
SOFTWARE METAPAPER

ABSTRACT
auto{API} is a web-based tool for the specification and management of API endpoints 
to online XML data sources. The APIs generated return the data in JSON format.  The 
tool allows users to specify the field names to be used in the JSON data and to control 
which elements of the original data set are returned. Options are provided for the 
returned data to skip null values and to flatten the structure that is retrieved. auto{API} 
is written in Python/Flask and is available under the MIT licence. The software is 
available from GitHub (https://github.com/aamoore/autoAPI) and can be seen deployed at 
https://autoapi-app.herokuapp.com/?http://apis.opendatani.gov.uk/translink/3042AA.xml.

CORRESPONDING AUTHOR:
Adrian Moore

School of Computing, Ulster 
University, UK

aa.moore@ulster.ac.uk

KEYWORDS:
XML; JSON; API

TO CITE THIS ARTICLE:
Moore A 2021 auto{API} 
– A Web-Based Tool for 
Specification of an API 
Endpoint to Return JSON Data 
From an XML Source. Journal of 
Open Research Software, 9: 24. 
DOI: https://doi.org/10.5334/
jors.335

ADRIAN MOORE 

auto{API} – A Web-Based 
Tool for Specification of 
an API Endpoint to Return 
JSON Data From an XML 
Source

https://github.com/aamoore/autoAPI
https://autoapi-app.herokuapp.com/?http://apis.opendatani.gov.uk/translink/3042AA.xml
mailto:aa.moore@ulster.ac.uk
https://doi.org/10.5334/jors.335
https://doi.org/10.5334/jors.335
https://orcid.org/0000-0001-6545-3228


2Moore Journal of Open Research DOI: 10.5334/jors.335

(1) OVERVIEW
INTRODUCTION 
XML (Extensible Markup Language) [1] and JSON 
(JavaScript Object Notation) [2] are competing 
notations for the representation and transfer of 
structured data between (often online) applications. 
Of these, XML is by far the longer established having 
been first formally specified by the World Wide Web 
Consortium in 1998, while JSON was eventually 
standardised as ECMA-404 in 2013, having been 
first specified in 2002. Although there are significant 
differences between the notations (for example XML is 
typeless while JSON is typed) they are essentially used 
for the same purpose, hence developers of software 
that is required to transfer data to or from collaborative 
services are often required to convert from one format 
to the other. Given the historical precedence of XML, 
the large number of legacy systems that use it, and the 
close integration of JSON with modern development 
languages such as Python; this conversion is most 
often from XML to JSON. There is no single accepted 
solution for conversion, but rather, the translation 
is performed in an application-dependent way. For 
example, depending on the requirements of the 
receiving software, the XML namespace definitions may 
be incorporated or ignored, while the treatment of XML 
node attributes may vary. This situation is represented 
in Figure 1, where an application retrieves data from an 
XML data source via an API and converts it to JSON for 
further processing and/or presentation.

An example of a potential Data Consumer Application 
could be from the field of Data Mining – the research 
activity that refers to the analysis and processing of 
large data sets to identify patterns and rules that can 
be exploited to improve the performance, usefulness 
and functionality of a system, or to reduce costs. Many 
very large data sets are currently held in repositories and 
the human readability and tightly structured format of 
XML makes it a popular choice as a data representation 
notation. There have been many studies on the 
application of clustering and classification techniques 
to XML data, but such activities normally require that 
the XML is pre-processed into a more traditional form 
using a DOM or SAX builder. auto{API} addresses this 
by providing a means to return the entire XML dataset 
as a JSON object in a single operation. The JSON data 
can then be easily loaded to a database from where the 
data mining activity can take place. Where the database 
is arranged as a document store architecture (such as 
MongoDB), the entire dataset can be uploaded in a single 
operation.

The aim of auto{API} is to introduce a broker 
component implemented as a RESTful API that handles 
the retrieval of the XML and the conversion of the 
data to JSON format according to preferences that are 
established in a setup phase. The auto{API} preferences 
enable the consumer application to specify which XML 
elements are to be retrieved, the field names that 
they should be assigned and the structure of the JSON 
element to be returned. As well as greatly simplifying 

Figure 1 Direct access to external data source.

https://doi.org/10.5334/jors.335


3Moore Journal of Open Research DOI: 10.5334/jors.335

the processing task of the end-user application, this 
provides a degree of protection against future changes 
in the structure and content of the data source. If the 
data provider changes the format of the XML source, the 
auto{API} API preferences can be updated to reflect this 
– avoiding the need for the consumer application to be 
re-written. Figure 2 illustrates the use of auto{API} and its 
role in data retrieval.

IMPLEMENTATION AND ARCHITECTURE
auto{API} was developed between April and June 2020 
using Python/Flask, SQLite, HTML, CSS and JavaScript/
jQuery. It builds upon the existing xmltodict Python 

package [3] which parses an XML source (wither as a 
string or external file) and returns an equivalent JSON 
object. auto{API} adds value to xmltodict by providing 
a tool in which users can select specific fields of the XML 
source to be harvested while ignoring the others, and 
also by providing an option to collapse the resulting 
JSON structure to its simplest form. The architecture of 
auto{API} is illustrated in Figure 3 which presents the 
relationship between 3 code modules and integrated 
database.

The first module (“XML Field Selection”) is invoked by 
a GET request to the application root endpoint /?url, 
presenting the URL of the XML data source as the query 

Figure 2 Using auto{API}.

Figure 3 auto{API} structure.



4Moore Journal of Open Research DOI: 10.5334/jors.335

string. The module retrieves the XML data from the 
specified address, converts it to JSON by the xmltodict.
parse() method and displays the equivalent JSON 
tree structure within an HTML form in the browser. The 
JSON tree includes a checkbox for each element, which 
enables the user to select the fields that they wish to be 
included in the resulting data structure. When the user 
submits the form, a POST request to the application root 
endpoint /?url invokes the “Record Preferences” module 
which accepts the user’s field selections and updates 
the database accordingly. Finally, a POST request to the 
endpoint /api?url invokes the “Fetch JSON” module 
which retrieves the XML source and generates the JSON 
output according to the user’s field selections.

The basic operation of the application is illustrated 
by Figure 4 which presents the clickable node tree and 
the equivalent JSON output for the real-time passenger 
information for Ballymoney Train Station made available 
in XML form by Northern Ireland Railways as part of the 
OpenDataNI initiative [4] at http://apis.opendatani.gov.uk/

translink/3042AA.xml.
The power and flexibility of auto{API} is enabled in 

part by the generation of the clickable node tree which 
allows the user to specify the fields to be retrieved. This 
is implemented by structuring the tree as an HTML form 
containing a set of nested groups of checkboxes. Each 

leaf node in the structure corresponds to a raw data 
value, while the non-leaf nodes correspond to collections 
in the data source. Clicking a checkbox for a non-leaf 
node sets or clears the check boxes for all children of 
that node, hence the entire dataset can be selected or 
deselected by clicking the root “StationBoard” element 
in the example above, while clicking the “Service” node 
selects or deselects that node plus all nodes which are 
descendants of “Service”. 

Each node is assigned a unique name based on the 
path to that node in the original XML structure. The name 
is assigned by selecting the minimum selection from the 
end of the path that preserves uniqueness, hence the 
node with path /StationBoard/Service/ArriveTime/@
time is assigned the name @time, while the subsequent 
node with path /StationBoard/Service/DepartTime/@
time is assigned the name DepartTime/@time. In 
addition, the user can specify their own name for any 
node by modifying the value in the corresponding text 
box. Error trapping ensures that all names are unique 
before the user is permitted to submit their selections.

Additional features of the tree include display of a 
sample value for leaf nodes (e.g. “Ballymoney” for /
StationBoard/@name in the example above and the 
use of * and + qualifiers following the path to denote 
that the element is a collection or optional respectively 

Figure 4 Clickable node tree and resulting JSON output.

http://apis.opendatani.gov.uk/translink/3042AA.xml
http://apis.opendatani.gov.uk/translink/3042AA.xml


5Moore Journal of Open Research DOI: 10.5334/jors.335

– demonstrated by the [*] flag for the /StationBoard/
Service node shown above.

The node tree is generated by the parsing algorithm 
illustrated in Figure 5 below.

The algorithm recursively processes the children of 
each node, beginning with the root of the tree structure. 
As each node is processed, if it is being encountered for 
the first time, then a new record is created in the database 
with the path to the element and its unique name. If the 
node is one that has been found previously (for example 

the second /StationBoard/Service element in the 
example presented above), then the number of times 
that this node has been found is updated. If the element 
is a collection (i.e. a non-leaf node), then the process is 
repeated for each member of the collection; otherwise 
it is a leaf node and the database entry can be updated 
with the sample data value.

When all nodes have been processed, a unique 
sequence code is generated for each element such that 
all nodes within a subtree share a common prefix, as 

Figure 5 Parsing the source XML.



6Moore Journal of Open Research DOI: 10.5334/jors.335

illustrated in Figure 6, which presents a sample 3-level 
XML structure and the sequence codes that would be 
generated for each node. The root node is allocated the 
sequence number 1., while direct children of the root 
have sequence numbers 1.0001, 1.0002, 1.0003 and 
so on. Likewise, children of node 1.0002 are labelled 
1.0002.0001, 1.0002.0002, etc. The structure of the 
sequence nodes and the uniqueness of each enables 
the implementation of the jQuery function that allows 
selection/deselection of entire subtrees with a single click.

The effect of the clickable node tree is illustrated by 
Figure 7 which demonstrates the selection of a subset 
of nodes and the JSON that is generated as a result. 
Here, we use the checkboxes to specify that only a 
small selection of node values is required and that the 
nodes /StationBoard/Service/ArriveTime/@time and 
/StationBoard/Service/DepartTime/@time should be 
re-named as ArrivingAt and DepartingAt, respectively.

It can be seen from the JSON returned in Figure 7 
that the entire JSON structure is generated, regardless 
of whether a particular collection or sub-collection 
contains one of the selected nodes. For example, the 
StationBoard/Service/Delay collection is returned as 
an empty object, as it’s only child @Minutes was not one 
of the selected values. In addition, since all node names 
are unique there is no danger of conflicts between 

identically named nodes in different sub-trees, and so 
it may be appropriate (or more useful to the user) to 
present the resulting JSON data as a flatter structure.

This is enabled by the “Collapse JSON Result” flag that 
can be submitted with the Test API button, illustrated 
by Figure 8. