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ABSTRACT

nd – A Framework for the 
Analysis of n-dimensional 
Earth Observation Data

JOHANNES N. HANSEN 

nd is a software framework for the analysis of n-dimensional datacubes. Such data 
structures are common in Earth observation where the data are often multivariate on 
a spatio-temporal grid. The Python library xarray already exists to represent such data 
sets. This software builds on xarray by providing an interface with other parts of the 
Python ecosystem, such as scikit-learn and rasterio. Most of the functionality is 
accessible through an added accessor xarray.Dataset.nd. The software is maintained 
on GitHub and releases are published on the Python Package Index (PyPI) and Zenodo.
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(1) OVERVIEW
INTRODUCTION
There is a current disconnect between the remote sensing 
and scientific computing communities. This is partly 
due to the discontinuity of the tools preferred in either 
community: the scientific computing community requires 
an API that integrates well with existing ecosystems for 
scientific data processing. In remote sensing, on the 
other hand, a large part of the processing is still done with 
graphical tools, e.g. SNAP or GIS software such as QGIS, 
ArcGIS, and ENVI. Most of these also provide a command 
line interface (CLI), as does the well-established tool 
GDAL. However, when it comes to providing an API for 
programming languages, these tools lack in features 
or usability. GDAL, for example, does offer a Python 
API, but it is clear that this API has been developed as 
a wrapper for the CLI rather than envisioned around 
concepts more native to the programming language. 
This shows e.g. in the fact that most operations that 
can be performed in the Python GDAL API still read one 
file and output another rather than passing around 
Python objects. The popular Python library rasterio [5] 
is a more Python-friendly wrapper around GDAL, but is 
still cumbersome when working with more than a single 
image. There is essentially no library out there in any 
programming language that natively implements e.g. 
pre-processing of SAR data without having to go through 
the CLI of some GUI based software. Also, operations 
such as reprojection, mosaicking and tiling are not easily 
available outside of dedicated command line tools. All 
of this means it is not easy for a scientist or developer 
to implement a new algorithm without worrying about 
IO, file formats, and preprocessing because there is no 
library that implements all of those steps in a sufficiently 
modular way to allow for the addition of new algorithms 
as modules (other than as plugins for GUI software). 
Python developers need libraries that neatly fit into the 
SciPy ecosystem [15] which provides the basis for all 
scientific computing in Python. Clearly, there is a need for 
a grand unified EO library.

Another issue with Earth observation data processing 
is the amount of data required. For applications dealing 
with global datasets it is often unfeasible to download 
all data locally for processing. Even if storage, memory, 
and compute resources are not an issue, bandwidth 
limitations mean that obtaining such datasets could 
be a matter of months or years. Projects like Google 
Earth Engine [6] or AWS Earth [1] aim to overcome this 
limitation by providing datasets that exist physically right 
next to their cloud computing services such that no data 
will need to be transferred via low bandwidth connections 
until the export of the final product. In most cases, the 
generated data product is much smaller than the sum of 
all the raw input data. It took Google Earth Engine more 
than three years to acquire the multi-petabyte dataset 
which is now available, partly because the Landsat 

archive had to be transferred from the long-term tape 
storage [6]. While the focus here is not on cloud services 
like this, a well-designed library with scalable tools would 
also be suitable to run on such a service.

Perhaps the largest barrier is the lack of a common 
standard file format. While GeoTiff is the de-facto 
standard for most applications exchanging geospatial 
raster data, it has a number of crucial drawbacks. 
Firstly, it isn’t capable of storing data in more than two 
dimensions and as such is unsuitable for datacube 
structures. Secondly, while GeoTiff files do contain 
geocoding information (that is what makes it a GeoTiff 
rather than a Tiff), they are far from self-descriptive: they 
don’t support storing band names, coordinate system 
information, etc. When software such as QGIS opens a 
GeoTiff, they will immediately create an additional XML 
file storing metadata such as projection information that 
is gathered from user input. Clearly, GeoTiff is not fully 
up to the task of geospatial data processing if it requires 
a separate metadata file to work properly. Rather than 
inventing yet another file format or even a new Python 
data structure, this project builds on the xarray library 
[8] which interfaces neatly with the NetCDF file format 
and extends pandas to n-dimensional data. xarray has 
been developed by the climate data community and is 
now officially recommended by pandas in favor of the 
deprecated pandas Panel [13].

