
SOFTWARE METAPAPER

ABSTRACT
Palabos-npFEM is a computational framework for the simulation of blood flow with
fully resolved constituents. The software resolves the trajectories and deformed state
of blood cells, such as red blood cells and platelets, and the complex interaction
between them. The tool combines the lattice Boltzmann solver Palabos for the
simulation of blood plasma (fluid phase), a finite element method (FEM) solver for the
resolution of blood cells (solid phase), and an immersed boundary method (IBM) for
the coupling of the two phases. Palabos-npFEM provides, on top of a CPU-only version,
the option to simulate the deformable bodies on GPUs, thus the code is tailored for the
fastest supercomputers. The software is integrated in the Palabos core library, and is
available on the Git repository https://gitlab.com/unigespc/palabos. It offers the possibility
to simulate various setups, e.g. several geometries and blood parameters, and due to
its modular design, it allows external solvers to readily replace the provided ones.

CORRESPONDING AUTHOR:
Christos Kotsalos

Computer Science
Department, University of
Geneva, CH

christos.kotsalos@unige.ch

KEYWORDS:
Palabos-npFEM; cellular blood
flow simulations; digital blood;
Palabos; npFEM; GPUs

TO CITE THIS ARTICLE:
Kotsalos C, Latt J, Chopard B
2021 Palabos-npFEM: Software
for the Simulation of Cellular
Blood Flow (Digital Blood).
Journal of Open Research
Software, 9: 16. DOI: https://
doi.org/10.5334/jors.343

CHRISTOS KOTSALOS

JONAS LATT

BASTIEN CHOPARD

*Author affiliations can be found in the back matter of this article

Palabos-npFEM: Software for
the Simulation of Cellular
Blood Flow (Digital Blood)

https://gitlab.com/unigespc/palabos
mailto:christos.kotsalos@unige.ch
https://doi.org/10.5334/jors.343
https://doi.org/10.5334/jors.343
https://orcid.org/0000-0003-4323-0087
https://orcid.org/0000-0001-6627-5689

2Kotsalos et al. Journal of Open Research DOI: 10.5334/jors.343

(1) OVERVIEW
INTRODUCTION
Palabos-npFEM is a highly versatile computational tool for
the simulation of cellular blood flow (at the micrometre
scale), focusing on high performance computing (HPC)
without compromising accuracy or complexity.

Blood plays a vital role in living organisms, transporting
oxygen, nutrients, waste products, and various kinds of
cells, to tissues and organs. Human blood is a complex
suspension of red blood cells (RBCs), platelets (PLTs),
and white blood cells, submerged in a Newtonian fluid,
the plasma. At physiological hematocrit (RBCs volume
fraction), i.e. 35–45%, in just a blood drop (about a mm3)
there are a few million RBCs, a few hundred thousand
PLTs, and a few thousand white blood cells. An adult
person has on average five litres of blood, and the
cardiovascular system spans a length of 100,000 km,
80% of which consists of the capillaries (smallest blood
vessels). Additionally, our blood vessels are characterised
by a variety of scales, i.e. the diameter of arteries/
veins ranges from few millimetres to few centimetres,
the diameter of arterioles/venules ranges from few
micrometres to few hundred micrometres, and the
capillaries are about the size of a RBC diameter (about
eight micrometres). It is obvious that a simulation at the
micrometre scale of such a system (even a tiny part of it,
e.g. an arteriole segment) is a multi-physics/multi-scales
problem, with an extremely high computational cost.

Despite remarkable advances in experimental in-vivo and
in-vitro techniques [16], the type and detail of information
provided remains limited. For example, while it is possible to
track the collective behaviour of blood cells, it is up to now
impossible to track individual trajectories and study the
underlying transport mechanisms. Given the cellular nature
of blood, its rheology can be deciphered by understanding
how the various cells are moving and interacting with each
other in both healthy and non-healthy humans. Numerical
tools have significantly assisted in in-depth investigations
of blood rheology, as they offer a controlled environment
for testing a large number of parameters and classifying
their effect [4, 8]. Furthermore, the amount of detail
coming from the numerical simulations at the microscopic
level (following individual cells) is unparalleled compared
to the in-vitro/in-vivo counterparts.

The multi-physics nature of blood can be numerically
described by decomposing this complex suspension into
the fluid and solid phases.

Regarding the fluid phase, we are interested on solving
the Navier-Stokes equations for the description of blood
plasma. Thus the spatial velocity v(x, t) and pressure p(x,
t) fields in an isothermal and incompressible Newtonian
fluid must satisfy the following equations [6]

 ()0 0

0

x x x

x

p
t

r m r
é ù¶ê ú+ = D - +
ê ú¶ë û

 ⋅ =

v v v v b

v

 (1)

where ∇x, ∆x refer to the gradient and Laplacian with
respect to the spatial coordinates x for any fixed time
t ≥ 0, ρ0 is the fluid density, μ is the fluid dynamic viscosity,
and b is a prescribed spatial body force field per unit mass
(e.g. gravity and immersed surfaces like blood cells).

