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ABSTRACT
Palabos-npFEM is a computational framework for the simulation of blood flow with 
fully resolved constituents. The software resolves the trajectories and deformed state 
of blood cells, such as red blood cells and platelets, and the complex interaction 
between them. The tool combines the lattice Boltzmann solver Palabos for the 
simulation of blood plasma (fluid phase), a finite element method (FEM) solver for the 
resolution of blood cells (solid phase), and an immersed boundary method (IBM) for 
the coupling of the two phases. Palabos-npFEM provides, on top of a CPU-only version, 
the option to simulate the deformable bodies on GPUs, thus the code is tailored for the 
fastest supercomputers. The software is integrated in the Palabos core library, and is 
available on the Git repository https://gitlab.com/unigespc/palabos. It offers the possibility 
to simulate various setups, e.g. several geometries and blood parameters, and due to 
its modular design, it allows external solvers to readily replace the provided ones.
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(1) OVERVIEW
INTRODUCTION
Palabos-npFEM is a highly versatile computational tool for 
the simulation of cellular blood flow (at the micrometre 
scale), focusing on high performance computing (HPC) 
without compromising accuracy or complexity.

Blood plays a vital role in living organisms, transporting 
oxygen, nutrients, waste products, and various kinds of 
cells, to tissues and organs. Human blood is a complex 
suspension of red blood cells (RBCs), platelets (PLTs), 
and white blood cells, submerged in a Newtonian fluid, 
the plasma. At physiological hematocrit (RBCs volume 
fraction), i.e. 35–45%, in just a blood drop (about a mm3) 
there are a few million RBCs, a few hundred thousand 
PLTs, and a few thousand white blood cells. An adult 
person has on average five litres of blood, and the 
cardiovascular system spans a length of 100,000 km, 
80% of which consists of the capillaries (smallest blood 
vessels). Additionally, our blood vessels are characterised 
by a variety of scales, i.e. the diameter of arteries/
veins ranges from few millimetres to few centimetres, 
the diameter of arterioles/venules ranges from few 
micrometres to few hundred micrometres, and the 
capillaries are about the size of a RBC diameter (about 
eight micrometres). It is obvious that a simulation at the 
micrometre scale of such a system (even a tiny part of it, 
e.g. an arteriole segment) is a multi-physics/multi-scales 
problem, with an extremely high computational cost.

Despite remarkable advances in experimental in-vivo and 
in-vitro techniques [16], the type and detail of information 
provided remains limited. For example, while it is possible to 
track the collective behaviour of blood cells, it is up to now 
impossible to track individual trajectories and study the 
underlying transport mechanisms. Given the cellular nature 
of blood, its rheology can be deciphered by understanding 
how the various cells are moving and interacting with each 
other in both healthy and non-healthy humans. Numerical 
tools have significantly assisted in in-depth investigations 
of blood rheology, as they offer a controlled environment 
for testing a large number of parameters and classifying 
their effect [4, 8]. Furthermore, the amount of detail 
coming from the numerical simulations at the microscopic 
level (following individual cells) is unparalleled compared 
to the in-vitro/in-vivo counterparts.

The multi-physics nature of blood can be numerically 
described by decomposing this complex suspension into 
the fluid and solid phases.

Regarding the fluid phase, we are interested on solving 
the Navier-Stokes equations for the description of blood 
plasma. Thus the spatial velocity v(x, t) and pressure p(x, 
t) fields in an isothermal and incompressible Newtonian 
fluid must satisfy the following equations [6]
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where ∇x, ∆x refer to the gradient and Laplacian with 
respect to the spatial coordinates x for any fixed time 
t ≥ 0, ρ0 is the fluid density, μ is the fluid dynamic viscosity, 
and b is a prescribed spatial body force field per unit mass 
(e.g. gravity and immersed surfaces like blood cells).

