
SOFTWARE METAPAPER

ABSTRACT

nd – A Framework for the
Analysis of n-dimensional
Earth Observation Data

JOHANNES N. HANSEN

nd is a software framework for the analysis of n-dimensional datacubes. Such data
structures are common in Earth observation where the data are often multivariate on
a spatio-temporal grid. The Python library xarray already exists to represent such data
sets. This software builds on xarray by providing an interface with other parts of the
Python ecosystem, such as scikit-learn and rasterio. Most of the functionality is
accessible through an added accessor xarray.Dataset.nd. The software is maintained
on GitHub and releases are published on the Python Package Index (PyPI) and Zenodo.

CORRESPONDING AUTHOR:

Johannes N. Hansen

School of Mathematics,
University of Edinburgh, GB

johannes.hansen@ed.ac.uk

KEYWORDS:
python; xarray; earth
observation; remote sensing;
satellite data; netcdf; radar;
synthetic aperture radar;
datacube

TO CITE THIS ARTICLE:

Hansen JN 2022 nd – A
Framework for the Analysis
of n-dimensional Earth
Observation Data. Journal of
Open Research Software, 10: 3.
DOI: https://doi.org/10.5334/
jors.377

mailto:johannes.hansen@ed.ac.uk
https://doi.org/10.5334/jors.377
https://doi.org/10.5334/jors.377
https://orcid.org/0000-0003-0743-1332

2Hansen Journal of Open Research DOI: 10.5334/jors.377

(1) OVERVIEW
INTRODUCTION
There is a current disconnect between the remote sensing
and scientific computing communities. This is partly
due to the discontinuity of the tools preferred in either
community: the scientific computing community requires
an API that integrates well with existing ecosystems for
scientific data processing. In remote sensing, on the
other hand, a large part of the processing is still done with
graphical tools, e.g. SNAP or GIS software such as QGIS,
ArcGIS, and ENVI. Most of these also provide a command
line interface (CLI), as does the well-established tool
GDAL. However, when it comes to providing an API for
programming languages, these tools lack in features
or usability. GDAL, for example, does offer a Python
API, but it is clear that this API has been developed as
a wrapper for the CLI rather than envisioned around
concepts more native to the programming language.
This shows e.g. in the fact that most operations that
can be performed in the Python GDAL API still read one
file and output another rather than passing around
Python objects. The popular Python library rasterio [5]
is a more Python-friendly wrapper around GDAL, but is
still cumbersome when working with more than a single
image. There is essentially no library out there in any
programming language that natively implements e.g.
pre-processing of SAR data without having to go through
the CLI of some GUI based software. Also, operations
such as reprojection, mosaicking and tiling are not easily
available outside of dedicated command line tools. All
of this means it is not easy for a scientist or developer
to implement a new algorithm without worrying about
IO, file formats, and preprocessing because there is no
library that implements all of those steps in a sufficiently
modular way to allow for the addition of new algorithms
as modules (other than as plugins for GUI software).
Python developers need libraries that neatly fit into the
SciPy ecosystem [15] which provides the basis for all
scientific computing in Python. Clearly, there is a need for
a grand unified EO library.

Another issue with Earth observation data processing
is the amount of data required. For applications dealing
with global datasets it is often unfeasible to download
all data locally for processing. Even if storage, memory,
and compute resources are not an issue, bandwidth
limitations mean that obtaining such datasets could
be a matter of months or years. Projects like Google
Earth Engine [6] or AWS Earth [1] aim to overcome this
limitation by providing datasets that exist physically right
next to their cloud computing services such that no data
will need to be transferred via low bandwidth connections
until the export of the final product. In most cases, the
generated data product is much smaller than the sum of
all the raw input data. It took Google Earth Engine more
than three years to acquire the multi-petabyte dataset
which is now available, partly because the Landsat

archive had to be transferred from the long-term tape
storage [6]. While the focus here is not on cloud services
like this, a well-designed library with scalable tools would
also be suitable to run on such a service.

