
Crusoe, M R and Brown, C T 2016 Walking the Talk: Adopting and Adapting Sustainable
Scientific Software Development processes in a Small Biology Lab. Journal of Open Research
Software, 4: e44, DOI: http://dx.doi.org/10.5334/jors.35

Journal of
open research software

ISSUES IN RESEARCH SOFTWARE

Walking the Talk: Adopting and Adapting Sustainable
Scientific Software Development processes in a Small
Biology Lab
Michael R. Crusoe1 and C. Titus Brown2
1 Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
2 Computer Science and Engineering, Michigan State University, East Lansing, MI, USA
Corresponding author: C. Titus Brown (ctbrown@ucdavis.edu)

The khmer software project provides both research and production functionality for largescale nucleic-
acid sequence analysis. The software implements several novel data structures and algorithms that per-
form data pre-filtering for common bioinformatics tasks, including sequence mapping and de novo assem-
bly. Development is driven by a small lab with one full-time developer (MRC), as well as several graduate
students and a professor (CTB) who contribute regularly to research features. Here we describe our
efforts to bring better design, testing, and more open development to the khmer software project as of
version 1.1. The khmer software is developed openly at http://github.com/dib-lab/khmer/.

Keywords: WSSSPE; k-mer

(1) Introduction
Computational tools for analyzing large volumes of DNA/
RNA sequencing data have become increasingly necessary
over the last decade. The growth of sequencing capacity
and the associated expansion of scientific problems being
studied with sequencing is driving the rapid development
of many new tools, both for handling data on large scales
and to address new and different biological problems.

The khmer software was born from a need to more scal-
ably analyze short fixed-length (20–30 character) words, or
“k-mers”, in large DNA sequencing data sets. The use of k-mers
in DNA sequence analysis is common because they can be eas-
ily hashed, counted, and compared within and between data
sets. However, as data sets have grown in size, approaches to
analyzing k-mers have fallen behind the memory and compute
scaling curves. khmer provides several functions: approximate
k-mer counting using a CountMin Sketch [10], an implemen-
tation of a compressible k-mer connectivity graph [8], and a
streaming lossy compression algorithm for large data sets
[2]. These were first implemented as a part of bioinformatics
research publications, but due to their broad utility have now
been used in several hundred data analysis publications.

We developed the khmer software as an open source
project since the beginning: the software is under the
BSD license, and we use GitHub for most development
activities, including co-ordinating contributions, perform-
ing code review, and tagging releases. We provide a wide
variety of tutorials and user documentation, both as part
of the khmer project itself and also as part of a range of

workshop material. Adoption of khmer is driven not only
by its utility in addressing otherwise difficult or intracta-
ble problems, but also by CTB’s blogging, research pre-
prints and publications, and presentations.

The user base for khmer is unknown but appears to be sig-
nificant. While we do not track users per se, there are over 1500
downloads of khmer a month from the Python packaging dis-
tribution site, and about 2000 visits to the khmer documenta-
tion site a month. The GitHub site is in the 97th percentile of
software on GitHub for both ‘stars’ (129) and ‘forks’ (76), indi-
cating general interest. Scientifically, there are over 30 papers
citing khmer for data analysis purposes, and the algorithms and
approaches initially implemented in khmer have been adapted
to and incorporated in several other software packages.

The main challenge for us in developing khmer has been
to build a stable and reliable software project while simulta-
neously supporting an energetic research program in bioin-
formatics. This has traditionally been hard for small scientific
labs due to many factors including lack of expertise and lack
of sustained funding. Below, we discuss our experience in
navigating the challenges in making a small-lab software pro-
ject sustainable. We focus particularly on how we changed
our software development process to support a more sus-
tainable development process.

(2) Background
khmer grew out of specific analysis needs, and was devel-
oped primarily on startup funding and as part of a USDA
grant. Its development has led to at least two additional

http://dx.doi.org/10.5334/jors.35
http://github.com/dib-lab/khmer/

Crusoe and Brown: Walking the Talk Art. e44, p. 2 of 6

grants including the NIH BIG DATA grant that supported
MRC [1]. Over its lifetime khmer has had 15 different con-
tributors, with five currently active. The code consists of
approximately 12.2k lines of C and C++ code, with scripts
and tests written in Python (6.6k lines of code).

The software was initially written by CTB for other
purposes during his graduate work at Caltech, and
then extended so far as to be almost entirely rewritten
for research in his faculty position at Michigan State
University. By July of 2013, when MRC started, the soft-
ware had its current level of functionality, but we faced a
number of specific challenges.