Regarding the solid phase, for the resolution of the 
deformable blood cells and their trajectories, we are 
solving the Elastodynamics equation [6], a non-linear 
equation, referring to any kind of solid body. By convention, 
we call B the reference (undeformed) configuration, and 
B′ the deformed configuration. The points X ∈ B are 
called material coordinates, and the points x ∈ B′ are 
called spatial coordinates. The deformation of a body 
from a configuration B onto another configuration B′ is 
described by a function ϕ : B → B′, which maps each point 
X ∈ B to a point x = ϕ(X) ∈ B′. We call ϕ the deformation 
map. The motion ϕ(X, t) of an elastic body must satisfy 
the following equation for all X ∈ B and t ≥ 0 [6]

 0 0
X

mr r= ⋅ +P bf  (2)

where ∇x refers to derivatives of material fields with 
respect to the material coordinates Xi for any fixed t ≥ 0, 
ρ0(X) denotes the mass density of the elastic body in its 
reference configuration, P(X, t) is the first Piola-Kirchhoff 
stress field, and bm(X, t) is the material description of the 
spatial body force field b(x, t) (e.g. gravity and interaction 
with a fluid). Equation (2) is essentially the conservation 
of linear momentum (Newton’s 2nd law of motion), while 
the balance of angular momentum is automatically 
satisfied from the symmetry of the Cauchy stress field (by 
definition of elastic bodies). For non-Cosserat-like elastic 
bodies, i.e. elastic bodies where microscopic moments 
are zero, the balance of angular momentum is implicitly 
satisfied. With minor modifications of equation (2), one 
can readily simulate a viscoelastic material, i.e. a body 
that exhibits both viscous and elastic characteristics. 
Overall, the changes in (2) are small because (2) does not 
explicitly contain the law describing material behaviour. 
Globally, the changes required might not be minor, and 
this depends on the actual material model chosen. What is 
true is that the fact that (2) does not explicitly contain the 
material behaviour provides modularity to the model, in its 
theoretical form as well as in its numerical implementation.

For more details on the continuum equations for both 
fluids and solids, the reader should consult the work by 
Gonzalez and Stuart [6].

Palabos-npFEM solves equations (1) & (2) in a 
modular way, and performs the Fluid-Solid Interaction 
(FSI) through the Immersed Boundary Method (IBM). By 
modularity, we mean the complete decoupling of the 
solvers, i.e. the resolution of fluid phase is “unaware” 
of the resolution of the solid phase and vice-versa. 
Our software framework takes care of communication 
whenever needed in relationship with the FSI. Figure 1 
presents a snapshot from a Palabos-npFEM simulation, 
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and shows the different solvers involved in the numerical 
representation of blood. The Navier-Stokes equations 
(1) are solved indirectly through the lattice Boltzmann 
method (LBM) as implemented in Palabos1 [10]. Palabos 
stands for Parallel Lattice Boltzmann Solver. It is an 
open source software maintained by the Scientific and 
Parallel Computing Group (SPC) at the University of 
Geneva. The elastodynamics equation (2) is solved by 
the nodal projective finite elements method (npFEM) 
[7] (part of Palabos core library as well). The npFEM is 
a mass-lumped linear FE solver that resolves both the 
trajectories and deformations of blood cells with high 
accuracy. The solver has the capability of capturing the 
rich and non-linear viscoelastic behaviour of any type 
of blood cells as shown and validated in Kotsalos et 
al. [7]. The IBM [14, 13], for the coupling of the solid & 
fluid phases, is implemented in the Palabos library. The 
IBM imposes a no-slip boundary condition, so that each 
point of the surface and the ambient fluid moves with 
the same velocity. The advantage of the IBM is that the 
fluid solver does not have to be modified except for the 
addition of a forcing term fimm (incorporated in the last 
term of equation (1), i.e. in b). Moreover, the deformable 
bodies and their discrete representations do not need to 
conform to the discrete fluid mesh, which leads to a very 
efficient fluid-solid coupling. A thorough presentation of 
all the theoretical aspects, i.e. fluid/solid phases and FSI, 
can be found in Kotsalos et al. [7, 9].

The modular system allows different spatial discre-
tisations, i.e. the fluid domain is discretised into a regular 
grid with spacing Δx in all directions, and the solid bodies 
are discretised into triangular surface meshes. The data 
exchange between solvers of different discretisation is 
handled through interpolation kernels, as dictated by the 
immersed boundary method. Moreover, the temporal 
discretisation is solver dependent. Given the explicit 

nature of LBM and the implicit/semi-implicit nature of 
npFEM, the latter can in principle handle larger time steps.

