
SOFTWARE METAPAPER

ABSTRACT

oflibnumpy & oflibpytorch:
Optical Flow Handling and
Manipulation in Python

CLAUDIO S. RAVASIO

LYNDON DA CRUZ

CHRISTOS BERGELES

We present oflibnumpy and oflibpytorch, an optical flow library based on NumPy
arrays and PyTorch tensors, respectively. It provides a structured approach to the
representation of optical flow, i.e 2D vector fields, as a custom class offering a number
of methods to apply, manipulate, analyse, and visualise the flow. The library takes
into account the two possible frames of reference in optical flow calculation, namely
the source (first frame) and target (second frame). The collection of methods and
their rigorous mathematical underpinning makes the library broadly applicable to any
project that uses flow fields. It is implemented as a Python 3 package whose source
can be found on GitHub, and which can be installed either from the git repository or the
Python Package Index (PyPI).

CORRESPONDING AUTHOR:

Claudio S. Ravasio

Research Assistant, King’s
College London / PhD student,
University College London, GB

claudio.s.ravasio@gmail.com

KEYWORDS:
Optical flow; Flow field; Flow
vector; Flow composition;
Python; NumPy; PyTorch

TO CITE THIS ARTICLE:
Ravasio CS, Da Cruz L,
Bergeles C 2021 oflibnumpy
& oflibpytorch: Optical Flow
Handling and Manipulation
in Python. Journal of Open
Research Software, 9: 31.
DOI: https://doi.org/10.5334/
jors.380

*Author affiliations can be found in the back matter of this article

mailto:claudio.s.ravasio@gmail.com
https://doi.org/10.5334/jors.380
https://doi.org/10.5334/jors.380
https://orcid.org/0000-0002-6453-5376
https://orcid.org/0000-0002-7695-6354
https://orcid.org/0000-0002-9152-3194

2Ravasio et al. Journal of Open Research DOI: 10.5334/jors.380

(1) OVERVIEW
INTRODUCTION
Optical flow calculation constitutes one of the
fundamental tasks of computer vision. It aims to
reconstruct the motion between two consecutive images
by finding pixel mappings between them, expressed as a
2D vector field. Seminal works by Horn and Schunck [6]
and Lucas and Kanade [9] are now over 40 years old, and
underpin the progress of the field.

Interest in optical flow algorithms remains high, as
an analysis of the publication date of papers evaluated
on SINTEL shows [3]. The explosion of the use of deep
learning methods for optical flow prediction coupled with
new potential applications such as autonomous driving
has led to a renewed push for improvements on the state
of the art on ever more complex benchmarks, such as
SINTEL [2], KITTI [10], and DAVIS [14].

Several methods to estimate optical flow from image
sequences are available in Python, ranging from the
OpenCV function cv2.calcOpticalFlowFarneback [1]
based on Farnebäck’s algorithm [4] to implementations
of methods aiming to better merge different scales, such
as the Python wrapper by Pathak et al. [13] for Liu et al.
[8]. Virtually all recent deep learning based methods
were developed in Python, with many important works,
e.g. FlowNet2 [7], PWC-Net [19], or RAFT [20] either
making use of the PyTorch machine learning framework
[12] from the onset, or making available a Pytorch
implementation later on.

Despite the extensive research to date, to the best
of our knowledge there exists no off-the-shelf software
that allows for easy handling and manipulation of optical
flow fields. We examined existing code, and what was
retrieved was either algorithm dependent, deals mainly
with visualisation (flowvid [16], flow-vis [17]), or adds

only basic flow warping with a focus on very specific tasks
such as reading/writing flows to the display capabilities
(flowpy [18]).

In contrast, we provide a structured approach to flow
fields and their manipulation. We take both possible
reference frames for flow vectors into account (see
Figure 1), and offer a wide range of operations on the
flow fields themselves. This rigorous method ensures
mathematically correct handling, thereby helping users
avoid pitfalls such as simply negating flow vectors
to obtain the inverse of a flow field. Beyond that, we
especially highlight the flow composition functions that
have not previously been implemented in this form.
As an example, composition functions allow users to
calculate the flow field which combined sequentially with
another (known) flow is equivalent to a third flow. These
operations were derived from first principles, and proved
to be paramount for the construction of the optical flow
ground truth in the synthetic datasets used in our work
presented in Ravasio et al. [15].