1. We had no formal development model: there was no
code review, no formatting requirements, no continu-
ous integration, and no API stability requirements. As
a result we were constantly in a state of uncertainty
about khmer’s quality and stability. In practice, this
manifested as highly variable code quality, uneven
density of bugs in different pieces of core functional-
ity, and periods where key pieces of functionality did
not function properly.

2. Our developers had a variety of experience: some were
expert computational biologists with little to no pro-
gramming experience, while others were experienced
open source software developers with little to no
computational biology background. This meant that
we could not confidently rely on good domain under-
standing and good software development hygiene
from any one developer. One particular outcome of
this mismatch was the development of a significant
ancillary codebase of redundant and semi-functional
scripts that made use of core khmer functionality but
was not integrated into the project; we also encoun-
tered situations where biologically inappropriate data
transformations were made for sound engineering
reasons, e.g. the elimination of ambiguous nucleo-
tides from input data.

3. Like many bioinformatics projects, khmer is both
research and production software: our lab is constantly
extending khmer in new directions, at the same time
as we and others apply its existing functionality to
analyze biological data. While managing regular
change is a traditional challenge for software develop-
ment on any long-running project, the problem was
exacerbated here: long-term planning was impracti-
cal given the high rate of technical innovation in
sequencing data generation.

4. khmer exists within an ecosystem of tools. khmer
itself primarily filters sequence data, which is gen-
erated in specific formats by upstream tools and is
then consumed in those same formats by down-
stream tools. We had no systematic testing of khmer
within its larger ecosystem, and generally relied on
users to find problems. In one particular instance,
a minor typo in a downstream processing output
function meant that while all internal tests passed,
no external programs could consume khmer output
successfully.

Collectively these challenges made us believe that khmer
software development was not sustainable without sig-
nificant investment in software engineering. Either (1) the
research development would falter in the face of increas-
ingly high maintenance demands, or (2) khmer’s stable
functionality would start to deteriorate, or (3) both. To
address these challenges, CTB secured three years of NIH
funding through the 2012 NIH/NSF BIG DATA funding
call, and hired MRC, a software developer with biology
education and bioinformatics experience.

(3) Upgrading the development process
3.1 The khmer lifecycle
As described above, khmer started as a small single-devel-
oper project but was never published, and development
lapsed for several years. In 2010, we repurposed khmer as
a testbed for trying out approaches to memory-efficient
k-mer counting in large data sets [10]. Over the next few
years, several developers contributed to khmer function-
ality, culminating in implementations of a compressible
graph representation for DNA sequences and a streaming
lossy compression algorithm [8] [2]. In addition to provid-
ing a demonstration implementation for the purposes
of publishing these methods, khmer also proved directly
useful in data analysis [6]. Because we provided khmer
as open source software and discussed it online in social
media, it was also adopted by a number of other groups
who had similar problems.

As khmer was being used both as a methods testbed
and for actual data analysis, the project lead (CTB) made a
concerted effort to keep khmer extensible while maintain-
ing existing functionality. This was largely reflected in a
conservative approach to merging in contributions from
graduate students in the lab, but was also enabled by a
significant enthusiasm for automated tests at the unit,
functional, and scripting level. Nonetheless during this
period the software regularly suffered significant bugs,
and large portions of the code base were added on a trial
basis but then left unused when research went in differ-
ent directions.

In 2013, significant funding for further software devel-
opment was obtained through an NIH R01 grant, and
MRC was hired to manage the development process. Also
during this period, a number of new graduate students
also joined the lab, and it became clear that they would be
working on the khmer code base as part of their research.
This made us take a step back to evaluate our overall
process.

3.2 Evaluating the project’s sustainability
To guide our development of a rational software devel-
opment process, we applied the Software Sustainability
Institute’s Criteria-based assessment checklist [7] to the
khmer project in September 2013 and shared the results
with the community [4]. The summary from that report
was grim: khmer met 19 of 44 (or 43%) of of the SSI’s
criteria for Usability, and 43 of 118 (or 36%) of the criteria
for Sustainability & Maintainability, for an overall fulfill-
ment of 62 of the 163 items, or 38%.