Our modular design contrasts with monolithic 
approaches, which solve both phases through one 
system of discretised equations, and thus use one 
solver. Monolithic approaches can be considered as well 
computational frameworks whose design entangles 
the various solvers for performance purposes. The 
former approach, i.e. a single solver to deal with every 
phase, includes mainly tools that use dissipative particle 
dynamics [15] (in the field of blood flow simulation). The 
main advantage of a monolithic design is the performance 
gain and a more straightforward FSI (in terms of coupling 
difficulty). However a single solver potentially falls short 
of satisfactorily addressing all the physics present in 
a complex phenomenon. Furthermore, one needs to 
develop a new monolithic solver for every specific choice 
of model/material/accuracy of each phase, i.e. monolithic 
solvers are very specific and development time is high. In 
the modular approach, there is the freedom to choose 
well optimised solvers to address the different phases, 
which leads to higher fidelity models. Of course, the 
coupling of completely independent solver streams can 
introduce performance penalties and possibly an over-
complicated code. However, we have shown [9], that our 
modular design results in a minimal performance loss.

The development of such a solver requires a multi-
physics and multi-scale approach as it involves fluid 
and solid components that may be optimised through a 
description at different temporal and spatial scales. To 
ensure flexibility and efficiency, code performance and re-
usability are central issues of our modular tool. According 
to the principles proposed in MMSF (Multi-scale Modelling 
and Simulation Framework) [5, 2, 1], our cellular blood 
flow computational tool is built on a fluid solver, and a 
deformable solid bodies solver, whose implementation is 

Figure 1 Digital Blood simulated in Palabos-npFEM (a simulation snapshot). The red bodies are the RBCs, while the yellow bodies 
represent the PLTs. One can observe the different phases composing this complex suspension. We provide the possibility to run the 
solid solver either on CPUs or GPUs (as depicted by the GPU/CPU icons), while the rest of the solvers are CPU-only versions.

Fluid Solver

Solid Solver

FSI

/
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potentially left to the preference of the scientists. Here, 
however, we propose a specific choice. The coupling of 
the two solvers is realised through a separate interface, 
which handles all the needed communication. Note 
that this coupling interface acts independently of the 
details of the fluid and solid solvers. It only requires data 
representing physical quantities which are computed by 
the two solvers, thus ensuring the independence with 
respect to the chosen numerical methods [9].

For a detailed presentation of the numerical methods 
used in Palabos-npFEM and its HPC-centric design, the 
reader should consult Kotsalos et al. [7, 9]. Here we focus 
on the software issues.

IMPLEMENTATION AND ARCHITECTURE
Palabos-npFEM is build on top of two independent solvers, 
i.e. fluid and solid solvers, and couples them through the 
FSI module (see Figure 1). The choice of the particular 
solvers, namely Palabos and npFEM, is crucial for high 
fidelity and performant simulations. However, other users 
of the code could extend it by replacing the particular 
choices by alternatives, e.g. opting for a mass-spring-
system solid solver instead of a FEM one. The alternative 
solvers need to be similarly parallelisable through domain 
decomposition and allow interaction with solid particles 
through an immersed boundary method.

Palabos [10] is an open-source library for general-
purpose computational fluid dynamics based on the 
lattice Boltzmann method. Palabos is written in C++ with 
extensive use of the Message Passing Interface (MPI). 
MPI is the library that handles parallelisation across 
multiple cores and nodes of a supercomputer/cluster. 
Palabos supports CPU-only hardware.

The npFEM solver [7] is an open-source finite element 
solver written in C++ with support for openMP (for 
multi-core machines) and CUDA (GPU-support). CUDA 
is a general purpose parallel computing platform and 
programming model for NVIDIA GPUs. Thus npFEM 
provides two actively supported branches, i.e. CPU and 
GPU versions (as summarised in Figure 1). The npFEM 
solver is derived from a heavily modified version of the 
open-source library ShapeOp2 [3]. The different naming 
originates from the fact that the modifications make the 
solver an FEM solver instead of a computer graphics tool, 
as ShapeOp is initially intended for. In more details:

•	 We have changed radically the original kernel for 
advancing the bodies in time. Our approach follows 
the redesigned projective dynamics approach as 
described in Liu et al. [11].

•	 In Computer Graphics, the solvers are approximating 
Newton’s equations (conservation of linear and 
angular momenta), reducing the computational cost. 
Our solver is not approximating Newton’s equations, 
but we provide a converged solution, focusing on 
accuracy and physically correct states.