THEORY
We can define a flow field as mapping the coordinates x
of features 1 to i at time t1 to coordinates at time t2:

 1 21 2 1: ; { ,..., }t t i = =X X X x x (1)

In the context of this work, the features are image
pixels, corresponding to a discretised regular grid in the
theoretically continuous image. However, there are two
possible frames of reference, illustrated in Figure 1:

•	 Source, “s”: The pixel features whose motion is
tracked by the flow vectors are those in what we
term the source domain, or the image at time t1.
Thus, the flow field s,1→2 indicates the motion of

Figure 1 Flow fields in the two possible frames of reference: “source” means all pixels at time t1 are mapped to a new location at time
t2, while “target” means all pixels at time t2 are matched with a different previous location at the time t1.

https://doi.org/10.5334/jors.380

3Ravasio et al. Journal of Open Research DOI: 10.5334/jors.380

every pixel present in the image at time t1 to their
respective end position at time t2.

•	 Target, “t”: The pixel features whose motion is
tracked by the flow vectors are those in what we
term the target domain, or the image at time t2. The
flow field t,1→2 matches every pixel present in the
image at time t2 to their origin at time t1.

Therefore, we can extend the previous definition as
follows:

1 2

1 2

;1 2

;1 2

:

:
s t t

t t t

=

=

G X

X G

 (2)

where G = H × W, a 2D space with a regular grid defined
by H = {0, 1, ..., H–2, H–1} and W = {0, 1, ..., W–2, W–1}.

Given this, we set up the following equation:

 1 2 2 3 1 3 Å = (3)

where 1→2 is the flow from time t1 to time t2, and ⊕ is
the non-commutative operation corresponding to the
sequential application of two flow fields. To calculate
the actual flow vector values of 1→3, the naive approach
would be to simply add the vectors:

1 2 2 3

1 2 2 3

1 2 2 3

() () if source reference

() () if target reference
t t t t

t t t t

ì + ïï+ =íï + ïî

G X G X

X G X G
 (4)

However, a closer inspection reveals this to be incorrect:
a different set of features is tracked from time t1 to t2
than from time t2 to t3 (see also Figure 2). It is therefore
necessary to add an intermediate step which refers
the features in Gt2

 back to Gt1
, or the features in Gt2

forward to Gt3

, for the source and the target reference

frame respectively. The correct operation in the source
reference frame is then:

;1 3 ;1 2 ;2 3 ;1 2 2 1 ;2 3

1
;1 2 ;1 2 ;2 3

{ }

{ }

s s s s s

s s s

-

= Å = +

= +

 (5)

where s;1→2 {G} means applying the flow s;1→2 to the grid
Gt1

 to obtain the new feature coordinates Xt2
, followed

by an interpolation operation to obtain new grid values
Gt2

. The grid can either contain the pixel values of an
image or, as in the previous equation, the vector values
of another flow field. The inverse of a flow field can be
calculated with the formula 1

;1 2 ;1 2 ;1 2{ }s s s
-
 = - , i.e.

reversing the flow vectors and then applying the flow
field to the result in order to obtain an interpolation of
the result in a new regular grid, as above.

If 2→3 in Equation (3) is unknown, given known inputs
1→2 and 1→3, a similar consideration applies. In this
case, the flow vectors can be subtracted directly, but
then need to be mapped onto the grid at time t2:

 ;2 3 ;1 2 ;1 3 ;1 2{ }s s s s = - (6)

Finally, if 1→2 is unknown, we can subtracts known input
2→3 from the second known input 1→3, after mapping
the former from t2 to t1 via t3. The following equation
applies:

;1 2 ;1 3 2 1 ;2 3

;1 3 2 3 3 1 ;2 3

1
;1 3 ;2 3 ;1 3 ;2 3

1 1
;1 3 ;2 3 ;2 3 ;1 3 ;2 3

{ }

(){ }

(){ }

({ }){ }

s s s

s s

s s s s

s s s s s

-

- -

= -

= - Å

= - Å

= - +
 (7)

Figure 2 Schematic of the flow field composition operation. To obtain the correct coordinate mapping xt1 → xt3 from Flows 1 and 2, it
is necessary to select the flow vector from 2→3 which starts at the end position of the tracked feature at time t2, or xt2. Therefore,
it is not sufficient to simply add the vectors of the two flow fields: this would be equivalent to selecting the flow vector from 2→3
which starts at xt1 (assuming the “source” frame of reference is used).