Regarding the solid phase, for the resolution of the
deformable blood cells and their trajectories, we are
solving the Elastodynamics equation [6], a non-linear
equation, referring to any kind of solid body. By convention,
we call B the reference (undeformed) configuration, and
B′ the deformed configuration. The points X ∈ B are
called material coordinates, and the points x ∈ B′ are
called spatial coordinates. The deformation of a body
from a configuration B onto another configuration B′ is
described by a function ϕ : B → B′, which maps each point
X ∈ B to a point x = ϕ(X) ∈ B′. We call ϕ the deformation
map. The motion ϕ(X, t) of an elastic body must satisfy
the following equation for all X ∈ B and t ≥ 0 [6]

 0 0
X

mr r= ⋅ +P bf (2)

where ∇x refers to derivatives of material fields with
respect to the material coordinates Xi for any fixed t ≥ 0,
ρ0(X) denotes the mass density of the elastic body in its
reference configuration, P(X, t) is the first Piola-Kirchhoff
stress field, and bm(X, t) is the material description of the
spatial body force field b(x, t) (e.g. gravity and interaction
with a fluid). Equation (2) is essentially the conservation
of linear momentum (Newton’s 2nd law of motion), while
the balance of angular momentum is automatically
satisfied from the symmetry of the Cauchy stress field (by
definition of elastic bodies). For non-Cosserat-like elastic
bodies, i.e. elastic bodies where microscopic moments
are zero, the balance of angular momentum is implicitly
satisfied. With minor modifications of equation (2), one
can readily simulate a viscoelastic material, i.e. a body
that exhibits both viscous and elastic characteristics.
Overall, the changes in (2) are small because (2) does not
explicitly contain the law describing material behaviour.
Globally, the changes required might not be minor, and
this depends on the actual material model chosen. What is
true is that the fact that (2) does not explicitly contain the
material behaviour provides modularity to the model, in its
theoretical form as well as in its numerical implementation.

For more details on the continuum equations for both
fluids and solids, the reader should consult the work by
Gonzalez and Stuart [6].

Palabos-npFEM solves equations (1) & (2) in a
modular way, and performs the Fluid-Solid Interaction
(FSI) through the Immersed Boundary Method (IBM). By
modularity, we mean the complete decoupling of the
solvers, i.e. the resolution of fluid phase is “unaware”
of the resolution of the solid phase and vice-versa.
Our software framework takes care of communication
whenever needed in relationship with the FSI. Figure 1
presents a snapshot from a Palabos-npFEM simulation,

https://doi.org/10.5334/jors.343

3Kotsalos et al. Journal of Open Research DOI: 10.5334/jors.343

and shows the different solvers involved in the numerical
representation of blood. The Navier-Stokes equations
(1) are solved indirectly through the lattice Boltzmann
method (LBM) as implemented in Palabos1 [10]. Palabos
stands for Parallel Lattice Boltzmann Solver. It is an
open source software maintained by the Scientific and
Parallel Computing Group (SPC) at the University of
Geneva. The elastodynamics equation (2) is solved by
the nodal projective finite elements method (npFEM)
[7] (part of Palabos core library as well). The npFEM is
a mass-lumped linear FE solver that resolves both the
trajectories and deformations of blood cells with high
accuracy. The solver has the capability of capturing the
rich and non-linear viscoelastic behaviour of any type
of blood cells as shown and validated in Kotsalos et
al. [7]. The IBM [14, 13], for the coupling of the solid &
fluid phases, is implemented in the Palabos library. The
IBM imposes a no-slip boundary condition, so that each
point of the surface and the ambient fluid moves with
the same velocity. The advantage of the IBM is that the
fluid solver does not have to be modified except for the
addition of a forcing term fimm (incorporated in the last
term of equation (1), i.e. in b). Moreover, the deformable
bodies and their discrete representations do not need to
conform to the discrete fluid mesh, which leads to a very
efficient fluid-solid coupling. A thorough presentation of
all the theoretical aspects, i.e. fluid/solid phases and FSI,
can be found in Kotsalos et al. [7, 9].

The modular system allows different spatial discre-
tisations, i.e. the fluid domain is discretised into a regular
grid with spacing Δx in all directions, and the solid bodies
are discretised into triangular surface meshes. The data
exchange between solvers of different discretisation is
handled through interpolation kernels, as dictated by the
immersed boundary method. Moreover, the temporal
discretisation is solver dependent. Given the explicit

nature of LBM and the implicit/semi-implicit nature of
npFEM, the latter can in principle handle larger time steps.

Our modular design contrasts with monolithic
approaches, which solve both phases through one
system of discretised equations, and thus use one
solver. Monolithic approaches can be considered as well
computational frameworks whose design entangles
the various solvers for performance purposes. The
former approach, i.e. a single solver to deal with every
phase, includes mainly tools that use dissipative particle
dynamics [15] (in the field of blood flow simulation). The
main advantage of a monolithic design is the performance
gain and a more straightforward FSI (in terms of coupling
difficulty). However a single solver potentially falls short
of satisfactorily addressing all the physics present in
a complex phenomenon. Furthermore, one needs to
develop a new monolithic solver for every specific choice
of model/material/accuracy of each phase, i.e. monolithic
solvers are very specific and development time is high. In
the modular approach, there is the freedom to choose
well optimised solvers to address the different phases,
which leads to higher fidelity models. Of course, the
coupling of completely independent solver streams can
introduce performance penalties and possibly an over-
complicated code. However, we have shown [9], that our
modular design results in a minimal performance loss.