Crusoe and Brown: Walking the Talk Art. e44, p. 3 of 6

3.3 Changing our development process
For version 1.0, we adopted continuous integration,
semantic versioning, acceptance testing, development
standards, code coverage analysis, explicit citation infor-
mation, and code review, among other process alterations
and features. While these are standard software develop-
ment and engineering practices outside of academia, we
find that many scientific software developers are unaware
of them. Moreover, their interaction with research goals
has not been well explored, so we discuss them in more
detail.

3.3.1 Development standards and semantic
versioning
We instituted a number of development standards, includ-
ing coding styles and versioning requirements for back-
wards compatibility. Our goal was to have explicit written
requirements that would inform new contributors of our
expectations, whether they have significant prior pro-
gramming experience or not. A particularly important
part of this goal was to make sure that new contributors
within the lab had a clear set of expectations.

Uniformity of coding styles helps maintain code read-
ability and enables easier code review, so we chose a cod-
ing style standard for both C++ and Python. The specific
choice for coding style was made somewhat arbitrarily,
largely to avoid protracted bikeshedding discussions: the
important goal was to have some coding standard. For
C++, we chose the “One True Brace Style” and the Artistic
Style program for indentation and bracing. For Python,
we settled on the default PEP8 standard, for which several
checking and reformatting tools exist.

We also imposed a backwards compatibility require-
ment on our command line scripts. While we did not want
to stabilize the Python or C++ API because we are actively
changing khmer internals, we felt that our command line
scripts were sufficiently stable to require that there would
never be any backwards-incompatible changes in subse-
quent releases on the 1.0 series.

We have therefore committed to semantic versioning
[9] for the command line scripts that come with khmer.
This imposes a three-tiered versioning system: for patch
version number changes (khmer v1.0.x), only minor bug
fixes and documentation updates are allowed; for minor
version number changes (khmer v1.x), backwards compat-
ibility of the command line scripts must be maintained;
and, should we choose to break backwards compatibility,
we would need to make a major version number change
(khmer v2).

The importance of semantic versioning is that it allows
developers, documentation writers, sysadmins, and pack-
age managers to predict the specific behavior from a range
of versions, and to easily determine whether or not they
should upgrade their installation. Of particular importance,
pipeline developers and users can rely on stable behavior
from minor releases. We expect this to make khmer a more
reliable member of the sequencing analysis software eco-
system, and also reduce the confusion that existing users
will experience with new releases of the software.

3.3.2 Continuous integration
Continuous integration ensures that automated tests
are executed regularly on standard platforms. While
developers are expected to commit code with no failing
tests, often they do not have convenient access to all of
the supported platforms and installation environments.
Continuous integration frees individual developers from
having to execute their tests manually across many envi-
ronments by automating the entire process on commit.
Our continuous integration system, built on top of Jenkins
and running on a Rackspace donated Linux server and an
in-house Mac OS X machine, also runs style checkers and
reports code coverage summaries.

The most important application of continuous inte-
gration for us has been automated checking of merge
requests prior to code review or merge into the mainline.
This automatically ensures a basic quality of committed
code and also alerts developers to any platform incom-
patibilities before they merge. It also serves as an impor-
tant check for less experienced software developers, who
may have forgotten to run one or another element of the
required checks on their contribution.

3.3.3 Integrated code coverage analysis
Code coverage analysis is an important part of software
development: statement coverage, or how many lines of
code are executed in some way by unit and functional
tests, can readily identify untested regions of code. Note
that while executed code is not guaranteed to be correct,
code that is not executed by tests is certainly not tested, so
high code coverage is a necessary but not sufficient condi-
tion for thorough testing. While khmer had several hun-
dred tests by the time MRC started working with it, the
tests were all at the Python level and we had no estimate
of how well they covered the C++ code base.

Combined C++ and Python code coverage was instituted
in October 2013 and we were pleasantly surprised to find
that over 80% of the khmer codebase was executed in the
tests. Since October we have increased the code coverage
percentage to over 90%. This number is now calculated
on every pull request (see below) and significant decreases
are flagged as “unhealthy” in our continuous integration
system.

3.3.4 Code contribution process and code review
While code review is an important part of ensuring that only
“good” code and feature are included in a project, it is typi-
cally very time consuming to do systematic code reviews. In
order to scale our development process to more contribu-
tors while enabling code review, we adopted the “GitHub
Flow” model of code review [3]. In this model, changes are
developed on an independent branch of code; this branch
of code is linked to the main development repository via
a “pull request”, which is an ongoing summary of changes
together with free text discussion. When the developer
feels that the changes are ready to be merged, they request
a formal review, for which we have instituted a checklist;
this checklist includes test coverage and coding style analy-
sis, documentation review, and compatibility checking.