4Ravasio et al. Journal of Open Research DOI: 10.5334/jors.380

Equations (5) to (7) allow us to achieve all three important
modes of composition of flow fields in the “source”
reference frame using just two fundamental operations:
vector addition, and applying a flow field to an input. An
analogous approach yields corresponding formulae for
flow fields in the “target” frame of reference.

IMPLEMENTATION AND ARCHITECTURE
Oflibnumpy and oflibpytorch are implemented as
a custom flow class based on either NumPy arrays
or PyTorch tensors, respectively, with detailed
documentation and usage guides available on
oflibnumpy.rtfd.io and oflibpytorch.rtfd.io. Using tensors
instead of arrays means oflibpytorch can partially run
on GPU instead of being limited to CPU operations, and
therefore integrate better into PyTorch-based deep
learning algorithms that use optical flow fields. This
comes at the cost of having to control the tensor devices
of inputs and outputs.

The flow class has three main attributes:

•	 Vectors vecs: The flow vectors themselves. They
are expressed as an array of shape (H, W, 2)
(oflibnumpy) or a tensor of shape (2, H, W), following
the PyTorch channel-first convention (oflibpytorch).
The dimension of size 2 corresponds to the vector
components (x, y), with x defined positive towards
the right, and y defined positive downwards. This
follows the OpenCV convention for flow vectors,
e.g. as output by the calcOpticalFlowFarneback
function.

•	 Reference ref: The flow reference determines
which frame of reference the flow vectors are in.
The options are “source” or “target”: either the flow
vectors originate from a regular grid in the flow
source, or they point to a regular grid in the flow
target (see Figure 1 and Equation (2)).

•	 Mask mask: A boolean array or tensor of shape (H,
W) which indicates which flow vectors are valid.
This is not relevant for simple flow operations such
as resizing, or tracking points, but becomes very
important when several flow fields are combined.
In that case, often only parts of the area H × W of
the resulting flow field will contain useful vector
values. This is not a limitation of the algorithm, but
a characteristic that arises from the nature of the
operation.

The implemented class methods can be grouped as
follows:

•	 Constructors: to create flow fields from a given
transformation matrix, a list of transforms, or filled
with zero-magnitude vectors

•	 Manipulation: inverting, resizing, and padding flows,
or switching their reference frame

•	 Application: warping an input, or tracking specific
points

•	 Evaluation: finding the valid source or target
area, necessary padding of inputs, or fitting a
transformation matrix to the flow field

•	 Visualisation: either using the classic hue-based
method, or showing arrows

Finally, as a key component building on the entire rest
of the flow library, the method combine_flows allows for
the composition of two input flow fields into one output
flow field. Three modes are available: the output of
the function corresponds to either 1→2, 2→3 or 1→3 in
Equation (3), the other two being the given input flows.
The equations used for this function were derived from
first principles as shown in Equations (5) to (7), and rely
exclusively on the implemented flow class methods.
These also ensure the valid area is tracked correctly
through each operation, and returned as the mask of the
resulting flow object.

Warping inputs with a flow field in the “source”
frame of reference is a slow operation, as it requires
interpolation from an unstructured to a regular grid.
To optimise performance, we therefore adapt some of
the flow composition equations to avoid this operation
wherever possible. For example, we make use of a
fundamental relationship between the two frames of
reference derived from Figure 1: we can invert a flow field
and switch its frame of reference at the same time by
simply inverting the flow vectors.

1 2

2 1

1
;1 2

;2 1

:s t t

t t

t

-

= ¬
=
=

G X

X G

 (8)

Applied to Equation (5), this allows us to replace two
slow operations, namely inverting the flow field s and
applying it to an input, with two fast operations: getting
the inverse in the “target” frame of reference, and
applying it to an input.

1
;1 3 ;1 2 ;1 2 ;2 3

1;
;1 2 ;1 2 ;2 3

;1 2 ;2 1 ;2 3

{ }

() { }

{ }

s s s s

s t
s s s

s t s

-

-

= +

= +

= +

 (9)

QUALITY CONTROL
We implemented tests based on the unittest package
for all relevant functions and class methods. They verify
the mathematical validity of the flow composition
operations, compare the output of functions such
as Flow.resize with expected results, and ensure
unexpected inputs throw the required error. They are
available from the test folder on GitHub.