For legacy reasons, we have decided to keep the ShapeOp 
code structure and file naming. This approach allows 
the users to better understand our extensions, perform 
their own, and most importantly to benefit from both 
communities, namely the computational science and 
computer graphics ones.

Figure 2 presents the realisation of this modular 
design of Palabos-npFEM. Indeed, the solvers possess 
independent execution streams (their implementation 

Figure 2 Modular design of Palabos-npFEM, where the different solvers are independent execution streams (see arrows through time). 
The coupling demands data exchange (two-way arrows) which is performed mainly through MPI communication. The inset shows 
a simulation snapshot and the static allocation of the different domains in the available infrastructure. Data that reside in different 
memory domains must be communicated through MPI.
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details are black-boxes to the end user). Their coupling 
consists of exchanging data, i.e. external forces & colliding 
neighbours from fluid-to-solid, and positions & velocities 
from solid-to-fluid. Our framework takes care of this 
exchange and quietly handles the parallelisation through 
MPI. By parallelisation, we mean the load balancing and 
the allocation of the solvers to the available hardware. The 
load balancing follows a straightforward and static (not 
changing with time) allocation to the available hardware. 
Regarding the fluid solver, the domain is decomposed into 
multiple non-overlapping sub-domains, where each one is 
handled by a single CPU-core. Regarding the solid solver, 
the blood cells are distributed to the available CPU-cores 
or GPUs, depending on the npFEM version that the user 
chooses. Additionally, every blood cell fits entirely in one 
hardware unit, i.e. either a CPU-core or a GPU-CUDA-block 
[9], but every hardware unit may receive more than one 
blood cell. Both solvers exploit at the same time all the 
available hardware, i.e. there is no infrastructure grouping 
for the fluid or solid solvers. The data exchange is performed 
through MPI non-blocking point-to-point communication, 
and this happens for the data that do not belong in the 
same MPI-task (see inset in Figure 2 – simulation snapshot). 
For the data belonging in the same memory space (same 
MPI-task), the framework skips any MPI-communication 
and retrieves them immediately from the local memory. 
The coupling of the two solvers and the subsequent 
communication introduces an order at which the various 
solvers should be executed. The execution steps of Palabos-
npFEM can be found in Figure 3. Figure 4 summarises the 

average computational load per operation in Palabos-
npFEM. The CPU-only version needs approximately × 3 
more CPU-cores to cover the GPU absence. A detailed 
performance analysis can be found in [9].

QUALITY CONTROL
Palabos-npFEM uses the default quality control tools 
integrated in Palabos. Palabos is hosted in GitLab, which 
provides continuous integration tools. From these 
tools, we have a test checking that the latest Palabos 
version compiles successfully. Currently, no unit testing 
framework is implemented. Nevertheless, we provide a 
number of example applications that any user can go 
through, and check if the various solvers are operational. 
Palabos-npFEM is extensively documented, and there are 
instructions for installing the software in any supported 
system, but also instructions for testing various example 
applications. See Example Applications sections below 
for more details on testing Palabos-npFEM library, and 
verifying its operational status. Furthermore, an extensive 
validation and verification of our framework has been 
performed in Kotsalos et al. [7, 9].

EXAMPLE APPLICATIONS: INSTRUCTIONS
Palabos-npFEM can be downloaded by cloning Palabos 
from the GitLab repository,3 and accessing the folder 
examples → showCases → bloodFlowDefoBodies. It 
contains the principal application (bloodFlowDefoBodies.
cpp) of Palabos-npFEM. The principal application shows 
how to use Palabos & npFEM in the FSI context, covering 

Figure 3 Execution order for various operations in Palabos-npFEM. The execution order is dictated by the fluid-solid interaction (FSI), 
i.e. the computation of term b in equations (1) & (2). In case of different temporal discretisation, some steps are automatically 
deactivated.
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meticulously all the possible applications of the library. 
Instructions are provided to compile the software. 
The example applications presented below can be 
reproduced by using the different xml files provided in 
bloodFlowDefoBodies folder. For this, type the following 
in the command line after compiling the framework:

# CPU-only version
mpirun/mpiexec -n MPI_Tasks bloodFlowDefoBodies 

Example_Application.xml

# Hybrid CPU-GPU version
mpirun/mpiexec -n MPI_Tasks bloodFlowDefoBodies_

gpu Example_Application.xml \
NumberOfNodes NumberOfGPUsPerNode

The locally provided README.md file helps the user run 
the applications in a step-by-step manner.