The development of such a solver requires a multi-
physics and multi-scale approach as it involves fluid
and solid components that may be optimised through a
description at different temporal and spatial scales. To
ensure flexibility and efficiency, code performance and re-
usability are central issues of our modular tool. According
to the principles proposed in MMSF (Multi-scale Modelling
and Simulation Framework) [5, 2, 1], our cellular blood
flow computational tool is built on a fluid solver, and a
deformable solid bodies solver, whose implementation is

Figure 1 Digital Blood simulated in Palabos-npFEM (a simulation snapshot). The red bodies are the RBCs, while the yellow bodies
represent the PLTs. One can observe the different phases composing this complex suspension. We provide the possibility to run the
solid solver either on CPUs or GPUs (as depicted by the GPU/CPU icons), while the rest of the solvers are CPU-only versions.

Fluid Solver

Solid Solver

FSI

/

4Kotsalos et al. Journal of Open Research DOI: 10.5334/jors.343

potentially left to the preference of the scientists. Here,
however, we propose a specific choice. The coupling of
the two solvers is realised through a separate interface,
which handles all the needed communication. Note
that this coupling interface acts independently of the
details of the fluid and solid solvers. It only requires data
representing physical quantities which are computed by
the two solvers, thus ensuring the independence with
respect to the chosen numerical methods [9].

For a detailed presentation of the numerical methods
used in Palabos-npFEM and its HPC-centric design, the
reader should consult Kotsalos et al. [7, 9]. Here we focus
on the software issues.

IMPLEMENTATION AND ARCHITECTURE
Palabos-npFEM is build on top of two independent solvers,
i.e. fluid and solid solvers, and couples them through the
FSI module (see Figure 1). The choice of the particular
solvers, namely Palabos and npFEM, is crucial for high
fidelity and performant simulations. However, other users
of the code could extend it by replacing the particular
choices by alternatives, e.g. opting for a mass-spring-
system solid solver instead of a FEM one. The alternative
solvers need to be similarly parallelisable through domain
decomposition and allow interaction with solid particles
through an immersed boundary method.

Palabos [10] is an open-source library for general-
purpose computational fluid dynamics based on the
lattice Boltzmann method. Palabos is written in C++ with
extensive use of the Message Passing Interface (MPI).
MPI is the library that handles parallelisation across
multiple cores and nodes of a supercomputer/cluster.
Palabos supports CPU-only hardware.

The npFEM solver [7] is an open-source finite element
solver written in C++ with support for openMP (for
multi-core machines) and CUDA (GPU-support). CUDA
is a general purpose parallel computing platform and
programming model for NVIDIA GPUs. Thus npFEM
provides two actively supported branches, i.e. CPU and
GPU versions (as summarised in Figure 1). The npFEM
solver is derived from a heavily modified version of the
open-source library ShapeOp2 [3]. The different naming
originates from the fact that the modifications make the
solver an FEM solver instead of a computer graphics tool,
as ShapeOp is initially intended for. In more details:

•	 We have changed radically the original kernel for
advancing the bodies in time. Our approach follows
the redesigned projective dynamics approach as
described in Liu et al. [11].

•	 In Computer Graphics, the solvers are approximating
Newton’s equations (conservation of linear and
angular momenta), reducing the computational cost.
Our solver is not approximating Newton’s equations,
but we provide a converged solution, focusing on
accuracy and physically correct states.

For legacy reasons, we have decided to keep the ShapeOp
code structure and file naming. This approach allows
the users to better understand our extensions, perform
their own, and most importantly to benefit from both
communities, namely the computational science and
computer graphics ones.

Figure 2 presents the realisation of this modular
design of Palabos-npFEM. Indeed, the solvers possess
independent execution streams (their implementation

Figure 2 Modular design of Palabos-npFEM, where the different solvers are independent execution streams (see arrows through time).
The coupling demands data exchange (two-way arrows) which is performed mainly through MPI communication. The inset shows
a simulation snapshot and the static allocation of the different domains in the available infrastructure. Data that reside in different
memory domains must be communicated through MPI.

t

t

t + Δt

To be communicated:
External Forces &

Colliding Neighbours
Fluid-to-Solid

To be communicated:
Positions & Velocities

Solid-to-Fluid

Solid Solver

t + kΔt

MPI
non-blocking
point-to-point

communication

Fluid Solver

t + kΔt

. . .