These tests were written and continuously updated
during development. The coverage package (see
coverage.rtfd.io) reports an overall test coverage of 99%
for both oflibnumpy and oflibpytorch.

http://oflibnumpy.rtfd.io
http://oflibpytorch.rtfd.io
http://coverage.rtfd.io

5Ravasio et al. Journal of Open Research DOI: 10.5334/jors.380

Official documentation is available on ReadTheDocs
(RTD; see oflibnumpy.rtfd.io and oflibpytorch.rtfd.io). The
introduction page provides simple code examples that
use the core functionality, along with the expected
output. Users can find this code along with further sample
usages in a file called examples.py in the source code
on GitHub. Comparing the outputs will serve to confirm
the installation is working as intended. A more complete
demonstration and explanation of the capabilities of
oflibnumpy and oflibpytorch is available on the “Usage”
page of the RTD documentation, including visualisations
of the outputs.

(2) AVAILABILITY
OPERATING SYSTEM
As both oflibnumpy and oflibpytorch are pure Python
packages, they are compatible with any operating system
that can provide a Python 3 environment. Development
took place on a Windows 10 system.

PROGRAMMING LANGUAGE
Oflibnumpy and oflibpytorch require Python 3, and have
been specifically tested for Python 3.7 and 3.9.

ADDITIONAL SYSTEM REQUIREMENTS
There are no additional system requirements.

DEPENDENCIES
The following packages are required and will be installed
as dependencies when using the commands pip
install oflibnumpy or pip install oblibpytorch, or
when installing the code from source via setup.py:

•	 NumPy ≥ 1.15 [5]
•	 SciPy ≥ 1.4 [21]
•	 OpenCV ≥ 3.4 [1]

Oflibpytorch additionally requires PyTorch ≥ 1.4 [12], and
a compatible version of the CUDA toolkit [11] if operations
on GPU are required. We recommend an installation in a
virtual Conda environment, using the install command
suggested on PyTorch.org.

LIST OF CONTRIBUTORS
The contributors to this work are Claudio S. Ravasio,
Christos Bergeles, and Lyndon Da Cruz.

SOFTWARE LOCATION: OFLIBNUMPY
Archive 1

Name: Zenodo
Persistent identifier: 10.5281/zenodo.4916270

License: MIT License
Publisher: Claudio S. Ravasio
Version published: 1.0.0
Date published: 09/06/21

Archive 2
Name: Python Package Index (PyPI)
Persistent identifier: pypi.org/project/oflibnumpy

License: MIT License
Publisher: Claudio S. Ravasio
Version published: 1.0.0
Date published: 09/06/21

Code repository
Name: GitHub
Persistent identifier: github.com/RViMLab/oflibnumpy

License: MIT License
Date published: 09/06/21

SOFTWARE LOCATION: OFLIBPYTORCH
Archive 1

Name: Zenodo
Persistent identifier: 10.5281/zenodo.4916367

License: MIT License
Publisher: Claudio S. Ravasio
Version published: 1.0.0
Date published: 09/06/21

Archive 2
Name: Python Package Index (PyPI)
Persistent identifier: pypi.org/project/oflibpytorch

License: MIT License
Publisher: Claudio S. Ravasio
Version published: 1.0.0
Date published: 09/06/21

Code repository
Name: GitHub
Persistent identifier: github.com/RViMLab/oflibpytorch

License: MIT License
Date published: 09/06/21

LANGUAGE
English

(3) REUSE POTENTIAL

An early version of the library described in this paper
was used in Ravasio et al. [15]. We especially made use
of the ability to find a flow field which, when combined
sequentially with a first known flow, results in a known
third flow (see Equation (6)). This combine_flow function,
which in turn relies on the implementation of the flow
class and its methods, is key to the creation of the
complex synthetic optical flow datasets used in our
work and continues to be used in ongoing research
on the topic. We therefore see this software as both
of great value for specialised work with flow fields as
well as broadly applicable to any optical flow task that
requires common operations such as warping an input,

http://oflibnumpy.rtfd.io
http://oflibpytorch.rtfd.io
http://PyTorch.org
https://doi.org/10.5281/zenodo.4916270
http://pypi.org/project/oflibnumpy
http://github.com/RViMLab/oflibnumpy
https://doi.org/10.5281/zenodo.4916367
http://pypi.org/project/oflibpytorch
http://github.com/RViMLab/oflibpytorch

6Ravasio et al. Journal of Open Research DOI: 10.5334/jors.380

resizing a flow field, or inverting it. We intend it to be an
off-the-shelf tool that is easy to install, easy to use, and
well documented for researchers from any field. As an
example, Sintel [2] as well as KITTI [10] provide ground
truth flow fields along with data on invalid pixels. Once
loaded into NumPy, both can be used to construct a
single oflib flow object, making use of the mask attribute,
which will then automatically keep track of any changes
to invalid pixels effected by operations carried out on
the flow field. More experienced programmers with very
specific needs can also modify the source code, or simply
make use of the existing structure by extending the flow
class as required.

