
SOFTWARE METAPAPER

CORRESPONDING AUTHOR:

Xin Tong

Department of Scientific
Computing, Florida State
University, Tallahassee,
FL 32306, US

xtong5@hawk.iit.edu

KEYWORDS:
Univariate Function
Approximation; Multivariate
Integration; Univariate
Optimization; Adaptive;
(Quasi-)Monte Carlo; Bayesian
Cubature

TO CITE THIS ARTICLE:
Tong X, Choi S-CT, Ding Y,
Hickernell FJ, Jiang L, Jiménez
Rugama Ll A, Rathinavel J,
Zhang K, Zhang Y, Zhou X
2022 Guaranteed Automatic
Integration Library (GAIL): An
Open-Source MATLAB Library
for Function Approximation,
Optimization, and Integration.
Journal of Open Research
Software, 10: 7. DOI: https://
doi.org/10.5334/jors.381

Guaranteed Automatic
Integration Library
(GAIL): An Open-Source
MATLAB Library for
Function Approximation,
Optimization, and
Integration

XIN TONG

SOU-CHENG T. CHOI

YUHAN DING

FRED J. HICKERNELL

LAN JIANG

LLUÍS ANTONI JIMÉNEZ RUGAMA

JAGADEESWARAN RATHINAVEL

KAN ZHANG

YIZHI ZHANG

XUAN ZHOU

*Author affiliations can be found in the back matter of this article

ABSTRACT
Function approximation, integration, and optimization are three fundamental
mathematical problems. They are especially challenging when the functions involved
fluctuate wildly in certain parts of the domain, or if the domain is high dimensional.
Ideally, algorithms to solve these problems should possess a rigorous mathematical
framework, data-based (probabilistic) error bounds, and advanced sampling strategies
for efficiency.

The Guaranteed Automatic Integration Library (GAIL) is our multi-year research
effort addressing these aforementioned challenges. GAIL is a free, open-source
MATLAB software library with nine main algorithms undergirded by over a dozen peer-
reviewed publications. GAIL solves problems in univariate and multivariate integration,
and in univariate function approximation and optimization. GAIL algorithms adaptively
sample data values of the input function and automatically stop when the error
tolerance has been reached. In some cases, GAIL algorithms are proven to have
asymptotically optimal computational cost. We consistently employ good software
development practices for GAIL such as unit tests, searchable online documentation,
and Git version control. GAIL is available at https://gailgithub.github.io/GAIL_Dev/.

https://gailgithub.github.io/GAIL_Dev/
mailto:xtong5@hawk.iit.edu
https://doi.org/10.5334/jors.381
https://doi.org/10.5334/jors.381
https://orcid.org/0000-0003-4718-1198
https://orcid.org/0000-0002-6190-2986
https://orcid.org/0000-0002-7807-1752
https://orcid.org/0000-0001-6677-1324

2Tong et al. Journal of Open Research DOI: 10.5334/jors.381

(1) OVERVIEW
INTRODUCTION
Function approximation, integration, and optimization
are fundamental problems requiring numerical solutions
that come from iterative algorithms. A crucial question is
how and when to stop the computation.

Theoretical error bounds typically contain unknown
quantities, such as the norm of the input function. This
makes them impractical as stopping criteria.

Therefore, practical algorithms that adapt the
computation to the error requirement are often based on
heuristics. These include a popular adaptive quadrature
algorithm of Shampine [25], which is a part of MATLAB
[27], and the Chebfun library [7]. Heuristics based on
function data tend to lack theoretical support; one does
not know when they work and when they do not. A
warning against commonly used adaptive quadrature
stopping criteria is given by Lyness [24].

To address these shortcomings, we have developed
adaptive stopping criteria for univariate function
approximation, integration, and optimization; and for
multivariate integration. We have implemented them in
the Guaranteed Automatic Integration Library (GAIL) [2].
In contrast to other automatic or adaptive algorithms,
our GAIL algorithms have theoretical foundations that
are detailed in a series of articles and graduate theses [3,
5, 6, 8, 9, 10, 16, 17, 18, 19, 20, 23, 28, 29].