5Kotsalos et al. Journal of Open Research DOI: 10.5334/jors.343

details are black-boxes to the end user). Their coupling
consists of exchanging data, i.e. external forces & colliding
neighbours from fluid-to-solid, and positions & velocities
from solid-to-fluid. Our framework takes care of this
exchange and quietly handles the parallelisation through
MPI. By parallelisation, we mean the load balancing and
the allocation of the solvers to the available hardware. The
load balancing follows a straightforward and static (not
changing with time) allocation to the available hardware.
Regarding the fluid solver, the domain is decomposed into
multiple non-overlapping sub-domains, where each one is
handled by a single CPU-core. Regarding the solid solver,
the blood cells are distributed to the available CPU-cores
or GPUs, depending on the npFEM version that the user
chooses. Additionally, every blood cell fits entirely in one
hardware unit, i.e. either a CPU-core or a GPU-CUDA-block
[9], but every hardware unit may receive more than one
blood cell. Both solvers exploit at the same time all the
available hardware, i.e. there is no infrastructure grouping
for the fluid or solid solvers. The data exchange is performed
through MPI non-blocking point-to-point communication,
and this happens for the data that do not belong in the
same MPI-task (see inset in Figure 2 – simulation snapshot).
For the data belonging in the same memory space (same
MPI-task), the framework skips any MPI-communication
and retrieves them immediately from the local memory.
The coupling of the two solvers and the subsequent
communication introduces an order at which the various
solvers should be executed. The execution steps of Palabos-
npFEM can be found in Figure 3. Figure 4 summarises the

average computational load per operation in Palabos-
npFEM. The CPU-only version needs approximately × 3
more CPU-cores to cover the GPU absence. A detailed
performance analysis can be found in [9].

QUALITY CONTROL
Palabos-npFEM uses the default quality control tools
integrated in Palabos. Palabos is hosted in GitLab, which
provides continuous integration tools. From these
tools, we have a test checking that the latest Palabos
version compiles successfully. Currently, no unit testing
framework is implemented. Nevertheless, we provide a
number of example applications that any user can go
through, and check if the various solvers are operational.
Palabos-npFEM is extensively documented, and there are
instructions for installing the software in any supported
system, but also instructions for testing various example
applications. See Example Applications sections below
for more details on testing Palabos-npFEM library, and
verifying its operational status. Furthermore, an extensive
validation and verification of our framework has been
performed in Kotsalos et al. [7, 9].

EXAMPLE APPLICATIONS: INSTRUCTIONS
Palabos-npFEM can be downloaded by cloning Palabos
from the GitLab repository,3 and accessing the folder
examples → showCases → bloodFlowDefoBodies. It
contains the principal application (bloodFlowDefoBodies.
cpp) of Palabos-npFEM. The principal application shows
how to use Palabos & npFEM in the FSI context, covering

Figure 3 Execution order for various operations in Palabos-npFEM. The execution order is dictated by the fluid-solid interaction (FSI),
i.e. the computation of term b in equations (1) & (2). In case of different temporal discretisation, some steps are automatically
deactivated.

Compute the
macroscopic fluid

properties: density,
momentum, stress
tensor (at time t)

Use the stress
tensor to compute
the external forces
on the solids from

the fluid
Find colliding

neighbours for the
solid bodies

FSI
Computation of b
(bodies at time t)

Run the solvers and
advance the system
from t to t+Δt:
• Fluid Solver
• Solid Solver

m

Communication
Fluid-to-Solid
Solid-to-Fluid

1

2

3

4

6Kotsalos et al. Journal of Open Research DOI: 10.5334/jors.343

meticulously all the possible applications of the library.
Instructions are provided to compile the software.
The example applications presented below can be
reproduced by using the different xml files provided in
bloodFlowDefoBodies folder. For this, type the following
in the command line after compiling the framework:

CPU-only version
mpirun/mpiexec -n MPI_Tasks bloodFlowDefoBodies

Example_Application.xml

Hybrid CPU-GPU version
mpirun/mpiexec -n MPI_Tasks bloodFlowDefoBodies_

gpu Example_Application.xml \
NumberOfNodes NumberOfGPUsPerNode

The locally provided README.md file helps the user run
the applications in a step-by-step manner.

EXAMPLE APPLICATION: CELL PACKING
To perform a cellular blood flow simulation, one needs to
prepare the initial conditions, i.e. a flow field packed with
blood cells (cell Packing). There exist various approaches,
which usually require the use of an external tool to
perform this initialisation. A standard solution is to place
shrunken blood cells randomly in the flow field, and then
let them grow back to their rest configuration. Another
approach is to use tools that pack spheres or ellipsoids,
and then replace the packed bodies with the blood cells
(less accurate cell packing).

Our approach falls closer to the standard solution, but
instead of shrinking the blood cells, we randomly place
them (random positions and orientations) at their rest
configuration. Obviously, this leads to large overlappings/
interpenetrations, which we anticipate to be resolved by
the robust nature of the npFEM solver. In more details,
npFEM is an implicit solver, which makes it capable of
resolving very high deformations/interpenetrations with
unconditional stability for arbitrary time steps. Taking
advantage of this property, we run the framework for
few thousand time steps, which indeed resolves the
overlappings. Figure 5 presents the cell packing application
as performed in a box at 35% hematocrit. The cell
packing application deactivates the branches of the code
that deal with the fluid and the FSI (since there is no need
for them), and instead uses the framework for efficiently
detecting colliding neighbours and for executing the
npFEM solver. The cellPacking_params.xml (found
in bloodFlowDefoBodies folder) provides options to
perform the cell packing under various geometries and
at different hematocrit. This novel approach introduces
no further complexity to the framework, leading to a
clean and efficient cell packing application (no need for
external tool or additional code).