Crusoe and Brown: Walking the Talk Art. e44, p. 4 of 6

Our expectation is that this more formal but still light-
weight development process will encourage contributions
and also serve as a training and education process for less
experienced developers. By making our developer contri-
bution requirements explicit, we may also serve as a guide
for other bioinformatics software projects.

3.3.5 Integration and acceptance testing
An ongoing concern for khmer is how well our software
integrates with other packages. Because khmer primar-
ily consumes the output of upstream software, and the
output of khmer is then fed into downstream software,
we need to take into account a larger software ecosystem.
Unfortunately, there are few real data format standards
in this area: the sequencing companies that generate the
source data are notoriously quick to change their out-
put formats in arbitrary ways, and developers of other
packages may introduce format changes intentionally
(through feature extension) or unintentionally (through
bugs). Standardization itself is probably a futile approach:
while we expect A, C, G, and T to remain the primary char-
acters in DNA sequence representations, the formats for
data uncertainty and annotation evolve with sequencing
technology, which in turn is changing quickly.

We therefore have instituted acceptance testing to
ensure that khmer works with at least some upstream
and downstream software packages. Our acceptance tests
for khmer 1.0 take a subset of data through quality con-
trol, error trimming, digital normalization, and assembly;
at the end we check that we obtain approximately the
expected results, vice minor details that change with dif-
ferent versions of external software. We have been greatly
aided in developing acceptance tests by our own standard
“protocols” for sequence analysis: our acceptance tests go
through the first three parts of the Eel Pond mRNAseq
protocol (http://khmer-protocols.readthedocs.org/).

Acceptance testing proved to be extremely important in
the release process. Four different bugs having to do with
installation and command-line parameter handling were
discovered in the 48 hours before release of version 1.0;
these bugs generally had to do with common command
line cases that were not readily testable at the unit and
functional level.

We are also targeting our acceptance tests for Ubuntu
14.04, a Long Term Support version of Linux that will be
supported through 2019. This should further decrease
maintenance efforts for our acceptance tests.

3.3.6 Citation information
Scientific funding for software maintenance depends
on demonstrating the scientific utility of software;
this is typically done via citations. For both algorithms
and software, citations demonstrate usage, utility, and
impact. However, scientific software may contain mul-
tiple novel algorithms, and the software itself may be
published separately from the proof of concept of the
algorithms. For khmer, this is a serious concern: we have
publications or preprints on three novel approaches
implemented in khmer, and we are also continually

updating the software itself. We also have a significant
online presence. This demonstrably confuses users: we
have observed citations of the incorrect paper for the
algorithm being used, citations of our documentation,
and (oddly enough) citations of khmer documentation
hosted on other institutions’ Web sites.

To clarify and regularize citation practices, we added
explicit citation guidelines in two places: first, in the
CITATION file at the top of the distribution, and second,
in the output from every script. We now ask that users cite
not only the software itself (via a software paper), but also
the algorithm papers relevant to the software features
being used.

While we worry about appearing to be “citation greedy”
we also believe quite strongly that our ongoing efforts to
maintain the software are a critical part of our research,
and that the researchers and developers involved in that
effort should be acknowledged appropriately in the scien-
tific literature. This can really only be addressed by requir-
ing citation of the relevant software paper, which will be
updated for every significant version release with contrib-
utor names. At the same time, we also believe that our
algorithm contributions are independently important and
should be acknowledged by citations. Hence, the require-
ment that when our algorithms are used, the relevant
algorithms paper should be cited.

3.4 Releasing version 1.0
On April 1st, 2014, we released khmer 1.0. While by no
means a finished product, we now believe we are on a
much more sustainable development path. In particular,
khmer now meets 69% of the Software Sustainability
Institute’s checklist [5].

Some of the criteria that wasn’t being initially met
but now are fulfilled are: (A) Comprehensive documen-
tation (of the scripts). (B) The documentation lists what
version it applies to (C) An automated build system (D)
Documentation of the build (E) Dependency management
(F) Installer and uninstaller (G) Consistent copyright and
license statements in all source files (H) Both source and
binary distributions (I) Release checklist (J) Coding stand-
ards conformance testing with enforcement (K) Test cover-
age testing (L) Continuous integration (M) Email address
for the project.

(4) Persistent Challenges in Research Software
Development
In the long term, we expect to face three major challenges
in continuing to develop khmer.