Perhaps the largest barrier is the lack of a common
standard file format. While GeoTiff is the de-facto
standard for most applications exchanging geospatial
raster data, it has a number of crucial drawbacks.
Firstly, it isn’t capable of storing data in more than two
dimensions and as such is unsuitable for datacube
structures. Secondly, while GeoTiff files do contain
geocoding information (that is what makes it a GeoTiff
rather than a Tiff), they are far from self-descriptive: they
don’t support storing band names, coordinate system
information, etc. When software such as QGIS opens a
GeoTiff, they will immediately create an additional XML
file storing metadata such as projection information that
is gathered from user input. Clearly, GeoTiff is not fully
up to the task of geospatial data processing if it requires
a separate metadata file to work properly. Rather than
inventing yet another file format or even a new Python
data structure, this project builds on the xarray library
[8] which interfaces neatly with the NetCDF file format
and extends pandas to n-dimensional data. xarray has
been developed by the climate data community and is
now officially recommended by pandas in favor of the
deprecated pandas Panel [13].

NetCDF for Earth Observation
NetCDF (specifically NetCDF-4) is a highly efficient file
format that was built on top of HDF5. It is capable of
random access which ties in with indexing and slicing
in numpy. Because slices of a large dataset can be
accessed independently, it becomes feasible to handle
larger-than-memory file sizes. NetCDF-4 also supports
data compression using zlib. Random access capability
for compressed data is maintained through data
chunking. Furthermore, NetCDF is designed to be fully
self-descriptive. Crucially, it has a concept of named
dimensions and coordinates, can store units and arbitrary
metadata. While NetCDF has been the file format of
choice in climate modeling for a long time, the Earth
observation community is only recently adopting it. To
be convinced of the slow but steady adoption of NetCDF
it is revealing to look at the evolution of file formats
used by ESA for the Copernicus missions. Sentinel-1 and
Sentinel-2 still use the proprietary file format SAFE which
is essentially a collection of GeoTiff files put together
in a folder with metadata. Sentinel-3 uses the SEN3
format, which works similarly to SAFE, except now it is
a collection of NetCDF files put together in a folder with
metadata. Finally, with Sentinel-5p, ESA has made the
move to a single NetCDF file for each product. In order
to facilitate the work with existing file formats, the
framework aims to provide an interface to read and write
file formats to/from NetCDF via its Python cousin xarray.

https://doi.org/10.5334/jors.377

3Hansen Journal of Open Research DOI: 10.5334/jors.377

The compatibility layer between other file formats and
NetCDF is mostly fed by GDAL, which offers good support
for a long list of geospatial file formats [4].

Purpose
The main goal of this library is to generalize methods that
work in lower dimensions to higher-dimensional data.

Multi-dimensional data often arise as spatio-temporal
datacubes, e.g. climate data or time series of geospatial
satellite data. Many data analysis methods are designed
to work on single images or time series at a single point.
nd makes it easy to broadcast these methods across
a whole dataset, adding additional features such as
automatic parallelization.

Examples include

•	 pixelwise change detection algorithms
•	 reprojection between coordinate systems
•	 machine learning algorithms

The software was produced during PhD research. It has
been used to generate the results in [7].

IMPLEMENTATION AND ARCHITECTURE
nd is built on xarray. Internally, all data are passed
around as xarray Datasets and all provided methods
expect this format as inputs. An xarray.Dataset is

essentially a Python representation of the NetCDF file
format and as such easily reads/writes NetCDF files.

nd is making heavy use of the xarray and rasterio
libraries. The GDAL library is only used via rasterio as
a compatibility layer to enable reading supported file
formats. nd.open_dataset may be used to read any
NetCDF file or any GDAL-readable file into an xarray.
Dataset.

The popular machine learning library scikit-learn
is designed to work with tabular data. The nd.classify
module implements an interface to automatically apply
scikit-learn estimators to xarray objects of arbitrary
dimensions. Dataset dimensions may be treated as
data dimensions (independent data points) or feature
dimensions (used for training and prediction). This makes
it easy to train a classifier on an entire time series, for
example.

Similarly, reprojecting data using GDAL (via rasterio)
is restricted to individual images. nd makes the
integration with xarray easy by automatically applying
the reprojection operation to the spatial data dimensions
and broadcasting across all extra dimensions.