EXAMPLE APPLICATION: SIMULATION OF
MULTIPLE BLOOD CELLS
Having generated an initialised blood cell flow field, one
can proceed to simulations of various flow regimes,
e.g. tubular and shear flows. Figure 6 presents two

Figure 4 Average computational load per operation/action (%) in both CPU-only and CPU-GPU versions. The “Other” category gathers
the collision detection, the computation of forces on solids, and various book-keeping operations. The graph refers to cases at 35%
hematocrit.

0

20

40

60

80

100

CPU-GPU version CPU-only version

C
om

pu
ta

tio
na

l L
oa

d
pe

r
O

pe
ra

tio
n/

A
ct

io
n

(%
)

Other Communication IBM LBM npFEM

7Kotsalos et al. Journal of Open Research DOI: 10.5334/jors.343

simulation snapshots as generated by running the
bloodFlowDefoBodies application using the shear_
params.xml, poiseuille_params.xml files (found in
bloodFlowDefoBodies folder). It should be highlighted
that the cell packing application is a prerequisite for
running an actual simulation.

EXAMPLE APPLICATION: RBC COLLISION AT
AN OBSTACLE
This application (using the obstacle_params.xml, found
in bloodFlowDefoBodies folder) simulates a single RBC
interacting with an obstacle. The position and orientation

of the RBC can be tuned through an external file (see
initialPlacing.pos). Various parameters can be
tuned from the xml file, e.g. RBC viscoelasticity (Calpha
parameter) and collision forces intensity (collisions_
weight parameter). This lightweight application provides
a simple quality control for the robustness of the RBC
material. Figure 7 shows a snapshot from this application.

RHINO-GRASSHOPPER ENVIRONMENT FOR
SETTING UP NEW MATERIALS
The framework/environment presented in this section is
intended for Windows only. Setting up new materials, in

Figure 5 Cell packing as performed by Palabos-npFEM (case at 35% hematocrit). The left inset shows the initial setup with unresolved
interpenetrations, while the right one shows the resulted setup (resolved overlappings) after running the framework for a few
thousand iterations.

Figure 6 Simulation snapshots for a Couette (left, 20% hematocrit) and a Poiseuille (right, 35% hematocrit) flow. Through the

provided xml files, one can choose the geometry, the hematocrit, and various other parameters.

https://doi.org/10.5334/jors.343

8Kotsalos et al. Journal of Open Research DOI: 10.5334/jors.343

a platform-agnostic way, is presented in the next section.
The npFEM library (derived from ShapeOp) can be

used as a stand-alone library independently of Palabos.
The library can be found by cloning Palabos from the
GitLab repository.3 The source code is located in the
folder coupledSimulators → npFEM. Inside this folder,
one can navigate further to npFEM_StandAlone_RhinoGH
folder, where we provide the option to compile npFEM
as a stand-alone dynamic library. The produced dll can
later be used in Rhino4-Grasshopper5 environment. Rhino
is a computer aided design software, and Grasshopper

is a plug-in for Rhino intended for parametric design.
Grasshopper uses the Python language for scripting
various operations, and by using the Python standard
foreign function library ctypes, one can call npFEM
from within Rhino-Grasshopper. The locally provided
README.md file helps the user setup the framework in a
step-by-step manner.

The ShapeOp library provides a complete description
in its documentation6 on how to setup the Rhino-
Grasshopper framework, but instead of ShapeOp, we will
be using the compiled npFEM dynamic library. For legacy
reasons with ShapeOp, we are using Rhino version 5, but
the same principles apply to newer versions.

After setting up the environment, one can open the
Rhino & Grasshopper files provided in npFEM_StandAlone_
RhinoGH → npFEM_RhinoGH. Figure 8 presents the
environment with a setup that shows a stretched RBC in
the left pane (Rhino window), and in the right pane there
is the Grasshopper window. The user can load various
meshes, setup the material properties, add forces, and
eventually run the npFEM solver. Figure 9 presents a
closer look to some critical Grasshopper components.
The generation of RBC/PLT meshes can be done either
in Rhino-Grasshopper (and any other CAD software),
or through scripts using formulas to generate the
investigated surfaces [4].

This environment offers an easy way to test and
familiarise the user with the npFEM library. The users
can experiment with different materials and solver
parameters, and observe their impact on the deformed
shape of a RBC. Additionally, one can modify the npFEM
solver, and graphically observe if the modifications work
as expected or not.Figure 7 Simulation snapshot of a colliding RBC at an obstacle.

Figure 8 Rhino-Grasshopper environment calling the npFEM stand-alone dynamic library.