EXAMPLE APPLICATION: CELL PACKING
To perform a cellular blood flow simulation, one needs to 
prepare the initial conditions, i.e. a flow field packed with 
blood cells (cell Packing). There exist various approaches, 
which usually require the use of an external tool to 
perform this initialisation. A standard solution is to place 
shrunken blood cells randomly in the flow field, and then 
let them grow back to their rest configuration. Another 
approach is to use tools that pack spheres or ellipsoids, 
and then replace the packed bodies with the blood cells 
(less accurate cell packing).

Our approach falls closer to the standard solution, but 
instead of shrinking the blood cells, we randomly place 
them (random positions and orientations) at their rest 
configuration. Obviously, this leads to large overlappings/
interpenetrations, which we anticipate to be resolved by 
the robust nature of the npFEM solver. In more details, 
npFEM is an implicit solver, which makes it capable of 
resolving very high deformations/interpenetrations with 
unconditional stability for arbitrary time steps. Taking 
advantage of this property, we run the framework for 
few thousand time steps, which indeed resolves the 
overlappings. Figure 5 presents the cell packing application 
as performed in a box at 35% hematocrit. The cell 
packing application deactivates the branches of the code 
that deal with the fluid and the FSI (since there is no need 
for them), and instead uses the framework for efficiently 
detecting colliding neighbours and for executing the 
npFEM solver. The cellPacking_params.xml (found 
in bloodFlowDefoBodies folder) provides options to 
perform the cell packing under various geometries and 
at different hematocrit. This novel approach introduces 
no further complexity to the framework, leading to a 
clean and efficient cell packing application (no need for 
external tool or additional code).

EXAMPLE APPLICATION: SIMULATION OF 
MULTIPLE BLOOD CELLS
Having generated an initialised blood cell flow field, one 
can proceed to simulations of various flow regimes, 
e.g. tubular and shear flows. Figure 6 presents two 

Figure 4 Average computational load per operation/action (%) in both CPU-only and CPU-GPU versions. The “Other” category gathers 
the collision detection, the computation of forces on solids, and various book-keeping operations. The graph refers to cases at 35% 
hematocrit.
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simulation snapshots as generated by running the 
bloodFlowDefoBodies application using the shear_
params.xml, poiseuille_params.xml files (found in 
bloodFlowDefoBodies folder). It should be highlighted 
that the cell packing application is a prerequisite for 
running an actual simulation.

EXAMPLE APPLICATION: RBC COLLISION AT 
AN OBSTACLE
This application (using the obstacle_params.xml, found 
in bloodFlowDefoBodies folder) simulates a single RBC 
interacting with an obstacle. The position and orientation 

of the RBC can be tuned through an external file (see 
initialPlacing.pos). Various parameters can be 
tuned from the xml file, e.g. RBC viscoelasticity (Calpha 
parameter) and collision forces intensity (collisions_
weight parameter). This lightweight application provides 
a simple quality control for the robustness of the RBC 
material. Figure 7 shows a snapshot from this application.

RHINO-GRASSHOPPER ENVIRONMENT FOR 
SETTING UP NEW MATERIALS
The framework/environment presented in this section is 
intended for Windows only. Setting up new materials, in 

Figure 5 Cell packing as performed by Palabos-npFEM (case at 35% hematocrit). The left inset shows the initial setup with unresolved 
interpenetrations, while the right one shows the resulted setup (resolved overlappings) after running the framework for a few 
thousand iterations.

Figure 6 Simulation snapshots for a Couette (left, 20% hematocrit) and a Poiseuille (right, 35% hematocrit) flow. Through the 

provided xml files, one can choose the geometry, the hematocrit, and various other parameters.

https://doi.org/10.5334/jors.343
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a platform-agnostic way, is presented in the next section.
The npFEM library (derived from ShapeOp) can be 

used as a stand-alone library independently of Palabos. 
The library can be found by cloning Palabos from the 
GitLab repository.3 The source code is located in the 
folder coupledSimulators → npFEM. Inside this folder, 
one can navigate further to npFEM_StandAlone_RhinoGH 
folder, where we provide the option to compile npFEM 
as a stand-alone dynamic library. The produced dll can 
later be used in Rhino4-Grasshopper5 environment. Rhino 
is a computer aided design software, and Grasshopper 

is a plug-in for Rhino intended for parametric design. 
Grasshopper uses the Python language for scripting 
various operations, and by using the Python standard 
foreign function library ctypes, one can call npFEM 
from within Rhino-Grasshopper. The locally provided 
README.md file helps the user setup the framework in a 
step-by-step manner.