Figure 1 shows an architecture for a framework
that might achieve this. In essence, there is a data
compatibility layer which handles the ingestion of
geospatial data formats into xarray, via rasterio and
GDAL. As mentioned previously, the library does not aim

Figure 1 This diagram illustrates the principle ideas behind the software architecture.

https://doi.org/10.5334/jors.377

4Hansen Journal of Open Research DOI: 10.5334/jors.377

at creating yet another data structure, but rather builds
around the multivariate datacube as represented by an
xarray Dataset.

The second important part of the library is the
algorithms. The idea is to provide an abstract base
class Algorithm, which contains the basic scaffold for
any algorithm that may be added as a module. This
includes basic parallelism and capabilities for distributed
computing, e.g. using Python dask [3]. It further ensures
that all algorithms follow the same basic structure in
terms of parameters and outputs to ensure consistency
across all modules and to reduce the learning curve for
new developers and users. This is modeled after the way
scikit-learn [14] implements its algorithms.

A number of basic algorithms will need to be
implemented before the library becomes attractive for
researchers. However, after reaching that threshold,
the modular structure built on existing tools makes
contributing easy and will invite algorithm contributions
from other scientists.

The current implementation of this library is still
in its early stages and has resulted from the very
practical needs of applying multi-dimensional data
analysis methods to Earth observation data. The code
is hosted on GitHub [12] and also available from PyPI
[11]. The full documentation is hosted on ReadThe
Docs [10].

The package is currently structured according to the
following submodules:

nd.change contains various change detection
algorithms.
nd.classify provides an interface to apply
scikit-learn classifiers to xarray Datasets.
nd.filters contains a selection of filters for
n-dimensional datacubes, e.g. boxcar, Gaussian,
arbitrary kernel convolutions, and non-local means.
nd.io collates all methods to read from and write
to various file formats, largely wrapping xarray
and rasterio methods.

nd.testing provides extra methods used by the
unit tests.
nd.tiling allows for splitting of a dataset into
tiles as well as merging tiles into a single dataset,
including buffered tiles.
nd.utils is a collection of various utility functions
used by other submodules.
nd.vector provides tools to work with vector data,
in particular to rasterize such data to match a
gridded reference dataset.
nd.visualize provides methods to create
visualizations of xarray datasets, e.g. maps, RGB
images, and video.
nd.warp contains functionality around
reprojections between coordinate reference
systems, resampling, etc.

The majority of the software functionality can be
accessed via the xarray accessors xarray.Dataset.nd
and xarray.Dataset.filter.

Several example use cases are shown in the
tutorial notebooks provided with the repository, as well
as in the documentation. A few of these examples
are reproduced here.

Reprojection
Reprojecting a dataset into a new coordinate
reference system can be easily achieved using ds.nd.
reproject(). This function is a high-level wrapper
around rasterio’s own reprojection methods and
maintains the dataset structure including additional
(non-spatial) dimensions. The following example
demonstrates the reprojection on some GHRSST
data [9].

ds_proj = ds.nd.reproject(
src_crs=’epsg:4326’,
dst_crs=’epsg:2163’)

Figure 2 shows the dataset before and after reprojection.

Figure 2 Reprojection of a subset of GHRSST data from EPSG:4326 (WGS84) to EPSG:2163 (US National Atlas Equal Area).

https://doi.org/10.5334/jors.377

5Hansen Journal of Open Research DOI: 10.5334/jors.377

Applying a function across arbitrary dimensions
The following code snippet demonstrates how a
function of arbitrary signature acting on any subset
of dimensions can be easily mapped across a dataset
using ds.nd.apply(). In this example we are reducing
the time dimension by mapping the function np.argmax
to find the hottest month for each pixel. While this
example is quite trivial and could be solved without
using ds.nd.apply(), the method is very flexible and
can efficiently map functions of any signature over
arbitrary dimensions.

hottest = ds.nd.apply(
np.argmax,
signature=’(time)->()’)

Figure 3 shows the result for this function call,
displaying the hottest month per pixel for the GHRSST
dataset.