First, we need to secure continued funding for khmer
software development. This will depend primarily on
producing novel research, but a substantial part of our
research is tied to khmer. If we can leverage our good
software engineering practices to accelerate our own
research while also providing value to the larger commu-
nity — “better science through superior software” — then
arguments for more funding will be much easier than if
we simply develop khmer for others to use. This is less
satisfying than getting funding for maintenance, but is a

http://khmer-protocols.readthedocs.org/

Crusoe and Brown: Walking the Talk Art. e44, p. 5 of 6

more plausible path forward than relying on maintenance
grants.

Second, we must balance maintenance activities with
novel research features. In the face of changing input data
(due to instrument and experimental protocol changes),
different expectations for output (bioinformaticians
invent a new format every 5 minutes on average), com-
peting algorithms with poor replicability, etc., we could
spend 100% of our time on quality control without devel-
oping anything new. Maintenance could be a valuable
community service but would not address as many stu-
dent, postdoc, or faculty career incentives as doing new
research. Equally, expanding our research alone would
result in less reliable software. Much of our process is
dedicated to walking the line between maintenance and
novel research.

Third, we face many challenges in terms of recruit-
ing software developers and researchers. Inevitably new
lab members are undertrained in most of what we do,
including testing, version control, good computational
hygiene, data science, bioinformatics and/or the domain
of biology. These are a lot of subjects to train new people
in, and we have yet to establish an effective lab culture.
On the converse side, of course, we expect lab graduates
to be increasingly employable in both academia and
biotech; moreover, the lab reputation of caring about
good software has started to attract people with deeper
training.

(5) Concluding thoughts
While we are still at the early stages of the experiment, we
believe we can reach some conclusions about which parts
of our process have been most important. While these are
anecdotes, most of our process is already standard in both
industry and open source projects, so we would argue that
our anecdotes bear out what is already known outside of
scientific research.

First, we believe that version control and significant
automated testing have both been incredibly important
and are absolutely necessary for any sustained software
development effort. Without version control, having mul-
tiple developers work on the same project would have
been effectively impossible: all our time would have been
spent on coordination issues. Even with a single developer
(CTB), khmer development benefited from version history
and source code comparison across versions.

Without automated testing, we would almost cer-
tainly have hesitated to make many changes, for fear
of introducing regressions; this is especially important
given the variance in software engineering expertise.
By insisting that new code have tests associated with
it, we also ensured that other developers would avoid
unintentionally breaking new code they were not yet
familiar with.

Second, acceptance testing has proven quite valuable
for 1.0. Prior to committing to a stable command-line API,
acceptance testing would most likely have been a waste of
time: maintenance effort would have been needed to keep
the scripts and tutorials working well together. However,

now that we have committed to a stable command-line
API, if the acceptance tests break it will be a bug, so there
should be little maintenance burden. By committing to
an Ubuntu Long Term Support release for running the
acceptance tests, we can further control our maintenance
costs.

Third, as we expand our development team and
encourage contributions from people external to our
lab, automated ways of evaluating software quality
become extremely useful. Here, continuous integration,
style checks, and code coverage analysis are particularly
important for maintaining project stability. A formal
code review by an experienced developer is the enforce-
ment mechanism that ensures that basic requirements
are met.

Our approach can be summarized thusly: we treat the
development of the khmer scientific codebase as a distrib-
uted open-source project that doesn’t prioritize internal
over external contributions. Everyone has to meet the
clearly stated expectations; un-proven experimental work
by the graduate students and others are kept in separate
branches until proven to be useful. Changes to the core
are only introduced when necessary and not any sooner
(as in the style of agile development). This allows us to
balance the two purposes of khmer: as a production code-
base and as a foundation for research.

One important caveat is that we don’t yet know how well
any of this is going to work! Our chief goals are to enable fur-
ther research with khmer and maintain existing functional-
ity, all while our developer base expands and/or turns over.
We hope and believe that our approaches will let us do this,
but we need a longer baseline of observations to find out.

Acknowledgements
MRC has been funded by AFRI Competitive Grant no. 2010-
65205-20361 from the USDA NIFA and was then funded
by the National Human Genome Research Institute of
the National Institutes of Health under Award Number
R01HG007513; both to C. Titus Brown. We thank Dr. Lex
Nederbragt for helpful comments on early drafts.

Competing Interests
The authors have no competing interests to declare.

