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ABSTRACT
The need for single-camera 3D particle tracking methods is growing, among others, 
due to the increasing focus in biomedical research often relying on single-plane 
microscopy imaging. Defocusing-based methods are ideal for a wide-spread use as 
they rely on basic microscopy imaging rather than requiring additional non-standard 
optics. However, a wide-spread use has been limited by the lack of accessible and 
easy-to-use software. DefocusTracker is an open-source toolbox based on the universal 
principles of General Defocusing Particle Tracking (GDPT) relying solely on a reference 
look-up table and image recognition to connect a particle’s image and its respective 
out-of-plane depth coordinate. The toolbox is built in a modular fashion, allowing 
for easy addition of new image recognition methods, while maintaining the same 
workflow and external user interface. DefocusTracker is implemented in MATLAB, while 
a parallel implementation in Python is in the preparation.
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(1) OVERVIEW
INTRODUCTION
The use of single-camera 3D particle tracking analysis is 
receiving increasing interest, among others, due to the rapid 
development of bio-engineering and biomedical sciences 
where single-access imaging, such as with microscopes, 
is a standard research tool [20, 21]. For this, methods 
based on the principle of particle image defocusing are 
particularly attractive as no special optics or cameras are 
required, and have potential for wide-spread use. However, 
until now most of the software for defocused-based 
particle tracking has been developed in-house for private 
use of research groups, and there are only few examples 
of user-friendly software that can be accessible to a larger 
audience, including researchers outside the engineering or 
computer-science community. One example is GDPTlab, a 
MATLAB GUI implementation written by the authors and 
released in 2015 [9]. GDPTlab was used by several research 
groups and cited in several peer-reviewed journals (see 
also Reuse potential section). GDPTlab, however, was not 
distributed under an open-source license, thus its potential 
for collaboration and expansion was limited by that.

To accommodate this need, we developed Defocus
Tracker, which is a modular and open-source toolbox for 
defocusing-based 3D particle tracking. DefocusTracker uses 
different architecture and functions and is not compatible 
with GDPTlab, however they are based on the same 
method, namely the General Defocusing Particle Tracking 
(GDPT). GDPT relies on a reference look-up table, or more 
generally on a training set of labeled data, where defocused 
particle images are linked with their true depth positions. 
An image recognition method is trained on this set in 
order to determine the depth position of target particles 

based on their defocused images [3, 5, 20]. The GDPT 
principle is shown in Figure 1. Panel (a) shows the creation 
and training of a calibration model through calibration/
training images of defocused particle images with known 
3D particle positions. In Panel (b) the trained model is used 
to reconstruct the 3D particle positions from the particles’ 
defocused images in 2D measurement images. For more 
details on the GDPT method, experiments, and uncertainty 
assessment, we refer to Refs. 2, 3, 5, and 9.

DefocusTracker is built in a modular fashion to 
allow for a continuous addition of state-of-the-art 
image recognition methods. The current implemented 
image recognition method, referred to as normalized_
crosscorrelation_3d (or Method 1), is based on the 
normalized cross-correlation function and described in 
Ref. 15. Methods based on convolutional neural networks 
and deep learning are under development but their 
performance still compares poorly to the cross-correlation 
approach [2]. Future improved methods based on deep 
learning will be included in DefocusTracker.

DefocusTracker is implemented in MATLAB, while a 
parallel implementation in Python is in the preparation. 
DefocusTracker is accompanied by a website, https://

defocustracking.com/, to facilitate the research community 
with a platform for sharing of user guides, experiences, and 
applications, as well as for data for training and validation.

IMPLEMENTATION AND ARCHITECTURE
General architecture
The general architecture and workflow is shown in 
Figure 1(c). The toolbox is based on three main types 
of data structures and five primary functions for their 
creation, processing, and manipulation:

Figure 1 DefocusTracker working principle and general architecture. (a) A set of training images with known 3D particle positions are 
used to (b) determine the unknown 3D positions of particles through the comparison of their defocused particle images. (c) General 
architecture and workflow of the DefocusTracker toolbox. The toolbox uses three types of data structures (rectangles) and five main 
functions (round shapes, green). The toolbox is modular, allowing for addition and use of different models for the image processing 
and particle tracking.

https://doi.org/10.5334/jors.351
https://defocustracking.com/
https://defocustracking.com/
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Data structures:
imageset Link and description to a set of images, 
i.e. image paths, number of images, and image 
type.
dataset Particle data, i.e. 3D spatial positions and 
displacements, trajectories, connection to image 
frames, and detection accuracy estimation.
model Data and settings required to process the 
images, i.e. method-specific parameters as well as 
training and processing settings.