Integration with scikit-learn
A shapefile containing class labels may be rasterized to
match a given dataset as follows:

labels = nd.vector.rasterize(‘labels.shp’,
ds)

To apply a scikit-learn classifier to an xarray dataset
we can simply wrap it in a Classifier provided by
nd.classify:

from nd.classify import Classifier
from sklearn.ensemble import
RandomForestClassifier
clf = Classifier(RandomForestClassifier(n_
estimators=10))
pred = clf.fit(ds, labels).predict(ds)

The outcome is demonstrated in Figure 4.

Figure 3 This figure shows the hottest month for each pixel in this subset of the GHRSST data. The result was obtained by mapping

np.argmax over the dataset using ds.nd.apply().

Figure 4 This figure demonstrates a sample classification outcome using Sentinel-1 data (a) with polygon labels (b). The classification
outcome is shown in (c).

https://doi.org/10.5334/jors.377

6Hansen Journal of Open Research DOI: 10.5334/jors.377

QUALITY CONTROL
An extensive suite of unit tests is provided with the
software. The preferred way to run the tests is by using
pytest. The tests are also run automatically on TravisCI
at https://travis-ci.com/github/jnhansen/nd [16] for a variety
of Python versions on Linux. The test coverage can
be checked on Codecov at https://codecov.io/gh/jnhansen/

nd [2].
The user may further choose to run the code in the

provided sample notebooks in nd/examples/ to test the
software functionality.

(2) AVAILABILITY
OPERATING SYSTEM
Linux and Mac OS. Support for Windows is
experimental.

PROGRAMMING LANGUAGE
Python, version 3.5 and later.

ADDITIONAL SYSTEM REQUIREMENTS
None.

DEPENDENCIES
nd is implemented in Python, with some extension
modules written in C.

•	 xarray
•	 scikit-learn
•	 GDAL
•	 libgsl-dev (optional, for change detection)

LIST OF CONTRIBUTORS
1. Johannes N Hansen, sole contributor (University of
Edinburgh)

SOFTWARE LOCATION
Archive

Name: Zenodo
Persistent identifier: https://doi.org/10.5281/

zenodo.4282546

Licence: MIT
Publisher: Johannes Hansen
Version published: 0.2
Date published: 20/11/2020

Code repository
Name: GitHub
Persistent identifier: https://github.com/jnhansen/nd

Licence: MIT
Date published: 20/11/2020

The software is also available from the Python Package
Index (PyPI) [11].

LANGUAGE
English.

(3) REUSE POTENTIAL

xarray deliberately does not provide any domain specific
functionality and instead encourages the development
of third-party libraries for this purpose. nd is trying to be
this library for Earth Observation.

The software architecture follows a modular
architecture that is easy to reuse and extend. An
abstract base class nd.Algorithm is provided that may
be subclassed by additional algorithms. Algorithms
implemented in this way will benefit from features such
as automatic parallelization and some automated unit
testing.

Bug reports and feature requests should be issued
via the GitHub repository. Contributors are welcome to
submit pull requests on GitHub.

The software documentation is available at https://

nd.readthedocs.io/ [10].

ACKNOWLEDGEMENTS

The research during which this software was developed
was supervised by Dr Stuart King and Professor Edward
Mitchard at the University of Edinburgh. I am grateful for
their support.

FUNDING INFORMATION

The software was developed as part of PhD studies funded
by The Data Lab as well as the School of Mathematics and
the School of GeoSciences at the University of Edinburgh.

COMPETING INTERESTS

The author has no competing interests to declare.

AUTHOR AFFILIATION
Johannes N. Hansen    orcid.org/0000-0003-0743-1332
School of Mathematics, University of Edinburgh, GB

REFERENCES

1.	 AWS Earth. URL: https://aws.amazon.com/earth/ (visited

on 04/09/2021).