References
1. Brown, C T 2012 BIGDATA: Small: DA: DCM: Low-

memory streaming prefilters for biological sequencing
data. http://www.ged.msu.edu/downloads/2012-big-
data-nsf.pdf.

2. Brown, C T, Howe, A, Zhang, Q Pyrkosz, A and
Brom, T H 2012 A reference-free algorithm for compu-
tational normalization of shotgun sequencing data. In
review at PLoS One, July, Preprint at http://arxiv.org/
abs/1203.4802.

3. Chacon, S 2011 Github flow. http://scottchacon.
com/2011/08/31/github-flow.html.

4. Crusoe, M R 2013 Criteria-based assessment of
the khmer suite. figshare. DOI: https://dx.doi.
org/10.6084/m9.figshare.1558321.v1

http://www.ged.msu.edu/downloads/2012-bigdata-nsf.pdf
http://www.ged.msu.edu/downloads/2012-bigdata-nsf.pdf
http://arxiv.org/abs/1203.4802
http://arxiv.org/abs/1203.4802
http://scottchacon.com/2011/08/31/github-flow.html
http://scottchacon.com/2011/08/31/github-flow.html
https://dx.doi.org/10.6084/m9.figshare.1558321.v1
https://dx.doi.org/10.6084/m9.figshare.1558321.v1

Crusoe and Brown: Walking the Talk Art. e44, p. 6 of 6

5. Crusoe, M R 2014 Criteria-based assessment of the
khmer suite v1.0. figshare. DOI: https://dx.doi.
org/10.6084/m9.figshare.1558322.v2

6. Howe, A C, Jansson, J K, Malfatti, S A, Tringe, S G,
Tiedje, J M and Brown, C T 2014 Tackling soil diversi-
ty with the assembly of large, complex metagenomes.
Proceedings of the National Academy of Sciences.

7. Jackson, M, Crouch, S and Baxter, R 2013 Software
evaluation guide. http://www.software.ac.uk/resourc-
es/guides-everything/software-evaluation-guide.

8. Pell, J, Hintze, A, Canino-Koning, R, Howe, A, Tied-
je, J M and Brown, C T 2012 Scaling metagenome

sequence assembly with probabilistic de bruijn graphs.
Proc Natl Acad Sci U S A, Aug, 109(33): 13272–7. DOI:
http://dx.doi.org/10.1073/pnas.1121464109. PMID:
22847406.

9. Preston-Werner, T 2013 “semantic versioning 2.0.0”.
http://semver.org/.

10. Zhang, Q, Pell, J, Canino-Koning, R, Howe, A C
and Brown, C T 2014 These are not the k-mers you
are looking for: Efficient online k-mer counting us-
ing a probabilistic data structure. PLoS ONE, Jul, 9(7):
e101271, DOI: http://dx.doi.org/10.1371/journal.
pone.0101271

How to cite this article: Crusoe, M R and Brown, C T 2016 Walking the Talk: Adopting and Adapting Sustainable Scientific
Software Development processes in a Small Biology Lab. Journal of Open Research Software, 4: e44, DOI: http://dx.doi.
org/10.5334/jors.35

Submitted: 07 April 2014 Accepted: 18 October 2016 Published: 29 November 2016

Copyright: © 2016 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

https://dx.doi.org/10.6084/m9.figshare.1558322.v2
https://dx.doi.org/10.6084/m9.figshare.1558322.v2
http://www.software.ac.uk/resources/guides-everything/software-evaluation-guide
http://www.software.ac.uk/resources/guides-everything/software-evaluation-guide
http://semver.org/
http://dx.doi.org/10.1371/journal.pone.0101271
http://dx.doi.org/10.1371/journal.pone.0101271
http://dx.doi.org/10.5334/jors.35
http://dx.doi.org/10.5334/jors.35
http://creativecommons.org/licenses/by/4.0/

	(1) Introduction
	(2) Background
	(3) Upgrading the development process
	3.1 The khmer lifecycle
	3.2 Evaluating the project’s sustainability
	3.3 Changing our development process
	3.3.1 Development standards and semantic versioning
	3.3.2 Continuous integration
	3.3.3 Integrated code coverage analysis
	3.3.4 Code contribution process and code review
	3.3.5 Integration and acceptance testing
	3.3.6 Citation information

	3.4 Releasing version 1.0

	(4) Persistent Challenges in Research Software Development
	(5) Concluding thoughts
	Acknowledgements
	Competing Interests
	References