Functions:
create() Creates a data structure.
show() Opens GUIs to inspect data structures.
train() Trains a model on a specific training set 
(imageset+dataset).
process() Processes an imageset using a given 
model.
postprocess() Manipulates a dataset, e.g. merge 
datasets, apply scaling, remove outliers, perform 
particle tracking, filter trajectories, and estimate 
uncertainties.

Workflow:
As seen in Figure 1(c), a typical workflow starts with the 
creation of a model using the create() function. Each 
model refers to a specific method (e.g. Method 1) and it 
is at first created with some default values. The model is 
trained using the train() function by feeding a training 
set as input. A training set consists of a dataset and an 
imageset (made with create()), corresponding to a set 
of images containing one or more particles of known 3D 
position. As illustrated in Figure 1(a), such a training set 
can be obtained experimentally by taking subsequent 
images of particles displaced at known positions, e.g. 
by observing particles sedimented on a microchannel 
bottom, while taking images at known objective distances 
using a focusing stage. If only a subset of the calibration 
particles are used for a training, the remaining particles 
can be used as validation to make a pre-measurement 
uncertainty estimation.

With a trained model as input, the process() 
function can take one or more measurement images 
in an imageset and output a dataset containing the 
measured 3D particle positions. The dataset can be 
further manipulated via the postprocess() function for 
purposes such as outlier removal or trajectory smoothing. 
Throughout the entire workflow, the show() function can 
be used to visualize and inspect the data structures.

An example of typical DefocusTracker input (imageset) 
and output (dataset) is given in the online repository in 
the Work-Through Example 0 (WTE0).

Modularity:
The DefocusTracker toolbox is modular in the sense 
that a model can be created based on different 

methods for the image recognition. If a new method 
is added to the toolbox, the data structures, primary 
functions, and workflow will remain the same. The 
current implementation contains two methods for the 
creation of a model, namely boundary_threshold_2d 
(or Method 0) and normalized_crosscorrelation_3d (or 
Method 1).

Method 0: boundary_threshold_2d
Method 0 is used for 2D particle tracking based on setting 
a boundary intensity threshold to detect particles. This 
method provides a quick way to perform 2D tracking, 
which e.g. can be useful in the creation of training dataset 
using images with in-plane particle motion.

Method 1: normalized_crosscorrelation_3d
Method 1 performs the full defocusing-based 3D particle 
tracking, for a full description of Method 1, we refer to 
[15]. Briefly, Method 1 is based on training images of a 
single particle (the so-called calibration stack) and uses 
the normalized cross-correlation function for image 
recognition. The normalized cross-correlation is used to 
rate the similarity between a target particle image and 
the calibration stack images, using its maximum peak 
value as the similarity coefficient, referred to as Cm. The 
values of Cm can range from 0 to 1, with 1 corresponding 
to a perfect match between the target image and a 
calibration image.

Method X: Integrate a new method in DefocusTracker
In order to integrate a new method into the DefocusTracker 
toolbox, one must use the DefocusTracker infrastructure. 
This means that one must build a create-function to 
generate a template of the model structure as well as a 
process-function that as input takes the model structure 
and a DefocusTracker imageset and as an output gives a 
DefocusTracker dataset. For instance:

mymodel = mymethod_create()
mydataset = mymethod_process(mymodel, 
myimagset, frame_index)

Here, all the parameters in the model structure must be 
organized in the following three mandatory subfields:

mymodel.parameter (Internal non-editable parameters)

mymodel.training (User-editable parameter settings for 

the training)

mymodel.processing (User-editable parameter settings 

for the processing)

MATLAB IMPLEMENTATION
DefocusTracker is implemented in MATLAB and 
additionally requires the image processing, curve 
fitting, and statistics toolboxes. The implementation 
is script-based with certain features using GUI-based 
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pop-up windows for visualization. The data structures 
are so-called MATLAB structs, namely structure arrays 
where data is grouped using containers called fields. 
The data in a field is accessed using dot notation 
of the form structName.fieldName, e.g. the path 
of an imageset is called with imageset.path. The 
primary toolbox functions follow the form of standard 
MATLAB functions and are named as dtracker_
functionName(), e.g dtracker_create(). A full 
overview of the data structures and functions are 
shown in Figure 2.