2.	 Codecov report for nd. URL: https://codecov.io/gh/

jnhansen/nd (visited on 12/02/2020).

https://doi.org/10.5334/jors.377
https://travis-ci.com/github/jnhansen/nd
https://codecov.io/gh/jnhansen/nd
https://codecov.io/gh/jnhansen/nd
https://doi.org/10.5281/zenodo.4282546
https://doi.org/10.5281/zenodo.4282546
https://github.com/jnhansen/nd
https://nd.readthedocs.io/
https://nd.readthedocs.io/
https://orcid.org/0000-0003-0743-1332
https://orcid.org/0000-0003-0743-1332
https://aws.amazon.com/earth/
https://codecov.io/gh/jnhansen/nd
https://codecov.io/gh/jnhansen/nd

7Hansen Journal of Open Research DOI: 10.5334/jors.377

TO CITE THIS ARTICLE:

Hansen JN 2022 nd – A Framework for the Analysis of n-dimensional Earth Observation Data. Journal of Open Research Software, 10:
3. DOI: https://doi.org/10.5334/jors.377

Submitted: 15 April 2021 Accepted: 03 March 2022 Published: 11 March 2022

COPYRIGHT:
© 2022 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0
International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original
author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by Ubiquity Press.

3.	 Dask – Dask natively scales Python. URL: https://dask.org/

(visited on 12/02/2020).

4.	 GDAL documentation – Raster drivers. URL: https://gdal.

org/drivers/raster/index.html (visited on 12/02/2020).

5.	 Gillies S, et al. Rasterio: geospatial raster I/O for Python

programmers. Map-box, 2013-. URL: https://github.com/

mapbox/rasterio.

6.	 Gorelick N, et al. “Google Earth Engine: Planetary-scale

geospatial analysis for everyone”. In: Remote Sensing

of Environment (2017). DOI: https://doi.org/10.1016/j.

rse.2017.06.031

7.	 Hansen JN, Mitchard ETA, King S. “Assessing Forest/

Non-Forest Separability Using Sentinel-1 C-Band Synthetic

Aperture Radar”. In: Remote Sensing. 12.11 2020; 1899.

DOI: https://doi.org/10.3390/rs12111899

8.	 Hoyer S, Hamman JJ. “xarray: N-D labeled Arrays

and Datasets in Python”. In: Journal of Open Research

Software. 5 (Apr. 2017); issn: 2049–9647. DOI: https://doi.

org/10.5334/jors.148

9.	 JPL OurOcean. “GHRSST Level 4 G1SST Global Foundation

Sea Surface Temperature Analysis”. In: NASA Physical

Oceanography DAAC (2010). DOI: https://doi.org/10.5067/

GHG1S-4FP01

10.	 nd documentation. URL: https://nd.readthedocs.io/ (visited

on 12/02/2020).

11.	 nd package on PyPI. URL: https://pypi.org/project/nd/

(visited on 12/02/2020).

12.	 nd repository on GitHub. URL: https://github.com/

jnhansen/nd (visited on 12/02/2020).

13.	 Pandas Panel. URL: https://pandas.pydata.org/pandas-

docs/version/0.23.4/generated/pandas.Panel.html (visited

on 12/02/2020).

14.	 scikit-learn – Machine Learning in Python. URL: http://

scikit-learn.org/ (visited on 12/02/2020).

15.	 SciPy. URL: https://scipy.org/ (visited on 04/09/

2021).

16.	 Travis CI. URL: https://travis-ci.org (visited on 12/02/

2020).

https://doi.org/10.5334/jors.377
https://doi.org/10.5334/jors.377
http://creativecommons.org/licenses/by/4.0/
https://dask.org/
https://gdal.org/drivers/raster/index.html
https://gdal.org/drivers/raster/index.html
https://github.com/mapbox/rasterio
https://github.com/mapbox/rasterio
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.3390/rs12111899
https://doi.org/10.5334/jors.148
https://doi.org/10.5334/jors.148
https://doi.org/10.5067/GHG1S-4FP01
https://doi.org/10.5067/GHG1S-4FP01
https://nd.readthedocs.io/
https://pypi.org/project/nd/
https://github.com/jnhansen/nd
https://github.com/jnhansen/nd
https://pandas.pydata.org/pandas-docs/version/0.23.4/generated/pandas.Panel.html
https://pandas.pydata.org/pandas-docs/version/0.23.4/generated/pandas.Panel.html
http://scikit-learn.org/
http://scikit-learn.org/
https://scipy.org/
https://travis-ci.org