NetCDF for Earth Observation
NetCDF (specifically NetCDF-4) is a highly efficient file 
format that was built on top of HDF5. It is capable of 
random access which ties in with indexing and slicing 
in numpy. Because slices of a large dataset can be 
accessed independently, it becomes feasible to handle 
larger-than-memory file sizes. NetCDF-4 also supports 
data compression using zlib. Random access capability 
for compressed data is maintained through data 
chunking. Furthermore, NetCDF is designed to be fully 
self-descriptive. Crucially, it has a concept of named 
dimensions and coordinates, can store units and arbitrary 
metadata. While NetCDF has been the file format of 
choice in climate modeling for a long time, the Earth 
observation community is only recently adopting it. To 
be convinced of the slow but steady adoption of NetCDF 
it is revealing to look at the evolution of file formats 
used by ESA for the Copernicus missions. Sentinel-1 and 
Sentinel-2 still use the proprietary file format SAFE which 
is essentially a collection of GeoTiff files put together 
in a folder with metadata. Sentinel-3 uses the SEN3 
format, which works similarly to SAFE, except now it is 
a collection of NetCDF files put together in a folder with 
metadata. Finally, with Sentinel-5p, ESA has made the 
move to a single NetCDF file for each product. In order 
to facilitate the work with existing file formats, the 
framework aims to provide an interface to read and write 
file formats to/from NetCDF via its Python cousin xarray. 
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The compatibility layer between other file formats and 
NetCDF is mostly fed by GDAL, which offers good support 
for a long list of geospatial file formats [4].

Purpose
The main goal of this library is to generalize methods that 
work in lower dimensions to higher-dimensional data.

Multi-dimensional data often arise as spatio-temporal 
datacubes, e.g. climate data or time series of geospatial 
satellite data. Many data analysis methods are designed 
to work on single images or time series at a single point. 
nd makes it easy to broadcast these methods across 
a whole dataset, adding additional features such as 
automatic parallelization.

Examples include

•	 pixelwise change detection algorithms
•	 reprojection between coordinate systems
•	 machine learning algorithms

The software was produced during PhD research. It has 
been used to generate the results in [7].

IMPLEMENTATION AND ARCHITECTURE
nd is built on xarray. Internally, all data are passed 
around as xarray Datasets and all provided methods 
expect this format as inputs. An xarray.Dataset is 

essentially a Python representation of the NetCDF file 
format and as such easily reads/writes NetCDF files.

nd is making heavy use of the xarray and rasterio 
libraries. The GDAL library is only used via rasterio as 
a compatibility layer to enable reading supported file 
formats. nd.open_dataset may be used to read any 
NetCDF file or any GDAL-readable file into an xarray.
Dataset.

The popular machine learning library scikit-learn 
is designed to work with tabular data. The nd.classify 
module implements an interface to automatically apply 
scikit-learn estimators to xarray objects of arbitrary 
dimensions. Dataset dimensions may be treated as 
data dimensions (independent data points) or feature 
dimensions (used for training and prediction). This makes 
it easy to train a classifier on an entire time series, for 
example.

Similarly, reprojecting data using GDAL (via rasterio) 
is restricted to individual images. nd makes the 
integration with xarray easy by automatically applying 
the reprojection operation to the spatial data dimensions 
and broadcasting across all extra dimensions.

Figure 1 shows an architecture for a framework 
that might achieve this. In essence, there is a data 
compatibility layer which handles the ingestion of 
geospatial data formats into xarray, via rasterio and 
GDAL. As mentioned previously, the library does not aim 

Figure 1 This diagram illustrates the principle ideas behind the software architecture.
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at creating yet another data structure, but rather builds 
around the multivariate datacube as represented by an 
xarray Dataset.

The second important part of the library is the 
algorithms. The idea is to provide an abstract base 
class Algorithm, which contains the basic scaffold for 
any algorithm that may be added as a module. This 
includes basic parallelism and capabilities for distributed 
computing, e.g. using Python dask [3]. It further ensures 
that all algorithms follow the same basic structure in 
terms of parameters and outputs to ensure consistency 
across all modules and to reduce the learning curve for 
new developers and users. This is modeled after the way 
scikit-learn [14] implements its algorithms.

A number of basic algorithms will need to be 
implemented before the library becomes attractive for 
researchers. However, after reaching that threshold, 
the modular structure built on existing tools makes 
contributing easy and will invite algorithm contributions 
from other scientists.

The current implementation of this library is still 
in its early stages and has resulted from the very 
practical needs of applying multi-dimensional data 
analysis methods to Earth observation data. The code 
is hosted on GitHub [12] and also available from PyPI 
[11]. The full documentation is hosted on ReadThe 
Docs [10].

The package is currently structured according to the 
following submodules:

nd.change contains various change detection 
algorithms.
nd.classify provides an interface to apply 
scikit-learn classifiers to xarray Datasets.
nd.filters contains a selection of filters for 
n-dimensional datacubes, e.g. boxcar, Gaussian, 
arbitrary kernel convolutions, and non-local means.
nd.io collates all methods to read from and write 
to various file formats, largely wrapping xarray 
and rasterio methods.

nd.testing provides extra methods used by the 
unit tests.
nd.tiling allows for splitting of a dataset into 
tiles as well as merging tiles into a single dataset, 
including buffered tiles.
nd.utils is a collection of various utility functions 
used by other submodules.
nd.vector provides tools to work with vector data, 
in particular to rasterize such data to match a 
gridded reference dataset.
nd.visualize provides methods to create 
visualizations of xarray datasets, e.g. maps, RGB 
images, and video.
nd.warp contains functionality around 
reprojections between coordinate reference 
systems, resampling, etc.

