
SOFTWARE METAPAPER

ABSTRACT
Portage is a scalable and extensible remap library for numerical simulations. It 
supports state-of-the-art remap schemes for meshes and particles in 2D and 3D up 
to a second-order accuracy. Portage ensures critical properties such as local/global 
conservation and bounds preservation for mesh remap. It enables multi-material field 
remap through a dedicated plugin, and leverages the hybrid parallelism exposed by 
advanced architectures using multi-processing and multi-threading.
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(1) OVERVIEW
INTRODUCTION
Remap is the transfer of numerical fields from a computa
tional domain to another. It is said to be conservative when 
some extensive quantity is preserved during this transfer. 
For instance, one may want to preserve the material mass 
while remapping the density field defined on a source 
mesh to a target mesh. Remap is necessary for:

•	 interpolating fields from a distorted mesh to an 
improved one in an indirect Arbitrary Lagrangian-
Eulerian simulation (ALE in short).

•	 linking internal and external fields in a multi-physics 
simulation pipeline.

•	 interpolating data from different numerical codes.

Conservative schemes have long been of particular interest 
for ALE simulations [1]. In such simulations, the mesh is 
allowed to evolve in time along with the material such as 
depicted in Figure 1. In that case, the mesh is smoothed to 
prevent cells distorting or tangling, and all fields computed 
on the old mesh are remapped to the new one. Remap 
schemes such as advection-based and intersection-based 
remaps [2] are often integrated within ALE hydrodynamics 
codes such as FLAG [3]. They are also useful for other multi-
physics applications such as Amanzi [4] (to assimilate 
scattered input data from observation sources), and for code-
to-code linking problems such as in Ingen [5]. However, this 
tight integration has led to a proliferation of remap schemes 
that cannot be easily shared between simulation codes. To 
address this issue, standalone conservative remap software 
has been developed such as the closed source Overlink [6] 
from Lawrence Livermore National Laboratory, the legacy 
REMAP3D code [7] from Los Alamos National Laboratory, or 
the globally conservative open-source DTK code [8] from 
Oak Ridge National Laboratory.

Portage is currently the only actively developed open 
source library that performs locally conservative remap. 
It provides a lightweight and extensible interface that 
can easily be customized and integrated into simulation 
codes. Portage supports general polyhedral mesh fields 

remap up to a second-order accuracy, while preserving 
integral quantities of interest and numerical bounds. 
It supports remap between particle fields as well, and 
provides means to perform mesh remap using the 
particle remap engine. Portage is designed to scale to 
thousands of cores on distributed architectures through 
MPI and OpenMP (using Nvidia’s Thrust wrapper).

IMPLEMENTATION AND ARCHITECTURE
Features
Portage supports three types of remap:

•	 Intersection-based remap is a conservative scheme 
that relies on exact intersection of source and target 
meshes. It first identifies the candidate source cells 
that may potentially overlap each target cell. It then 
computes two moments of intersection (volume and 
centroid) between each target cell and overlapping 
source cells (Figure 2). Finally, it interpolates the target 
cell value from the candidate source cells values 
using the moments of intersection as weights [2].

•	 Advection-based remap is a conservative scheme 
specifically designed for meshes with the same 
topology but with different node positions. As 
described earlier, this need arises from ALE 
hydrodynamic simulations when the mesh is slightly 
smoothed to prevent cell distortion induced by the 
Lagrangian fluid motion. Here, the remap is formulated 
as an advection or fluxing of integral quantities in/
out of each cell through its faces. Any quantity that is 
fluxed out of a cell is added into one of its neighbors, 
so the method is intrinsically conservative. In this 
algorithm, the interpolation weights are deduced from 
the flux volumes, which is less expensive – but less 
accurate – than the previous remap scheme [9].

•	 Particle remap is a specific scheme for point clouds. 
In this method, source fields are reconstructed by 
means of local regression [10]. Here a shape function 
is attached to each source point (scatter form) or each 
target point (gather form). The algorithm first identifies 
the source points included in the support of the shape 

Figure 1 Mesh deformation in an ALE simulation [1].
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function of a target point (Figure 3) which are included 
in the zone delimited by the user-defined smoothing 
lengths which control the number of points used for 
the local regression. It then computes the weights 
by evaluating the shape function and its derivatives 
on each point. Finally, it approximates the value on 
each target point using those weights. Despite its high 
accuracy, this remap method is not conservative.

Each step can be processed in parallel with the granularity 
of a single point or cell.

Design
Portage has a modular design. It relies on extensive 
C++ templating of all remap steps, allowing client codes 
to extend, adapt or replace them by customized ones. 
Besides, most of its core methods are designed to 
have no side-effects to ease their parallelization and 
their individual reuse. Portage’s components and their 
interactions are given in Figure 4.

Portage takes the source and target domains along 
with fields data as inputs, and then outputs remapped 
fields on the target domain. Here a domain can be 

Figure 2 Illustration of intersection-based remap.

Figure 3 Illustration of particle-based remap.

Figure 4 Portage software design and workflow.
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a mesh or a point cloud. For multi-material fields, it 
requires the material volume fractions on the source 
domain as depicted in Figure 5, and which corresponds to 
the proportion of each material on each cell. The remap 
workflow consists of six stages:

1.	 Redistribution: this optional step is only necessary for 
distributed domains with a mismatch between the 
source and target partitions. In that case, some source 
entities (points or cells) are reassigned among MPI 
ranks such that each target subdomain is overlapped by 
the corresponding source subdomain. This eliminates 
the need for communications in the remaining steps.

2.	 Interface reconstruction: this optional step is only 
required for multi-material fields and is performed 
by a dedicated plugin called Tangram. It recovers the 
interface between different materials by computing 
the material polygons on each source cell, given their 
volume fractions and, optionally, their centroids for a 
second-order remap accuracy.

3.	 Search: this step identifies and retrieves the source 
entities that are necessary to interpolate the value of 
a given target entity. The algorithm depends on the 
remap scheme:
•	 intersection: collects the source cells that may 

overlap the target cell.
•	 advection: collects the source cell itself and a 

subset of its neighbors.
•	 particle: collects the source points included in the 

support of the shape function of a target point in 
scatter form, and vice-versa for gather form.

4.	 Computation of weights: this step computes the 
contribution weights of each identified source entity 
to reconstruct the value on a given target entity. 
Again, the algorithm depends on the remap scheme:

•	 intersection: computes the moments of 
intersection (volume and centroids) of each 
candidate source cell that overlaps the target 
cell.

•	 advection: computes the moments of each swept 
polyhedron (volume and centroids) formed by the 
displacement of each face of the source cell.

•	 particle: computes and accumulates the values of 
the shape functions and their derivatives on each 
point given by the search step.

5.	 Interpolation: this step reconstructs the target entity 
values by interpolating them using the computed 
weights. For mesh remap, the gradient of the source 
field is required to achieve a second-order accurate 
reconstruction. It is computed in Portage by a least-
squares method. Here, values can be limited using 
Barth-Jespersen’s limiter [11], except at domain 
boundaries because boundary conditions are not yet 
supported. For particles, we use the term estimation 
as recovered values may pass near the data not 
necessarily through it.

6.	 Repair: this step is only necessary in case of 
mismatch between source and target mesh 
boundaries. Here, remapped values are fixed to 
enforce the conservation of integral quantities. 
Portage exposes three options to fix partially 
overlapped cells:
•	 constant-preserving: no field value perturbations 

but not conservative.
•	 locally-conservative: conservative but 

perturbations may occur: constant fields may not 
remain constant.

•	 shifted-conservative: conservative with minimal 
perturbations but values are shifted: constant 
field remains constant but with a different value.

Figure 5 Additional step involved in multi-material remap.
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It is also possible to extrapolate values to empty cells in 
the target mesh.

Driver
A driver is the interface that exposes the remap 
capabilities to the client simulation code. Writing a driver 
allows client codes to mix, match, or extend specialized 
remap components for their particular needs. Portage 
comes with a few drivers to ease the design of custom 
ones and several apps to show common remap use 
cases. Each driver is templated on core components 
(interface reconstruction, search, weight computation, 
interpolation) for each remap method (intersection, 
advection, particle) and on mesh type. If the simulation 
code provides a mesh with a set of queries that conforms 
with the mesh wrapper interface, then no data recopy is 
involved. Portage embeds five built-in drivers:

•	 uberdriver: an easy to use mesh remap class.
•	 coredriver: a low-level mesh driver that allows finer 

control on remap steps.
•	 mmdriver: a legacy monolithic mesh remap driver.
•	 driver_swarm: a dedicated particle remap driver.
•	 driver_mesh_swarm_mesh: a mesh remap driver 

that relies on particle kernels.

A basic example of a single-material mesh remap using 
coredriver methods (using default parameters where 
possible) is given in Listing 1. A list of available options 
for remap components is given in Table 1. Each of them is 
templated on source and target domains as well as field 
entity types.

SCALABILITY
Portage is designed for high performance computing 
clusters. It relies on both MPI and OpenMP to leverage 
the hybrid parallelism exposed by such architectures. 
Here we present some scaling results on a simple multi-
material problem in Figure 6. Tests are run on a cluster 
formed by 256 dual-socket nodes (Intel Broadwell 
with 18 cores per-socket at 2.1 Ghz). Here we consider 
a cell-centered three-material field remap with 3D 
cartesian grids and a simple t-junction material 
distribution on the domain. The source and target grids 
have 403 and 1203 cells respectively. To ease memory 
pressure, we set a single MPI rank per node and 16 
threads per rank explicitly pinned on cores using KMP_
AFFINITY=granularity=core,compact.

The total execution time and the remap time are 
depicted in black and red respectively. The time spent 
on material interface reconstruction – which is only 

Listing 1 Example of using a driver for remap.

using namespace Portage;

std::vector<std::string> fields = {”density”, ”temperature”};

/∗ the type of the driver to be used for remap templated on:
∗ . the problem dimension.
∗ . the field entity type: node or cell.
∗ . the type of the mesh with a basic set of topological queries,
∗ . the type of mesh state which contains fields to be remapped. ∗/
using Remap = CoreDriver<dim, entity, Mesh, State>;

/∗ create the driver and pass the source and target meshes and states ∗/
Remap remap(source mesh, source state, target mesh, target state);

/∗ 1. retrieve the list of source candidate cells that may overlap each target cell
∗ 2. compute the weights by intersecting target cells with their candidate cells.
∗ 3. check for boundaries mismatch and cache per−cell volume of intersection. ∗/
auto candidates = remap.search<SearchKDTree>();
auto weights = remap.intersect meshes<IntersectR2D>(candidates);
bool mismatched = remap.check mismatch(weights);

/∗ 4. compute gradient of the current field on the source mesh,
∗ it can be replaced by any user defined gradient computation.
∗ 5. interpolate the current field on the target mesh.
∗ 6. fix values for conservation using default parameters. ∗/
for (auto&& field : fields) {

auto grad = remap.compute source gradient(field);
remap.interpolate mesh var<double,Interpolate 2ndOrder>(field, weights, &grad)
if (mismatched) { remap.fix mismatch(field, field); }

}
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performed on multi-material cells – is shown in purple. 
Here, the workload per rank is impacted by the uneven 
distribution of multi-material cells. Despite the workload 
imbalance, a reasonable scaling is still achieved.

QUALITY CONTROL
Portage is tested on Linux with Gnu and Intel compilers. 
It provides over 200 unit and functional tests as part of 

a Travis continuous integration setup using the Github 
workflow. In particular, they ensure that remap algorithms:

•	 are bounds preserving,
•	 provide the expected order of accuracy,
•	 are conservative.

The code coverage in the latest release is 67% as shown 
in Figure 7.

STEP ALGORITHM DESCRIPTION

search SearchSimple search using bounding-box (2D)

SearchKDTree search using a k-d tree

SearchSimplePoints basic quadratic search for particles

SearchPointsByCells linear search for particles using a virtual cell

weights IntersectRnD compute exact n-polytopes intersection

IntersectSweptFace compute moments of advected regions

Accumulate evaluate and sum shape functions/derivatives

options: shape kernels and geometry, basis, estimators

interpolate Interpolate_1stOrder first-order interpolation of mesh values

Interpolate_2ndOrder second-order interpolation with limiters

Estimate n-order approximation of particle values

Table 1 Driver options for remap steps.

Figure 6 Scaling of multi-material remap in a hybrid parallel setting.
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(2) AVAILABILITY
OPERATING SYSTEM
Portage is designed for high performance computing 
clusters. Hence it is primarily targetted to Linux.

PROGRAMMING LANGUAGE
Portage is written in C++14.

ADDITIONAL SYSTEM REQUIREMENTS
None.

DEPENDENCIES
minimal:

•	 r3d: exact polytope intersection. 
https://github.com/devonmpowell/r3d

•	 cinch: build utilities and options. 
https://github.com/laristra/cinch

•	 wonton: mesh wrappers and helpers. 
https://github.com/laristra/wonton

optional:

•	 jali: distributed mesh infrastructure. 
https://github.com/lanl/jali

•	 tangram: interface reconstruction. 
https://github.com/laristra/tangram

•	 lapack: linear algebra kernels. 
http://www.netlib.org/lapack

•	 thrust: a wrapper for OpenMP. 
https://github.com/thrust/thrust

•	 tcmalloc: fast memory allocation. 
https://github.com/google/tcmalloc

LIST OF CONTRIBUTORS
All contributors are or were affiliated with Los Alamos 
National Laboratory.

•	 current: Angela Herring, Christopher Malone, Daniel 
Shevitz, Evgeny Kikinzon, Hoby Rakotoarivelo, Jan 
Velechovsky, Konstantin Lipnikov, Navamita Ray and 
Rao Garimella.

•	 previous: Brendan Krueger, Charles Ferenbaugh, 
Christopher Sewell, Gary Dilts, Ondřej Čertí́k, Michael 
Rogers and Rachel Ertl.
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releases
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Version published: 2.2.3
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Figure 7 Code coverage in latest release.
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�Persistent identifier: https://github.com/laristra/portage

Licence: bsd
Date published: 01/09/2017
�Support: We will use the GitHub “issues” feature as well 
as email (portage@lanl.gov) to maintainers for support.

LANGUAGE
English.

(3) REUSE POTENTIAL

Portage is an extensible and mesh-agnostic library. 
Its unique design allows it to be re-used in a variety of 
applications such as:

•	 field remap in ALE simulations,
•	 multi-physics code-to-code field remap,
•	 operator-split intra-code linking.

Portage is actively developed, supported and continuously 
released. Bugs and feature requests can be notified using 
the issue tracker on Github, as well as any question related 
to the software. User support may be reached by email at 
portage@lanl.gov. We welcome community contributions 
through pull requests.
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