The MATLAB toolbox contains three work-through 
examples (WTE0, WTE1, and WTE2) that serve as tutorials 
to get new users quickly started, but also as test scripts 
in case new functionalities or methods are added. The 
scripts of each WTE are included in the DefocusTracker 
package, while the related datasets can be acquired via 
https://defocustracking.com/datasets/. WTE1 is based on 
synthetic images and gives a first introduction to the 
basic building blocks of the toolbox. The use of synthetic 
images allow for an exact estimation of the uncertainty 
using the postprocessing method ‘compare_true_
values’. WTE2 is based on a state-of-the art microfluidic 
experiment, namely the 3D flow inside an evaporating 
droplet [17], and guides the user toward a more advanced 
use of DefocusTracker, including postprocessing and bias 
correction. We report in Figure 3 a shortened version 
of the WTE2 script, including few screenshots of GUI 

panels obtained with the dtracker_show() function. 
For the full commented version we refer to the script 
Work_through_ex2.m as well as to https://defocustracking.

com/defocustracker, where a published version of the code 
and output can be found. As the community grows, we 
expect that more WTEs will be added by the users and 
developers.

PYTHON IMPLEMENTATION
A Python implementation of DefocusTracker is planned 
and under development and it will follow the lines of 
the MATLAB implementation. The data structures will 
be implemented using Python dictionaries, whereas the 
functions will be part of the module dtracker. Following 
the above example, the path of an imageset will be 
called in Python with imageset[‘path’], whereas the 
create() function will be called as dtracker.create().

The Python implementation is available on the Gitlab 
repository: https://gitlab.com/defocustracking/defocustracker-

python. Updates and release information can be followed 
on https://defocustracking.com.

QUALITY CONTROL
The MATLAB toolbox has been tested functionally on 
Windows 10 with MATLAB releases R2018b, 2020a, and 
2020b, while the toolbox performance has been tested 
and investigated extensively in three recent publications 
[2, 5, 15]:

Figure 2 Overview of data structures and functions in the DefocusTracker MATLAB implementation, following the general toolbox 
architecture shown in Figure 1.

https://defocustracking.com/datasets/
https://defocustracking.com/defocustracker
https://defocustracking.com/defocustracker
https://gitlab.com/defocustracking/defocustracker-python
https://gitlab.com/defocustracking/defocustracker-python
https://defocustracking.com
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•	 In Barnkob and Rossi [5], guidelines for assessing the 
uncertainty of GDPT analyses were given. Synthetic 
images were used to test the toolbox in terms of 
measurement uncertainty and relative number of 
measured particles as a function of image signal-
to-noise ratio, particle image concentration, and 
variations in image intensity.

•	 In Rossi and Barnkob [15], different toolbox settings 
were tested on synthetic and experimental images 
to outline the measurement uncertainties, detection 
rates, and processing times. The results were 
benchmarked against the GDPTlab software [9], 
which has been extensively-tested and used in high-
impact research publications, see more in the Section 
Reuse potential.

•	 In Barnkob et al. [2], the toolbox was validated and 
compared against other defocus-tracking approaches 
and algorithms based on model functions and 
machine learning for image recognition. The 

different approaches were applied to synthetic 
and experimental images of different degrees 
of astigmatism, noise levels, and particle image 
overlapping. Figure 4 summarizes the results when 
applying DefocusTracker to the synthetic image 
sets. Figure 4(a) shows example field of views of 
the analyzed synthetic images, while Figure 4(b) 
shows the synthetic particle images at different 
depth coordinates z over the measurement 
depth h. Figure 4(c) shows the resulting coordinate 
uncertainties σ and recall ϕ as a function of different 
degrees of astigmatism, noise levels, and particle 
image concentration NS (the higher, the more particle 
image overlapping). Depending on the particle image 
concentration and the achieved recall for the given 
Cm-value, the depth coordinate uncertainties σz vary 
around 1–2% of the total measurement depth h, 
while the in-plane coordinate uncertainties σx, σy vary 
around 0.2–0.4 pixel.

Figure 3 Example workflow of the toolbox MATLAB implementation. The example workflow is based on part of the provided Work-
Through Example 2 (WTE2) that takes the user through the processing and analysis of particle trajectories inside an evaporating 
droplet [17]. The programming lines illustrate the code used to create and train a model (green frame), to validate the model on the 
training data (blue frame), and to process the measurement images (red frame). The frames of corresponding colors illustrate the 
implemented pop-up GUIs and tables used to visualize and inspect the data structures.
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(2) AVAILABILITY
OPERATING SYSTEM
Windows, UNIX/Linux, Macintosh (and any operating 
system supporting MATLAB).