The underlying idea in our GAIL algorithms is that for
reasonable functions what you see is nearly what you get.
The initial sampling of the function to be approximated,
integrated, or optimized tells us enough about its norm
so that we can compute data-driven error bounds. For
each algorithm, there is an associated set of reasonable
functions corresponding to a cone, C. Mathematically,
“cone” means that a constant multiple of every function
in C is also in C. For adaptive simple (i.e., independent and
identically distributed) Monte Carlo integration algorithms
[10, 18], C corresponds to a function whose kurtosis is
no larger than some bound. The bound reflects the
user’s definition of “reasonable”. For adaptive univariate
algorithms [3, 5, 6, 28, 29], C corresponds to functions for
which a stronger norm is bounded in terms of a weaker
one. For quasi-Monte Carlo integration algorithms [8,
9, 16, 17, 19, 20], C corresponds to functions whose
Fourier complex exponential or Walsh coefficients decay
steadily. For Bayesian quasi-Monte Carlo algorithms
[16, 17], C corresponds to typical (non-outlier) Gaussian
processes within the sample space.

IMPLEMENTATION AND ARCHITECTURE
GAIL includes the following algorithms. All core algorithm
names end with “_g” to denote some form of accuracy
guarantee. The last one, meanMC_CLT, is the only
exception and is a stopping criterion based on the Central
Limit Theorem for pedagogical purposes. Figure 1 shows
the structure of GAIL.

1. One-dimensional algorithms:
(a) funappx_g [3, 5, 6]: One-dimensional function

approximation on a closed, bounded interval;
(b) funmin_g [3, 28]: Global minimum value of

univariate function on a closed, bounded interval;
(c) integral_g [5, 29]: One-dimensional integration

on a bounded interval.
2. Multi-dimensional algorithms:

(a) meanMC_g [10, 18]: simple Monte Carlo method
for estimating mean of a random variable;

(b) cubMC_g [10, 18]: simple Monte Carlo method for
numerical multiple integration;

(c) cubLattice_g [20]: Quasi-Monte Carlo method
using rank-1 lattice cubature for d-dimensional
integration;

(d) cubSobol_g [9, 20, 23]: Quasi-Monte Carlo
method using Sobol’ cubature for d-dimensional
integration;

(e) cubBayesLattice_g [17]: Bayesian cubature
method for d-dimensional integration using
lattice points;

(f) cubBayesNet_g [16, 17]: Bayesian cubature method
for d-dimensional integration using Sobol points;

(g) meanMC_CLT: Monte Carlo method with Central
Limit Theorem (CLT) confidence intervals for
estimating mean of a random variable.

Figure 2 shows the architectural design of GAIL
algorithms. A GAIL algorithm typically takes in

•	 a real-valued function, f,
•	 its domain, D (e.g., finite interval or hyperbox),
•	 user tolerance, ϵ > 0,
•	 an initial number and a maximum number of sample

points in D at which f are evaluated, n0,
•	 a maximum number of sample points nN, and
•	 a maximum number of iterations, I.

Among all the inputs, only f is compulsory. Other inputs
are optional and implemented with default values as
specified in the documentation. We note that in some
multiple integration algorithms, the user tolerance may
be a generalized error tolerance function, max(ϵa, |y|ϵr),
where ϵa > 0 and ϵr > 0 are respectively absolute and
relative tolerances, and y is the unknown true solution.
Each algorithm may have its unique additional inputs. For
instance, a (quasi-)Monte Carlo algorithm typically has
an input dimension, d.

In the ith iteration, a GAIL algorithm evaluates an
estimated solution soli and its error bound, ei, using ni
function samples. When ei ≤ ϵ, the algorithm designates
the iteration as the last iteration, l and returns the outputs
sol = soll, e = el, and an exit flag that indicates algorithmic
success, along with other outputs that are specific to the
algorithm. Other less satisfactory stopping conditions are
i == I or ni == nN, and the returned exit flag would note

3Tong et al. Journal of Open Research DOI: 10.5334/jors.381

such non-success. We refer readers to [11] for details of
stopping criteria in GAIL’s algorithms.

Each one of our key GAIL algorithms, except for
cubBayesLattice_g and cubBayesNet_g, can parse
inputs with the following three patterns of Application
Programming Interfaces (APIs), where f is a real-valued
MATLAB function or function handle; in_param and out_
param are MATLAB structure arrays; and x is an estimated
output:

1. Ordered input values: [x, out_param] = algo(f,
val1, val2, val3,...)

2. Input structure array: [x, out_param] = algo(f,
in_param)

3. Ordered input values, followed by optional name-
value pairs: [x, out_param] = algo(f, ‘input1’,
val1, ‘input2’, val2,...)