The main support channel for oflibnumpy and
oflibpytorch are their respective GitHub issue pages.
Users are also welcome to contact the first author of this
paper via email to ask for support or report issues.

ACKNOWLEDGEMENTS

We thank Theodoros Pissas and Ross Henry for useful
discussions during development.

FUNDING STATEMENT

This work was supported by the National Institute for
Health Research NIHR (Invention for Innovation, i4i; II-
LB-0716-20002). The views expressed are those of the
authors and not necessarily those of the NHS, the NIHR,
or the Department of Health and Social Care. The project
was also supported by core funding from the Wellcome/
EPSRC Centre for Medical Engineering, Wellcome Trust
[WT203148/Z/16/Z].

COMPETING INTERESTS

The authors have no competing interests to declare.

AUTHOR CONTRIBUTIONS

Lyndon Da Cruz and Christos Bergeles have contributed
equally.

AUTHOR AFFILIATIONS

Claudio S. Ravasio orcid.org/0000-0002-6453-5376
Research Assistant, King’s College London/PhD student,
University College London, GB

Lyndon Da Cruz orcid.org/0000-0002-7695-6354
Consultant Ophthalmic Surgeon, Moorfields Eye Hospital,
London, GB

Christos Bergeles orcid.org/0000-0002-9152-3194
Associate Professor, King’s College London, GB

REFERENCES

1. Bradski G. The OpenCV Library. Dr Dobb’s Journal of Software

Tools, 2000; 25: 120–125.

2. Butler DJ, Wulff J, Stanley GB, Black MJ. A naturalistic

open source movie for optical flow evaluation. In:

Fitzgibbon A, et al (Eds.), European Conf. on Computer Vision

(ECCV), Springer-Verlag, 2012; 611–625. DOI: https://doi.

org/10.1007/978-3-642-33783-3_44

3. Butler DJ, Wulff J, Stanley GB, Black MJ. 2021. URL http://

sintel.is.tue.mpg.de/results, accessed: 11/06/21.

4. Farnebäck G. Two-frame motion estimation based on

polynomial expansion. In: Scandinavian conference on

Image analysis, Springer, 2003; 363–370. DOI: https://doi.

org/10.1007/3-540-45103-X_50

5. Harris CR, Millman KJ, van derWalt SJ, Gommers R,

Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S,

Smith NJ, et al. Array programming with numpy. Nature,

2020; 585(7825): 357–362. DOI: https://doi.org/10.1038/

s41586-020-2649-2

6. Horn BK, Schunck BG. Determining optical flow. Artificial

intelligence, 1981; 17(1–3): 185–203. DOI: https://doi.

org/10.1016/0004-3702(81)90024-2

7. Ilg E, Mayer N, Saikia T, Keuper M, Dosovitskiy A, Brox

T. Flownet 2.0: Evolution of optical flow estimation with

deep networks. In: Proceedings of the IEEE conference on

computer vision and pattern recognition, 2017; 2462–2470.

DOI: https://doi.org/10.1109/CVPR.2017.179

8. Liu C, et al. Beyond pixels: exploring new representations

and applications for motion analysis. PhD thesis,

Massachusetts Institute of Technology; 2009.

9. Lucas BD, Kanade T. An iterative image registration

technique with an application to stereo vision. In:

Proceedings of the 7th International Joint Conference on

Artificial Intelligence, 1981; 674–679.

10. Menze M, Heipke C, Geiger A. Object scene flow. ISPRS

Journal of Photogrammetry and Remote Sensing, 2018; 140:

60–76. DOI: https://doi.org/10.1016/j.isprsjprs.2017.09.013

11. NVIDIA. 2020. URL https://docs.nvidia.com/cuda/, accessed:

11/06/21.

12. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G,

Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Kopf

A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S,

Steiner B, Fang L, Bai J, Chintala S. Pytorch: An imperative

style, high-performance deep learning library. Advances in

Neural Information Processing Systems, 2019; 32: 8024–8035.