PROGRAMMING LANGUAGE
MATLAB 9.4.0 (R2018a), upward compatible.

ADDITIONAL SYSTEM REQUIREMENTS
N/A

DEPENDENCIES
The MATLAB implementation requires the additional 
MATLAB toolboxes: ‘curve_fitting_toolbox’, ‘image_
toolbox’, ‘statistics_toolbox’

LIST OF CONTRIBUTORS
N/A

SOFTWARE LOCATION
Archive

Name: Gitlab
 Persistent identifier: https://gitlab.com/defocustracking/

defocustracker-matlab/-/releases/v2.0.0

Licence: MIT
Publisher: Massimiliano Rossi and Rune Barnkob
Version published: 2.0.0
Date published: 18/06/2021

Code repository
Name: Gitlab
 Persistent identifier: https://gitlab.com/defocustracking/

defocustracker-matlab

Licence: MIT
Date published: 18/06/2021

LANGUAGE
English

(3) REUSE POTENTIAL

The analysis of particle positions, velocities, and trajectories 
is an integral part of many research disciplines. This 
includes analyses in 2D as well as in 3D, and with the rapid 
growth in fields relying on microscopy, such single-camera 
methods can provide unique and important information. 
One example is within the field of microfluidics where 

Figure 4 Example validation of the DefocusTracker MATLAB implementation as presented in Barnkob et al. [2], where different 
defocus-tracking approaches and algorithms were compared when applied to synthetic image sets of different degrees of 
astigmatism, noise levels, and particle image overlapping. (a) Example field of views of the analyzed synthetic images. (b) Example 
of the synthetic particle images at different z over the measurement depth h. (c) DefocusTracker results showing the coordinate 
uncertainties σ and recall ϕ.

https://gitlab.com/defocustracking/defocustracker-matlab/-/releases/v2.0.0
https://gitlab.com/defocustracking/defocustracker-matlab/-/releases/v2.0.0
https://gitlab.com/defocustracking/defocustracker-matlab
https://gitlab.com/defocustracking/defocustracker-matlab
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high control of fluid flow and externally-applied forces 
is becoming an important tool in biomedical research 
and applications. Here, 3D detection and tracking of 
particles and cells can provide the necessary information 
needed for optimization, standardization, and real-time 
inspection and control [18, 19].

GDPT has shown to be an excellent candidate for 
a wide-spread technique as is a simple and universal 
defocusing-based method and requires no special optics 
and can be used in standard microscope setups. Here, 
the development of free, accessible, user-friendly, and 
accurate tools can greatly enhance the practicability and 
availability of the method. One example is the MATLAB 
implementation GDPTlab (also by the authors), which 
has been distributed to researchers since 2015 and 
has proven its value in a number of research projects 
including work in journals such as Proceedings of the 
National Academy of Sciences, Physical Review Letters, 
and Scientific Reports [1, 4, 6–8, 10–14, 16, 21–23]. Note 
that most of this research were done in laboratories 
with no previous experience of 3D single-camera 
particle tracking prior to the use of GDPTlab. GDPTlab 
has thus shown the huge potential such methods hold, 
if free and user-friendly implementations are available. 
Though GDPTlab has enabled many researchers to 
get started using GDPT, it has unfortunately not 
been fully accessible as an open-source project, 
limiting its further development and adaptation by 
the community. DefocusTracker fills this need as it is 
fully open-source. The toolbox contains a readme-file 
and work-through examples for users to get quickly  
started.

MODIFICATION AND SUPPORT
DefocusTracker is set up in a versatile and modular 
fashion allowing for easy expansions and improvements, 
such as extensions of custom functionalities and 
features, e.g. using MATLAB’s GUI editor and pre-
built functions. In the Python implementation, such 
expansions could involve the use of popular libraries 
for data analysis and machine learning, such as SciKit, 
Keras, and TensorFlow. DefocusTracker is supported by 
https://defocustracking.com/ which is an online platform 
created to assist the development and support of 
DefocusTracker as well as to facilitate the research 
community with a place for sharing of data and 
experiences related to single-camera 3D particle 
tracking. The platform contains several forums, e.g. for 
new developers to request access and for users to ask 
the community for support.

DATA REPOSITORY

All material, without exception, is available via the 
permanent repository: https://defocustracking.com/.
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