For cubBayesLattice_g and cubBayesNet_g, they are
implemented in object-oriented design (whereas others
are in modular functions). Hence, their interfaces are
slightly different. We refer readers to Table 4 for an
example and GAIL documentation for details. The three
forms of aforementioned inputs are still applicable, but
the outputs of the Bayes methods are [obj, x] instead,
where obj is an instance of the object class. To obtain
the same output form of other algorithms, users can
simply do an additional, optional step: [x, out_param]
= compInteg(obj). Another small difference is that the
second input parameter, dimension d, in the two Bayes
algorithms is compulsory.

We note that almost all high-dimensional integration
algorithms in GAIL have been re-implemented (with
extensions) in the open-source Python software library,
QMCPy [4].

Figure 1 Structure of GAIL Algorithms.

4Tong et al. Journal of Open Research DOI: 10.5334/jors.381

In the following, we showcase GAIL’s performance
with two examples on univariate function optimization
and cubature.

Example 1. We want to find the global minimum of
the following function:

2 2100(0.15) 80(0.65)() 5e e for [0,1].x xf x x− − − −= − − ∈ (1)

We plot the function f in (1), along with the sampling
points and best estimates, (x̂, f(x ̂)) of true minimum (x*,
f(x*)) from three solvers, MATLAB’s fminbnd, Chebfun’s
min, and GAIL’s funmin_g in Figure 3. For (1), funmin_g
automatically samples the function more often in spiky
areas and locates the global minimum accurately.
In contrast, MATLAB’s fminbnd [1, 12] returns a local
minimum that is not a global minimum. That said,
fminbnd is designed for seeking a local minimum.
Chebfun [14] approximates f with Chebyshev polynomials
and samples f at Chebyshev points. Its min function is
capable of returning all local minima that it can find, out
of which we extract the global minimum. Both min and
funmin_g succeeded in locating the global minimum
to the required accuracy, with the former being more
efficient using fewer sampling points and the latter
more accurate, but both met the tolerance of ϵ = 10–6. In
addition, Table 1 summarizes the solvers’ performance.
In Table 2, we show the essential code for setting up
funmin_g for this example.

Example 2. In this example, we compare GAIL’s
Monte Carlo and quasi-Monte Carlo methods in similar
ways as in Section 4 in [15] with the Keister integrals [21]:

/2 1

[0,1] 1

1
cos () .

2d

d
d

j
j

x dp -

=

æ ö
Fç ÷

è ø
åò x (2)

where x represents vectors in the d-dimensional unit
hypercube. In Table 3, we summarize the performance
of the methods MC, Lattice, Sobol, Bayes Lattice, and
Bayes Net—they refer to the GAIL cubatures, cubMC_g,
cubLattice_g, cubSobol_g, cubBayesLattice_g, and
cubBayesNet_g, respectively. In the case of d = 3, all five
methods succeeded completely meaning the absolute
error is less than given tolerance, i.e., |µ – µ̂| ≤ ϵ, where µ̂ is
a cubature’s approximated value and µ is the true value
of (2). In the case of d = 8, success rate is at least 98% for
each GAIL cubature. The fastest method was cubSobol_g
for the two cases, whereas cubBayesNet_g used the least
number of sampling points. cubBayesLattice_g and
cubSobol_g achieved the smallest average absolute error
for d = 3 and d = 8, respectively. The code in Table 4 shows
how the problem with d = 3 is solved with the GAIL solvers.

QUALITY CONTROL
The testing of GAIL library is automated as scheduled
tasks. There are two kinds of tests run: fast tests and long
tests.

As aptly named, the fast tests take a relatively short
time to run so that a user can quickly test the sanity of
the library and the installation. Essential capabilities of

Figure 2 GAIL architectural design. The largest yellow circle
contains a compulsory input function f. The other inputs in
small yellow circles are typically optional and, when absent,
set to default values in the GAIL algorithms. Each GAIL
algorithm is iterative in nature. In the ith iteration, a solution
estimate soli is computed along with its error estimate ei
obtained by ni sampling points in the input domain D. When
ei is not greater than the tolerance, ϵ, GAIL iterations stop
and return the final numerical solution sol (in the largest blue
circle). Other outputs (in small blue circles) are bundled in a
MATLAB structure array.