13. Pathak D, Girshick R, Dollár P, Darrell T, Hariharan B.

Learning features by watching objects move. In: Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, 2017; 2701–2710. DOI: https://doi.org/10.1109/

CVPR.2017.638

https://orcid.org/0000-0002-6453-5376
https://orcid.org/0000-0002-6453-5376
https://orcid.org/0000-0002-7695-6354
https://orcid.org/0000-0002-7695-6354
https://orcid.org/0000-0002-9152-3194
https://orcid.org/0000-0002-9152-3194
https://doi.org/10.1007/978-3-642-33783-3_44
https://doi.org/10.1007/978-3-642-33783-3_44
http://sintel.is.tue.mpg.de/results
http://sintel.is.tue.mpg.de/results
https://doi.org/10.1007/3-540-45103-X_50
https://doi.org/10.1007/3-540-45103-X_50
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1016/0004-3702(81)90024-2
https://doi.org/10.1016/0004-3702(81)90024-2
https://doi.org/10.1109/CVPR.2017.179
https://doi.org/10.1016/j.isprsjprs.2017.09.013
https://docs.nvidia.com/cuda/
https://doi.org/10.1109/CVPR.2017.638
https://doi.org/10.1109/CVPR.2017.638

7Ravasio et al. Journal of Open Research DOI: 10.5334/jors.380

TO CITE THIS ARTICLE:
Ravasio CS, Da Cruz L, Bergeles C 2021 oflibnumpy & oflibpytorch: Optical Flow Handling and Manipulation in Python. Journal of Open
Research Software, 9: 31. DOI: https://doi.org/10.5334/jors.380

Submitted: 21 June 2021 Accepted: 10 November 2021 Published: 26 November 2021

COPYRIGHT:
© 2021 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0
International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original
author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by Ubiquity Press.

14. Pont-Tuset J, Perazzi F, Caelles S, Arbeláez P, Sorkine-

Hornung A, Van Gool L. The 2017 DAVIS challenge on video

object segmentation; 2017. arXiv preprint arXiv:170400675.

15. Ravasio CS, Pissas T, Bloch E, Flores B, Jalali S, Stoyanov D,

Cardoso JM, Da Cruz L, Bergeles C. Learned optical flow for

intra-operative tracking of the retinal fundus. International

journal of computer assisted radiology and surgery, 2020;

15(5): 827–836. DOI: https://doi.org/10.1007/s11548-020-

02160-9

16. Royo D. flowvid: Optical flow video tools; 2021. URL https://

pypi.org/project/flowvid/, accessed: 11/06/21.

17. Runia T. flow-vis: Easy optical flow visualisation in python;

2021. URL https://pypi.org/project/flow-vis/, accessed: 11/06/21.

18. Seznec M. flowpy: Tools for working with optical flow; 2021.

URL https://pypi.org/project/flowpy/, accessed: 11/06/21.

19. Sun D, Yang X, Liu MY, Kautz J. PWC-Net: CNNs for

optical flow using pyramid, warping, and cost volume. In:

Proceedings of the IEEE conference on computer vision and

pattern recognition, 2018; 8934–8943. DOI: https://doi.

org/10.1109/CVPR.2018.00931

20. Teed Z, Deng J. RAFT: Recurrent all-pairs field transforms for

optical flow. In: European Conference on Computer Vision,

Springer, 2020; 402–419. DOI: https://doi.org/10.1007/978-

3-030-58536-5_24

21. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy

T, Cournapeau D, Burovski E, Peterson P, Weckesser

W, Bright J, et al. Scipy 1.0: fundamental algorithms for

scientific computing in python. Nature methods, 2020;

17(3): 261–272. DOI: https://doi.org/10.1038/s41592-019-

0686-2

https://doi.org/10.5334/jors.380
https://doi.org/10.5334/jors.380
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s11548-020-02160-9
https://doi.org/10.1007/s11548-020-02160-9
https://pypi.org/project/flowvid/
https://pypi.org/project/flowvid/
https://pypi.org/project/flow-vis/
https://pypi.org/project/flowpy/
https://doi.org/10.1109/CVPR.2018.00931
https://doi.org/10.1109/CVPR.2018.00931
https://doi.org/10.1007/978-3-030-58536-5_24
https://doi.org/10.1007/978-3-030-58536-5_24
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2