Load
Mesh

Material
Setup

Force
Setup

npFEM
solver

Params &
RUN

Data for
Palabos-npFEM

9Kotsalos et al. Journal of Open Research DOI: 10.5334/jors.343

SETTING UP NEW MATERIALS: MULTI-
PLATFORM
Setting up new materials, in a platform-agnostic way,
is more tedious than the previous solution. The Rhino-
Grasshopper environment is the preferred way. The
idea is to modify the file that encodes the material
properties, which is located in examples → showCases →
bloodFlowDefoBodies → Case_Studies. In the current
version of the library we provide template files for RBCs
and PLTs discretised with 258 and 66 surface vertices,
respectively. Extending to other bodies is a straightforward
process (possible automation with minor scripting could be
an option). The material is encoded in the constraints.
csv file (found in Case_Studies → RBC/PLT). This file
encodes the various potential energies per finite element/
triangle (per row). Summing the contributions of the
elemental potential energies, one gets the potential energy
of the whole body, which describes the body’s response to
deformations. Every elemental potential energy (a row in
constraints.csv) has a weight and various parameters.
Therefore, by tuning these parameters one can make the
material stiffer or softer.

The tuning of all the other parameters is done through
the provided xml files. Parameters of interest could be
the ones responsible for the viscoelastic behaviour of
the bodies (Calpha, Cbeta in the files), and the fluid
characteristics (viscosity, density). A detailed explanation
of the mechanics can be found in [7].

(2) AVAILABILITY
OPERATING SYSTEM
Linux & Windows

PROGRAMMING LANGUAGE
C++11 and above

ADDITIONAL SYSTEM REQUIREMENTS
Memory and disk space dependent on usage case.

DEPENDENCIES
A complete list of prerequisites can be found in Palabos
GitLab repository.

Linux:
•	 A C++ compiler (C++11 and above)
•	 make
•	 CMake (≥3.0)
•	 MPI (Message Passing Interface)

Windows:
•	 Microsoft Visual Studio Community (≥2015)
•	 Microsoft C++ compiler, installed with Visual Studio

Community
•	 CMake (≥3.0)
•	 Microsoft MPI

The GPU branch of the npFEM solver supports NVIDIA GPUs
with compute capability ≥6.0 (extensively tested and
validated). However, the code could support GPUs with
compute capability <6 (tested but not fully validated),
by replacing the atomic operations (e.g. atomicAdd)
with ones based on atomicCAS (Compare and Swap). For
more information, one should consult the CUDA toolkit
documentation. In this case, the user should modify as
well the CMake file to target the correct GPU architecture
(currently set to -arch=sm_60).

The periodic boundary conditions introduce a
dependency on parallelisation. In more details, the
directions with periodicity should be subdivided by at
least two sub-domains (each sub-domain belongs to a
different MPI task). This is due to how the area per surface
vertex is computed, i.e. if there is no domain subdivision,
then the crossing bodies (from the outlet to inlet) are
considered as stretched (erroneous deformation, leading
to code crash). On the contrary, when the outlet and inlet
belong to different sub-domains (MPI-wise), then the
crossing bodies are duplicated in memory and thus they
are not considered as stretched/deformed. This means
that Palabos-npFEM depends strictly on MPI, which is not

Figure 9 Components in the Grasshopper environment, from which one can modify the body’s material, and run the npFEM solver.

10Kotsalos et al. Journal of Open Research DOI: 10.5334/jors.343

a hard constraint given the computational intensity of
blood flow simulations. Of course, this dependency could
be eliminated by modifying/extending the library (area
computation part).

LIST OF CONTRIBUTORS
In addition to the paper authors, we wish in particular to
acknowledge the contribution from the following person:

•	 Joel Beny (University of Geneva), for the development
of a major part of the GPU implementation of the
npFEM solver.

SOFTWARE LOCATION
Archive

Name: Palabos-npFEM
 Persistent identifier: https://doi.org/10.5281/zenodo.39

65928

Licence: Palabos → AGPL v3 & npFEM → MPL v2
Publisher: Christos Kotsalos
Version published: 2.2.0
Date published: 03/07/2020

Code repository
Name: Palabos
 Persistent identifier: https://gitlab.com/unigespc/palabos.

git

Licence: Palabos → AGPL v3 & npFEM → MPL v2
Date published: 03/07/2020 (v2.2.0)

LANGUAGE
English

(3) REUSE POTENTIAL

The Palabos-npFEM library gives special attention to
modularity and low complexity. In more details, the
software is designed based on a plug-and-play approach,
where it is up to the user’s preference to choose the
individual solvers for the resolution of the various phases
of blood. The Computational Biomedicine community
is a vibrant and dynamic community, with numerous
research contributions in various directions, thus we
expect other researchers to possibly plug their own
solvers in our platform and experiment with it. Starting
point for extending and reusing Palabos-npFEM is the
principal application located in examples → showCases
→ bloodFlowDefoBodies (utilised for the example
applications). The end user can either deploy the library
as is by executing this provided application, or build on
top of it further functionalities/alterations.

Currently, the principal application that we provide
treats simple geometries, i.e. box and tubular flows.
However, its extension to more complicated geometries
is well supported both by Palabos and npFEM. We consider
that promising application areas for our software are

provided by microfluidic devices and lob-on-a-chip
systems, for which a large interest can be observed in the
community.