Figure 3 Function f defined in (1), sampling points and best

estimates retured by solvers MATLAB’s fminbnd, Chebfun’s

min, and GAIL’s funmin_g. This figure is reproducible by

the MATLAB script, demo_funmin_g2_samplepoints.m
available in GAIL’s ‘develop’ branch at https://github.com/
GailGithub/GAIL_Dev/tree/develop/GAIL_Matlab/Papers/
GAIL_JORS.

https://github.com/GailGithub/GAIL_Dev/tree/develop/GAIL_Matlab/Papers/GAIL_JORS
https://github.com/GailGithub/GAIL_Dev/tree/develop/GAIL_Matlab/Papers/GAIL_JORS
https://github.com/GailGithub/GAIL_Dev/tree/develop/GAIL_Matlab/Papers/GAIL_JORS

5Tong et al. Journal of Open Research DOI: 10.5334/jors.381

METHOD FUNMIN_G FMINBND MIN

|x̂ – x*| 1.0 × 10–10 0.5 1.0 × 10–8

|f(x̂) – f(x*)| 0 4.0 1.3 × 10–7

n 113 10 37

Time (seconds) 0.042 0.048 0.022

Table 1 Performance of funmin_g, fminbnd, and min with automatic stopping criteria for optimizing the function defined in

Example 1. This table is reproducible by the MATLAB script, demo_funmin_g2_samplepoints.m.

f = @(x) -5*exp (-100*(x -0.15) .^2) - exp(-80*(x -0.65) .^2);

[fmin ,out] = funmin_g(f);

Table 2 Essential code in the MATLAB script, gail_jors_eg1.m, for invoking funmin_g in Example 1.

d = 3, ∈ = 0.005

METHOD MC LATTICE SOBOL BAYES LATTICE BAYES NET

Absolute Error 1.1 × 10–3 5.2 × 10–4 5.2 × 10–4 3.4 × 10–7 5.8 × 10–4

Tolerence Met 100% 100% 100% 100% 100%

n 2500000 4100 3900 4100 1800

Time (seconds) 0.1700 0.0097 0.0065 0.0100 0.1200

d = 8, ∈ = 0.050

METHOD MC LATTICE SOBOL BAYES LATTICE BAYES NET

Absolute Error 1.2 × 10–2 1.4 × 10–2 6.9 × 10–3 2.1 × 10–1 8.8 × 10–3

Tolerence Met 100% 99% 100% 98% 100%

n 7400000 15000 16000 1000000 8200

Time (seconds) 1.1000 0.0380 0.0240 2.4000 0.3600

Table 3 Average performance of cubatures with automatic stopping criteria for estimating the integrals in (2) for 1000 independent

runs. These results can be conditionally reproduced with the MATLAB command, KeisterCubatureExampleJORS(1000), in GAIL.

Table 4 Essential code in the MATLAB script, gail_jors_eg2.m, for invoking GAIL’s (Q)MC algorithms in Example 2.

a = 1/sqrt (2);

d = 3;

abstol = 0.005;

reltol = 0;

normsqd = @(t) sum(t.*t,2); % squared l_2 norm of t

replaceZeros = @(t) (t+(t==0)*eps); % to avoid getting Inf

yinv = @(t) erfcinv(replaceZeros(abs(t)));

f1 = @(t,d) cos(sqrt(normsqd(yinv(t)))) * (sqrt(pi))^d;

fKeister = @(x) f1(x,d);

inputArgs = {’absTol ’, abstol , ’relTol ’, reltol };

hyperbox = [zeros(1,d); ones(1,d)];

[u1 ,~] = cubMC_g(fKeister , hyperbox , inputArgs {:});

[u2 ,~] = cubSobol_g(fKeister , hyperbox , inputArgs {:});

[u3 ,~] = cubLattice_g(fKeister , hyperbox , inputArgs {:});

[~,u4] = cubBayesNet_g(fKeister , d, inputArgs {:});

[~,u5] = cubBayesLattice_g(fKeister , d, inputArgs {:});

6Tong et al. Journal of Open Research DOI: 10.5334/jors.381

the algorithms are quickly checked with carefully chosen
tests to make sure the new code has not broken existing
algorithms.

The long tests are more rigorous use cases that take
much longer time, up to several hours to finish. These
tests also typically include the examples from the
papers and theses associated with the GAIL algorithms.
The long tests are meant to test all the features and
capabilities of the algorithms which cannot be covered
in the fast tests.

Both types of tests are executed on the Karlin
computing cluster hosted at the Illinois Institute of
Technology (IIT). These machines run Centos Release
6.10. The Portable Batch System (PBS) is used to schedule
the tasks. GAIL library is tested with seven recent MATLAB
versions at least. The fast tests are automatically run
once everyday.

The fast tests take less than two minutes to finish
in our test setup. The long tests are run everyday for
at least one version of MATLAB so that all the recent
seven MATLAB release versions are covered in a circular
rotation. As of this writing, both the fast tests and long
tests are run with these MATLAB versions: R2017a,
R2017b, R2018a, R2018b, R2019a, R2019b, and R2020a.