The majority of the software functionality can be 
accessed via the xarray accessors xarray.Dataset.nd 
and xarray.Dataset.filter.

Several example use cases are shown in the 
tutorial notebooks provided with the repository, as well 
as in the documentation. A few of these examples 
are reproduced here.

Reprojection
Reprojecting a dataset into a new coordinate 
reference system can be easily achieved using ds.nd.
reproject(). This function is a high-level wrapper 
around rasterio’s own reprojection methods and 
maintains the dataset structure including additional 
(non-spatial) dimensions. The following example 
demonstrates the reprojection on some GHRSST  
data [9].

ds_proj = ds.nd.reproject(
src_crs=’epsg:4326’,
dst_crs=’epsg:2163’)

Figure 2 shows the dataset before and after reprojection.

Figure 2 Reprojection of a subset of GHRSST data from EPSG:4326 (WGS84) to EPSG:2163 (US National Atlas Equal Area).
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Applying a function across arbitrary dimensions
The following code snippet demonstrates how a 
function of arbitrary signature acting on any subset 
of dimensions can be easily mapped across a dataset 
using ds.nd.apply(). In this example we are reducing 
the time dimension by mapping the function np.argmax 
to find the hottest month for each pixel. While this 
example is quite trivial and could be solved without 
using ds.nd.apply(), the method is very flexible and 
can efficiently map functions of any signature over 
arbitrary dimensions.

hottest = ds.nd.apply(
np.argmax,
signature=’(time)->()’)

Figure 3 shows the result for this function call, 
displaying the hottest month per pixel for the GHRSST 
dataset.

Integration with scikit-learn
A shapefile containing class labels may be rasterized to 
match a given dataset as follows:

labels = nd.vector.rasterize(‘labels.shp’, 
ds)

To apply a scikit-learn classifier to an xarray dataset 
we can simply wrap it in a Classifier provided by 
nd.classify:

from nd.classify import Classifier
from sklearn.ensemble import 
RandomForestClassifier
clf = Classifier(RandomForestClassifier(n_
estimators=10))
pred = clf.fit(ds, labels).predict(ds)

The outcome is demonstrated in Figure 4.

Figure 3 This figure shows the hottest month for each pixel in this subset of the GHRSST data. The result was obtained by mapping 

np.argmax over the dataset using ds.nd.apply().

Figure 4 This figure demonstrates a sample classification outcome using Sentinel-1 data (a) with polygon labels (b). The classification 
outcome is shown in (c).
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QUALITY CONTROL
An extensive suite of unit tests is provided with the 
software. The preferred way to run the tests is by using 
pytest. The tests are also run automatically on TravisCI 
at https://travis-ci.com/github/jnhansen/nd [16] for a variety 
of Python versions on Linux. The test coverage can 
be checked on Codecov at https://codecov.io/gh/jnhansen/

nd [2].
The user may further choose to run the code in the 

provided sample notebooks in nd/examples/ to test the 
software functionality.

(2) AVAILABILITY
OPERATING SYSTEM
Linux and Mac OS. Support for Windows is  
experimental.

PROGRAMMING LANGUAGE
Python, version 3.5 and later.

ADDITIONAL SYSTEM REQUIREMENTS
None.

DEPENDENCIES
nd is implemented in Python, with some extension 
modules written in C.

•	 xarray
•	 scikit-learn
•	 GDAL
•	 libgsl-dev (optional, for change detection)

LIST OF CONTRIBUTORS
1. Johannes N Hansen, sole contributor (University of 
Edinburgh)

SOFTWARE LOCATION
Archive

Name: Zenodo
Persistent identifier: https://doi.org/10.5281/

zenodo.4282546

Licence: MIT
Publisher: Johannes Hansen
Version published: 0.2
Date published: 20/11/2020

Code repository
Name: GitHub
Persistent identifier: https://github.com/jnhansen/nd

Licence: MIT
Date published: 20/11/2020

The software is also available from the Python Package 
Index (PyPI) [11].

LANGUAGE
English.

(3) REUSE POTENTIAL

xarray deliberately does not provide any domain specific 
functionality and instead encourages the development 
of third-party libraries for this purpose. nd is trying to be 
this library for Earth Observation.

The software architecture follows a modular 
architecture that is easy to reuse and extend. An 
abstract base class nd.Algorithm is provided that may 
be subclassed by additional algorithms. Algorithms 
implemented in this way will benefit from features such 
as automatic parallelization and some automated unit 
testing.

Bug reports and feature requests should be issued 
via the GitHub repository. Contributors are welcome to 
submit pull requests on GitHub.

The software documentation is available at https://

nd.readthedocs.io/ [10].
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