Our library uses the CMake7 tool for building and
compiling. CMake is an open-source and cross-platform
tool, which allows the libraries using it to be compiled
in any supported platform. Thus, the users can deploy
Palabos-npFEM in cross-platform environments (from
personal computers/workstations to supercomputers)
and speedup their development & research.

Cellular blood flow simulations are extremely
computationally expensive. For example [9], to simulate
a box of dimensions 503 μm3 under a shear flow at 35%
hematocrit, for physical time of 1 s, we need about 5 days
in a high-end supercomputer (using 5 compute nodes, i.e.
12 cores and 1 GPU per node). However, an allocation of
5 consecutive days is rarely available in supercomputing
centres. For this reason, we have developed an efficient
check-pointing system, which allows the user to pause
at any time the simulation, and restart seamlessly
from where it previously stopped. This feature offers an
attractive advantage for other researchers to actively use
our library.

The library is specialised on cellular blood flow
simulations, but its methodology could easily be applied
to the simulation of other complex suspensions, and
fluid-structure/solid interaction applications in general.
A recent example is the simulation of Paragliders [12],
where the researchers used Palabos and a structural
solver similar to npFEM. Thus we strongly believe that our
library could be used as a building component for other
research topics.

The Palabos library has a large and active community.
Integrating npFEM into Palabos serves the purpose
of sharing and exposing all the details with this global
and dynamic group of researchers and engineers.
The users can find support in the Palabos forum,8
and thus our library benefits from the same high-
quality support mechanism that is already in-place for
Palabos.

NOTES
1 https://palabos.unige.ch.

2 https://www.shapeop.org/.

3 https://gitlab.com/unigespc/palabos.

4 https://www.rhino3d.com/.

5 https://www.grasshopper3d.com/.

6 https://www.shapeop.org/documentation.php.

7 https://cmake.org/.

8 https://palabos-forum.unige.ch/.

ACKNOWLEDGEMENTS

We acknowledge support from the Swiss National
Supercomputing Centre (CSCS, Piz-Daint supercomputer),

https://doi.org/10.5281/zenodo.3965928
https://doi.org/10.5281/zenodo.3965928
https://gitlab.com/unigespc/palabos.git
https://gitlab.com/unigespc/palabos.git
https://palabos.unige.ch
https://www.shapeop.org/
https://gitlab.com/unigespc/palabos
https://www.rhino3d.com/
https://www.grasshopper3d.com/
https://www.shapeop.org/documentation.php
https://cmake.org/
https://palabos-forum.unige.ch/

11Kotsalos et al. Journal of Open Research DOI: 10.5334/jors.343

the National Supercomputing Centre in the Netherlands
(Surfsara, Cartesius supercomputer), and the HPC
Facilities of the University of Geneva (Baobab cluster).

FUNDING STATEMENT

This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under
grant agreement No 823712 (CompBioMed2 project), and
by the Swiss PASC project “Virtual Physiological Blood: an
HPC framework for blood flow simulations in vasculature
and in medical devices”.

COMPETING INTERESTS

The authors have no competing interests to declare.

AUTHOR AFFILIATIONS
Christos Kotsalos orcid.org/0000-0003-4323-0087
Computer Science Department, University of Geneva, CH

Jonas Latt orcid.org/0000-0001-6627-5689
Computer Science Department, University of Geneva, CH

Bastien Chopard
Computer Science Department, University of Geneva, CH

AUTHOR CONTRIBUTIONS

C.K. performed the research, developed the majority
of the computational framework, carried out the
simulations and wrote the paper.

J.L. wrote part of the computational framework,
supervised the research and revised the manuscript.

B.C. conceived and supervised the research and
revised the manuscript.

REFERENCES

1. Borgdorff J, et al. Performance of distributed multiscale

simulations. In: Philosophical Transactions of the Royal

Society A: Mathematical, Physical and Engineering Sciences.

2014; 372(2021): 20130407. DOI: https://doi.org/10.1098/

rsta.2013.0407

2. Borgdorff J, et al. Foundations of distributed multiscale

computing: Formalization, specification, and analysis. In:

Journal of Parallel and Distributed Computing. 2013; 73(4):

465–483. DOI: https://doi.org/10.1016/j.jpdc.2012.12.011

3. Bouaziz S, et al. Projective Dynamics: Fusing Constraint

Projections for Fast Simulation. In: ACM Trans. Graph.

2014 July; 33(4): 154:1–154:11. DOI: https://doi.

org/10.1145/2601097.2601116

4. Boudjeltia KZ, et al. Spherization of red blood cells and

platelets margination in COPD patients. In: Annals of the

New York Academy of Sciences; 2020. DOI: https://doi.

org/10.1111/nyas.14489

5. Chopard B, Borgdorff J, Hoekstra AG. A framework for

multi-scale modelling. In: Philosophical Transactions of the

Royal Society A: Mathematical, Physical and Engineering

Sciences. 2014; 372(2021): 20130378. DOI: https://doi.

org/10.1098/rsta.2013.0378

6. Gonzalez O, Stuart AM. A First Course in Continuum

Mechanics. Cambridge Texts in Applied Mathematics.