Before the tests begin, the ‘develop’ branch of the
GAIL git repository is pulled in. Then the fast tests are run
first, followed by the long tests. Automatically the test
results are sent as emails to the maintainers.

All of the GAIL code-base is hosted and version-
controlled in GitHub at https://github.com/GailGithub/
GAIL_Dev. There are three major git branches used: 1)
master, 2) develop and, 3) feature. The major releases
come out of the ‘master’ branch after regression testing.
A ‘feature’ branch is where one or more developers
host their own rudimentary work and start developing
an algorithm. Once the feature branch code reaches
a satisfactory level of completion with all the tests
passing, it gets merged into the ‘develop’ branch. The
‘develop’ branch is used to curate the candidate release
algorithms. Periodically, all the developers get together
and review the status of the ‘develop’ branch such as the
documentation, code cleanliness, and tests completion
before voting to merge with ‘master’.

(2) AVAILABILITY
OPERATING SYSTEM
Our software is expected to run on multiple operating
systems including but not limited to Windows, Mac,
and Linux. Any operating system that is compatible
with the MATLAB versions below should be able to run
GAIL successfully; please see System Requirements
and Supported Compilers at https://www.mathworks.
com/support/requirements/previous-releases.html. Our
automated test suites are executed daily on CentOS
Linux release 6.10.

PROGRAMMING LANGUAGE
MATLAB, versions R2017a–R2021a.

ADDITIONAL SYSTEM REQUIREMENTS
We refer readers to the following page for MATLAB
system requirements, which depend on MATLAB version
and machine type: https://au.mathworks.com/support/
requirements/previous-releases.html.

In addition, the installation of GAIL requires
approximately 42 megabytes (MB) of disk space. The
memory requirement of executing GAIL applications
depends on various factors such as choice of algorithms,
user tolerance, and the number of function sampling
points. We recommend at least 2 gigabytes (GB) of
memory allocated for MATLAB and GAIL.

DEPENDENCIES
GAIL is developed in MATLAB versions R2016a to R2021a.
In particular, three of our core algorithms, cubSobol_g,
cubBayesNet_g, and cubBayesLattice_g require the
following MATLAB add-on toolboxes: Signal Processing
Toolbox, Optimization Toolbox, Statistics and Machine
Learning Toolbox. As each MATLAB release is associated
with a specific version of a MATLAB toolbox, we do not
detail the toolbox versions here — if necessary, the
toolbox version numbers can be simply determined with
the MATLAB command ver.

For development and testing purposes, we use the
third-party toolboxes, Chebfun [14] and Doctest for
MATLAB [26].

LIST OF CONTRIBUTORS
We thank the contributions of current, former, and visiting
students in the Department of Applied Mathematics
at Illinois Institute of Technology: Noah Grudowski, Cu
Hauw Hung, Yueyi Li, Xincheng Sheng, Aleksei Sorokin,
Xiaoyang Zhao, and Tianci Zhu.

SOFTWARE LOCATION
Name: MathWorks File Exchange
Persistent identifier: 10.5281/zenodo.4018189
Licence: IIT License; see LICENSE.m in the archive
Publisher: Kan Zhang
Version published: 2.3.2
Date published: 05/09/2021

Code repository
Name: GitHub
 Persistent identifier: https://github.com/GailGithub/
GAIL_Dev
 Licence: IIT License; see LICENSE.m in the zip or tar.
gz archives
Date published: 05/09/2021

LANGUAGE
English

https://github.com/GailGithub/GAIL_Dev
https://github.com/GailGithub/GAIL_Dev
https://www.mathworks.com/support/requirements/previous-releases.html
https://www.mathworks.com/support/requirements/previous-releases.html
https://au.mathworks.com/support/requirements/previous-releases.html
https://au.mathworks.com/support/requirements/previous-releases.html
https://doi.org/10.5281/zenodo.4018189
https://github.com/GailGithub/GAIL_Dev
https://github.com/GailGithub/GAIL_Dev

7Tong et al. Journal of Open Research DOI: 10.5334/jors.381

(3) REUSE POTENTIAL
GAIL is publicly available as a Git repository hosted
on GitHub at https://gailgithub.github.io/GAIL_Dev/.
Since GAIL is written in MATLAB, it is accessible by all
MATLAB users whose work requires numerical function
approximation, integration, or optimization. Multivariate
integration arises in fields such as quantitative finance
[13] and uncertainty quantification [22].