The ShapeOp library provides a complete description 
in its documentation6 on how to setup the Rhino-
Grasshopper framework, but instead of ShapeOp, we will 
be using the compiled npFEM dynamic library. For legacy 
reasons with ShapeOp, we are using Rhino version 5, but 
the same principles apply to newer versions.

After setting up the environment, one can open the 
Rhino & Grasshopper files provided in npFEM_StandAlone_
RhinoGH → npFEM_RhinoGH. Figure 8 presents the 
environment with a setup that shows a stretched RBC in 
the left pane (Rhino window), and in the right pane there 
is the Grasshopper window. The user can load various 
meshes, setup the material properties, add forces, and 
eventually run the npFEM solver. Figure 9 presents a 
closer look to some critical Grasshopper components. 
The generation of RBC/PLT meshes can be done either 
in Rhino-Grasshopper (and any other CAD software), 
or through scripts using formulas to generate the 
investigated surfaces [4].

This environment offers an easy way to test and 
familiarise the user with the npFEM library. The users 
can experiment with different materials and solver 
parameters, and observe their impact on the deformed 
shape of a RBC. Additionally, one can modify the npFEM 
solver, and graphically observe if the modifications work 
as expected or not.Figure 7 Simulation snapshot of a colliding RBC at an obstacle.

Figure 8 Rhino-Grasshopper environment calling the npFEM stand-alone dynamic library.
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SETTING UP NEW MATERIALS: MULTI-
PLATFORM
Setting up new materials, in a platform-agnostic way, 
is more tedious than the previous solution. The Rhino-
Grasshopper environment is the preferred way. The 
idea is to modify the file that encodes the material 
properties, which is located in examples → showCases → 
bloodFlowDefoBodies → Case_Studies. In the current 
version of the library we provide template files for RBCs 
and PLTs discretised with 258 and 66 surface vertices, 
respectively. Extending to other bodies is a straightforward 
process (possible automation with minor scripting could be 
an option). The material is encoded in the constraints.
csv file (found in Case_Studies → RBC/PLT). This file 
encodes the various potential energies per finite element/
triangle (per row). Summing the contributions of the 
elemental potential energies, one gets the potential energy 
of the whole body, which describes the body’s response to 
deformations. Every elemental potential energy (a row in 
constraints.csv) has a weight and various parameters. 
Therefore, by tuning these parameters one can make the 
material stiffer or softer.

The tuning of all the other parameters is done through 
the provided xml files. Parameters of interest could be 
the ones responsible for the viscoelastic behaviour of 
the bodies (Calpha, Cbeta in the files), and the fluid 
characteristics (viscosity, density). A detailed explanation 
of the mechanics can be found in [7].

(2) AVAILABILITY
OPERATING SYSTEM
Linux & Windows

PROGRAMMING LANGUAGE
C++11 and above

ADDITIONAL SYSTEM REQUIREMENTS
Memory and disk space dependent on usage case.

DEPENDENCIES
A complete list of prerequisites can be found in Palabos 
GitLab repository.

Linux:
•	 A C++ compiler (C++11 and above)
•	 make
•	 CMake (≥3.0)
•	 MPI (Message Passing Interface)

Windows:
•	 Microsoft Visual Studio Community (≥2015)
•	 Microsoft C++ compiler, installed with Visual Studio 

Community
•	 CMake (≥3.0)
•	 Microsoft MPI

The GPU branch of the npFEM solver supports NVIDIA GPUs 
with compute capability ≥6.0 (extensively tested and 
validated). However, the code could support GPUs with 
compute capability <6 (tested but not fully validated), 
by replacing the atomic operations (e.g. atomicAdd) 
with ones based on atomicCAS (Compare and Swap). For 
more information, one should consult the CUDA toolkit 
documentation. In this case, the user should modify as 
well the CMake file to target the correct GPU architecture 
(currently set to -arch=sm_60).