Cambridge University Press; 2008. DOI: https://doi.

org/10.1017/CBO9780511619571

7. Kotsalos C, Latt J, Chopard B. Bridging the computational

gap between mesoscopic and continuum modeling of

red blood cells for fully resolved blood flow. In: Journal of

Computational Physics. 2019; 398: 108905. issn: 10902716.

DOI: https://doi.org/10.1016/j.jcp.2019.108905

8. Kotsalos C, et al. Anomalous Platelet Transport & Fat-Tailed

Distributions; 2020. eprint: arXiv:2006.11755.

9. Kotsalos C, et al. Digital blood in massively parallel CPU/

GPU systems for the study of platelet transport. In:

Interface Focus. 2021; 11(1): 20190116. DOI: https://doi.

org/10.1098/rsfs.2019.0116

10. Latt J, et al. Palabos: Parallel Lattice Boltzmann Solver.

In: Computers and Mathematics with Applications;

2020. issn: 08981221. DOI: https://doi.org/10.1016/j.

camwa.2020.03.022

11. Liu T, Bouaziz S, Kavan L. Quasi-Newton Methods for

Real-Time Simulation of Hyperelastic Materials. In:

ACM Trans. Graph. 2017 May; 36(4). DOI: https://doi.

org/10.1145/3072959.2990496

12. Lolies T, et al. Numerical Methods for Efficient Fluid-

Structure Interaction Simulations of Paragliders. In:

Aerotecnica Missili & Spazio. 2019; 98(3): 221–229. issn: 0365-

7442. DOI: https://doi.org/10.1007/s42496-019-00017-2

13. Ota K, Suzuki K, Inamuro T. Lift generation by a two-

dimensional symmetric flapping wing: Immersed

boundary-lattice Boltzmann simulations. In: Fluid Dynamics

Research. 2012; 44(4). DOI: https://doi.org/10.1088/0169-

5983/44/4/045504

14. Peskin CS. Flow patterns around heart valves: A numerical

method. In: Journal of Computational Physics. 1972

Oct.; 10(2): 252–271. DOI: https://doi.org/10.1016/0021-

9991(72)90065-4

15. Rossinelli D, et al. The in-silico lab-on-a-chip: petascale

and high-throughput simulations of microuidics at cell

resolution. In: SC ‘15: Proceedings of the International

Conference for High Performance Computing, Networking,

Storage and Analysis. 2015; 1–12. DOI: https://doi.

org/10.1145/2807591.2807677

16. Tomaiuolo G. Biomechanical properties of red blood

cells in health and disease towards microuidics. In:

Biomicrouidics. 2014 Sept.; 8(5): 51501. DOI: https://doi.

org/10.1063/1.4895755

https://orcid.org/0000-0003-4323-0087
https://orcid.org/0000-0003-4323-0087
https://orcid.org/0000-0001-6627-5689
https://orcid.org/0000-0001-6627-5689
https://doi.org/10.1098/rsta.2013.0407
https://doi.org/10.1098/rsta.2013.0407
https://doi.org/10.1016/j.jpdc.2012.12.011
https://doi.org/10.1145/2601097.2601116
https://doi.org/10.1145/2601097.2601116
https://doi.org/10.1111/nyas.14489
https://doi.org/10.1111/nyas.14489
https://doi.org/10.1098/rsta.2013.0378
https://doi.org/10.1098/rsta.2013.0378
https://doi.org/10.1017/CBO9780511619571
https://doi.org/10.1017/CBO9780511619571
https://doi.org/10.1016/j.jcp.2019.108905
https://doi.org/10.1098/rsfs.2019.0116
https://doi.org/10.1098/rsfs.2019.0116
https://doi.org/10.1016/j.camwa.2020.03.022
https://doi.org/10.1016/j.camwa.2020.03.022
https://doi.org/10.1145/3072959.2990496
https://doi.org/10.1145/3072959.2990496
https://doi.org/10.1007/s42496-019-00017-2
https://doi.org/10.1088/0169-5983/44/4/045504
https://doi.org/10.1088/0169-5983/44/4/045504
https://doi.org/10.1016/0021-9991(72)90065-4
https://doi.org/10.1016/0021-9991(72)90065-4
https://doi.org/10.1145/2807591.2807677
https://doi.org/10.1145/2807591.2807677
https://doi.org/10.1063/1.4895755
https://doi.org/10.1063/1.4895755

12Kotsalos et al. Journal of Open Research DOI: 10.5334/jors.343

TO CITE THIS ARTICLE:
Kotsalos C, Latt J, Chopard B 2021 Palabos-npFEM: Software for the Simulation of Cellular Blood Flow (Digital Blood). Journal of Open
Research Software, 9: 16. DOI: https://doi.org/10.5334/jors.343

Submitted: 17 August 2020 Accepted: 02 June 2021 Published: 24 June 2021

COPYRIGHT:
© 2021 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0
International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original
author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by Ubiquity Press.

https://doi.org/10.5334/jors.343
https://doi.org/10.5334/jors.343
http://creativecommons.org/licenses/by/4.0/