Users with questions can submit an issue through
GitHub Issues. Developers who wish to add algorithms
to or enhance GAIL can submit a pull request, or email to
the mailing list, gail-users@googlegroups.com.

ADDITIONAL FILE

The additional files for reproducing the results in Tables 1 – 4
and Figure 3 this article can be found as follows:

•	 GAIL. Develop branch. URL: https://github.com/GailGithub/
GAIL_Dev/tree/develop/GAIL_Matlab/Papers/GAIL_JORS

ACKNOWLEDGEMENTS

Hickernell, Ding, and Choi wish to thank students
from the following IIT courses for discussion: SCI 498
Adaptive Monte Carlo Algorithms with Applications to
Financial Risk Management, Summer 2016; MATH 491
Reading & Research, Summer 2015; SCI 498/MATH 491
Computational Social Sciences, Summer 2016; MATH
491-195 Solving Problems in the Social Sciences Using
Tools from Computational Mathematics and Statistics,
Summer 2015; Math 573/SCI 498 Reliable Mathematical
Software, Fall 2013 and Fall 2018.

FUNDING STATEMENT

Our work is supported in part by grants NSF-DMS-1115392
and NSF-DMS-1522687. The publication costs for this
article were funded by a gift from a generous Illinois
Institute of Technology alumnus.

COMPETING INTERESTS

The authors have no competing interests to declare.

AUTHOR AFFILIATIONS
Xin Tong orcid.org/0000-0003-4718-1198
Department of Scientific Computing, Florida State University,
Tallahassee, FL 32306, US

Sou-Cheng T. Choi orcid.org/0000-0002-6190-2986
Department of Applied Mathematics, Room 220, 10 W. 32nd
St., Illinois Institute of Technology, Chicago, IL 60616, US;

SAS Institute Inc., 2222 Kalakaua Ave, Suite 1400, Honolulu, HI
96815, US

Yuhan Ding orcid.org/0000-0002-7807-1752
Department of Applied Mathematics, Room 220, 10 W. 32nd
St., Illinois Institute of Technology, Chicago, IL 60616, US

Fred J. Hickernell orcid.org/0000-0001-6677-1324
Department of Applied Mathematics, Room 220, 10 W. 32nd
St., Illinois Institute of Technology, Chicago, IL 60616, US

Lan Jiang
Compass Inc., 90 5th Avenue, 3rd Floor, New York, NY 10011, US

Lluís Antoni Jiménez Rugama
Virtu Financial, 2530 Walsh Tarlton Ln, Austin, TX 78746, US

Jagadeeswaran Rathinavel
Wi-Tronix, LLC, 631 E Boughton Rd #240, Bolingbrook, IL 60440, US

Kan Zhang
Department of Applied Mathematics, Room 220, 10 W. 32nd
St., Illinois Institute of Technology, Chicago, IL 60616, US

Yizhi Zhang
Department of Applied Mathematics, Room 220, 10 W. 32nd
St., Illinois Institute of Technology, Chicago, IL 60616, US

Xuan Zhou
Morgan Stanley, 1585 Broadway, New York, NY 10036, US

REFERENCES

1. Brent RP. Algorithms for minimization without derivatives.

Courier Dover Publications; 2013.

2. Choi S-CT, et al. GAIL: Guaranteed Automatic Integration

Library (Versions 1.0-2.3.2). MATLAB software, http://

gailgithub.github.io/GAIL_Dev/. 2021. DOI: https://doi.

org/10.5281/zenodo.4018189

3. Choi S-CT, et al. Local Adaption for Approximation and

Minimization of Univariate Functions. In: J. Complexity, 2017;

40: 17–33. DOI: https://doi.org/10.1016/j.jco.2016.11.005

4. Choi S-CT, et al. QMCPy: A Quasi-Monte Carlo Python Library;

2021. URL: https://github.com/QMCSoftware/QMCSoftware.

DOI: https://doi.org/10.5281/zenodo.3964489

5. Clancy N, et al. The Cost of Deterministic, Adaptive, Automatic

Algorithms: Cones, Not Balls. In: J. Complexity, 2014; 30:

21–45. DOI: https://doi.org/10.1016/j.jco.2013.09. 002

6. Ding Y. Guaranteed Adaptive Univariate Function Appro-

ximation. PhD thesis. Illinois Institute of Technology; 2015.

7. Driscoll TA, Hale N, Trefethen LN, eds. Chebfun Guide.

Oxford: Pafnuty Publications; 2014.

8. Hickernell FJ, Jiménez Rugama Ll A. Reliable Adaptive

Cubature Using Digital Sequences. In: Monte Carlo and

Quasi-Monte Carlo Methods: MCQMC, Leuven, Belgium,

April 2014. Ed. by R. Cools and D. Nuyens. Vol. 163.

Springer Proceedings in Mathematics and Statistics.

Springer-Verlag, Berlin, 2016; 367–383. DOI: https://doi.

org/10.1007/978-3-319-33507-0_18

9. Hickernell FJ, Jiménez Rugama Ll A, Li D. Adaptive Quasi-

Monte Carlo Methods for Cubature. In: Contemporary

Computational Mathematics – a celebration of the 80th

birthday of Ian Sloan, Dick J, Kuo FY, Woźniakowski H

(eds.). 2018; 597–619. Springer-Verlag. DOI: https://doi.

org/10.1007/978-3-319-72456-0

https://gailgithub.github.io/GAIL_Dev/
mailto:gail-users@googlegroups.com
https://github.com/GailGithub/GAIL_Dev/tree/develop/GAIL_Matlab/Papers/GAIL_JORS
https://github.com/GailGithub/GAIL_Dev/tree/develop/GAIL_Matlab/Papers/GAIL_JORS
https://orcid.org/0000-0003-4718-1198
https://orcid.org/0000-0003-4718-1198
https://orcid.org/0000-0002-6190-2986
https://orcid.org/0000-0002-6190-2986
https://orcid.org/0000-0002-7807-1752
https://orcid.org/0000-0002-7807-1752
https://orcid.org/0000-0001-6677-1324
https://orcid.org/0000-0001-6677-1324
http://gailgithub.github.io/GAIL_Dev/
http://gailgithub.github.io/GAIL_Dev/
https://doi.org/10.5281/zenodo.4018189
https://doi.org/10.5281/zenodo.4018189
https://doi.org/10.1016/j.jco.2016.11.005
https://github.com/QMCSoftware/QMCSoftware
https://doi.org/10.5281/zenodo.3964489
https://doi.org/10.1016/j.jco.2013.09.002
https://doi.org/10.1007/978-3-319-33507-0_18
https://doi.org/10.1007/978-3-319-33507-0_18
https://doi.org/10.1007/978-3-319-72456-0
https://doi.org/10.1007/978-3-319-72456-0

8Tong et al. Journal of Open Research DOI: 10.5334/jors.381

10. Hickernell FJ, et al. Guaranteed Conservative Fixed Width

Confidence Intervals Via Monte Carlo Sampling. In: Monte

Carlo and Quasi-Monte Carlo Methods 2012, Dick J, et

al. (eds.). 2013; 65: 105–128. Springer Proceedings in

Mathematics and Statistics. Springer-Verlag, Berlin. DOI:

https://doi.org/10.1007/978-3-642-41095-6

11. Hickernell FJ, et al. Monte Carlo simulation, automatic

stopping criteria for. In: Wiley StatsRef-Statistics Reference

Online, Davidian M, et al. (eds.). 2018; John Wiley & Sons Ltd.

DOI: https://doi.org/10.1002/9781118445112.stat08035

12. Forsythe GE, Malcolm MA, Moler CB. Computer methods

for mathematical computations. Vol. 8. Prentice-Hall

Englewood Cliffs, NJ; 1977.

13. Glasserman P. Monte Carlo Methods in Financial

Engineering. Vol. 53. Applications of Mathematics.

New York: Springer-Verlag; 2004. DOI: https://doi.

org/10.1007/978-0-387-21617-1_5

14. Hale N, Trefethen LN, Driscoll TA. Chebfun Version 5.7.; 2017.

15. Hickernell FJ, et al. Monte Carlo simulation, automatic

stopping criteria for. In: Wiley StatsRef: Statistics

Reference Online, 2018; 1–7. DOI: https://doi.

org/10.1002/9781118445112.stat08035

16. Jagadeeswaran R. Fast Automatic Bayesian Cubature

Using Matching Kenrels and Designs. PhD thesis.

Illinois Institute of Technology; 2019. DOI: https://doi.

org/10.1007/s11222-019-09895-9

17. Jagadeeswaran R, Hickernell FJ. Fast Automatic Bayesian

Cubature Using Lattice Sampling. In: Stat. Comput, 2019;

29: 1215–1229. DOI: https://doi.org/10.1007/s11222-019-

09895-9

18. Jiang L. Guaranteed Adaptive Monte Carlo Methods for

Estimating Means of Random Variables. PhD thesis. Illinois

Institute of Technology; 2016.

19. Jiménez Rugama Ll A. Adaptive Quasi-Monte Carlo

Cubature. PhD thesis. Illinois Institute of Technology; 2016.

20. Jiménez Rugama Ll A, Hickernell FJ. Adaptive

Multidimensional Integration Based on Rank-1 Lattices.

In: Monte Carlo and Quasi-Monte Carlo Methods: MCQMC,

Leuven, Belgium, April 2014, Cools R, Nuyens D (eds.).

2016; 163: 407–422. Springer Proceedings in Mathematics

and Statistics. Springer-Verlag, Berlin. DOI: https://doi.

org/10.1007/978-3-319-33507-0_20

21. Keister BD. Multidimensional quadrature algorithms. In:

Computers in Physics, 1996; 10(2): 119–128. DOI: https://

doi.org/10.1063/1.168565

22. Kuo FY, Schwab C, Sloan IH. Quasi-Monte Carlo Finite Element

Methods for a Class of Elliptic Partial Differential Equations

with Random Coefficients. In: SIAM J. Numer. Anal. 2012; 50:

3351–3374. DOI: https://doi.org/10.1137/110845537

23. Li D. Reliable Quasi-Monte Carlo with Control Variates. MA

thesis. Illinois Institute of Technology; 2016.

24. Lyness JN. When Not to Use an Automatic Quadrature

Routine. In: SIAM Rev. 1983; 25: 63–87. DOI: https://doi.

org/10.1137/1025003

25. Shampine LF. Vectorized Adaptive Quadrature in MATLAB.

In: J. Comput. Appl. Math. 2008; 211: 131–140. DOI:

https://doi.org/10.1016/j.cam.2006.11.021

26. Smith T. Doctest – embed testable examples in your

function’s help, version 1.1.0.0. MATLAB Central File

Exchange; 2010. URL: https://www.mathworks.com/

matlabcentral/fileexchange/28862-doctest-embed-

testable-examples-in-your-function-s-help-comments.

27. The MathWorks, Inc. MATLAB R2021a. Natick, MA; 2021.

28. Tong X. A Guaranteed, Adaptive, Automatic Algorithm

for Univariate Function Minimization. MA thesis. Illinois

Institute of Technology; 2014.

29. Zhang Y. Guaranteed, Adaptive, Automatic Algorithms

for Univariate Integration: Methods, Costs and

Implementation. PhD thesis. Illinois Institute of

Technology; 2018.

TO CITE THIS ARTICLE:
Tong X, Choi S-CT, Ding Y, Hickernell FJ, Jiang L, Jiménez Rugama Ll A, Rathinavel J, Zhang K, Zhang Y, Zhou X 2022 Guaranteed
Automatic Integration Library (GAIL): An Open-Source MATLAB Library for Function Approximation, Optimization, and Integration.
Journal of Open Research Software, 10: 7. DOI: https://doi.org/10.5334/jors.381

Submitted: 24 June 2021 Accepted: 13 April 2022 Published: 29 July 2022

COPYRIGHT:
© 2022 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0
International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original
author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by Ubiquity Press.

https://doi.org/10.1007/978-3-642-41095-6
https://doi.org/10.1002/9781118445112.stat08035
https://doi.org/10.1007/978-0-387-21617-1_5
https://doi.org/10.1007/978-0-387-21617-1_5
https://doi.org/10.1002/9781118445112.stat08035
https://doi.org/10.1002/9781118445112.stat08035
https://doi.org/10.1007/s11222-019-09895-9
https://doi.org/10.1007/s11222-019-09895-9
https://doi.org/10.1007/s11222-019-09895-9
https://doi.org/10.1007/s11222-019-09895-9
https://doi.org/10.1007/978-3-319-33507-0_20
https://doi.org/10.1007/978-3-319-33507-0_20
https://doi.org/10.1063/1.168565
https://doi.org/10.1063/1.168565
https://doi.org/10.1137/110845537
https://doi.org/10.1137/1025003
https://doi.org/10.1137/1025003
https://doi.org/10.1016/j.cam.2006.11.021
https://www.mathworks.com/matlabcentral/fileexchange/28862-doctest-embed-testable-examples-in-your-function-s-help-comments
https://www.mathworks.com/matlabcentral/fileexchange/28862-doctest-embed-testable-examples-in-your-function-s-help-comments
https://www.mathworks.com/matlabcentral/fileexchange/28862-doctest-embed-testable-examples-in-your-function-s-help-comments
https://doi.org/10.5334/jors.381
http://creativecommons.org/licenses/by/4.0/