The periodic boundary conditions introduce a 
dependency on parallelisation. In more details, the 
directions with periodicity should be subdivided by at 
least two sub-domains (each sub-domain belongs to a 
different MPI task). This is due to how the area per surface 
vertex is computed, i.e. if there is no domain subdivision, 
then the crossing bodies (from the outlet to inlet) are 
considered as stretched (erroneous deformation, leading 
to code crash). On the contrary, when the outlet and inlet 
belong to different sub-domains (MPI-wise), then the 
crossing bodies are duplicated in memory and thus they 
are not considered as stretched/deformed. This means 
that Palabos-npFEM depends strictly on MPI, which is not 

Figure 9 Components in the Grasshopper environment, from which one can modify the body’s material, and run the npFEM solver.
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a hard constraint given the computational intensity of 
blood flow simulations. Of course, this dependency could 
be eliminated by modifying/extending the library (area 
computation part).
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of a major part of the GPU implementation of the 
npFEM solver.

SOFTWARE LOCATION
Archive

Name: Palabos-npFEM
 Persistent identifier: https://doi.org/10.5281/zenodo.39 

65928

Licence: Palabos → AGPL v3 & npFEM → MPL v2
Publisher: Christos Kotsalos
Version published: 2.2.0
Date published: 03/07/2020

Code repository
Name: Palabos
 Persistent identifier: https://gitlab.com/unigespc/palabos.

git

Licence: Palabos → AGPL v3 & npFEM → MPL v2
Date published: 03/07/2020 (v2.2.0)

LANGUAGE
English

(3) REUSE POTENTIAL

The Palabos-npFEM library gives special attention to 
modularity and low complexity. In more details, the 
software is designed based on a plug-and-play approach, 
where it is up to the user’s preference to choose the 
individual solvers for the resolution of the various phases 
of blood. The Computational Biomedicine community 
is a vibrant and dynamic community, with numerous 
research contributions in various directions, thus we 
expect other researchers to possibly plug their own 
solvers in our platform and experiment with it. Starting 
point for extending and reusing Palabos-npFEM is the 
principal application located in examples → showCases 
→ bloodFlowDefoBodies (utilised for the example 
applications). The end user can either deploy the library 
as is by executing this provided application, or build on 
top of it further functionalities/alterations.

Currently, the principal application that we provide 
treats simple geometries, i.e. box and tubular flows. 
However, its extension to more complicated geometries 
is well supported both by Palabos and npFEM. We consider 
that promising application areas for our software are 

provided by microfluidic devices and lob-on-a-chip 
systems, for which a large interest can be observed in the 
community.

Our library uses the CMake7 tool for building and 
compiling. CMake is an open-source and cross-platform 
tool, which allows the libraries using it to be compiled 
in any supported platform. Thus, the users can deploy 
Palabos-npFEM in cross-platform environments (from 
personal computers/workstations to supercomputers) 
and speedup their development & research.

Cellular blood flow simulations are extremely 
computationally expensive. For example [9], to simulate 
a box of dimensions 503 μm3 under a shear flow at 35% 
hematocrit, for physical time of 1 s, we need about 5 days 
in a high-end supercomputer (using 5 compute nodes, i.e. 
12 cores and 1 GPU per node). However, an allocation of 
5 consecutive days is rarely available in supercomputing 
centres. For this reason, we have developed an efficient 
check-pointing system, which allows the user to pause 
at any time the simulation, and restart seamlessly 
from where it previously stopped. This feature offers an 
attractive advantage for other researchers to actively use 
our library.

The library is specialised on cellular blood flow 
simulations, but its methodology could easily be applied 
to the simulation of other complex suspensions, and 
fluid-structure/solid interaction applications in general. 
A recent example is the simulation of Paragliders [12], 
where the researchers used Palabos and a structural 
solver similar to npFEM. Thus we strongly believe that our 
library could be used as a building component for other 
research topics.

The Palabos library has a large and active community. 
Integrating npFEM into Palabos serves the purpose 
of sharing and exposing all the details with this global 
and dynamic group of researchers and engineers. 
The users can find support in the Palabos forum,8 
and thus our library benefits from the same high-
quality support mechanism that is already in-place for  
Palabos.

NOTES
1 https://palabos.unige.ch.

2 https://www.shapeop.org/.

3 https://gitlab.com/unigespc/palabos.

4 https://www.rhino3d.com/.

5 https://www.grasshopper3d.com/.

6 https://www.shapeop.org/documentation.php.

7 https://cmake.org/.

8 https://palabos-forum.unige.ch/.
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