. Develop branch. URL: https://github.com/GailGithub/
GAIL_Dev/tree/develop/GAIL_Matlab/Papers/GAIL_JORS
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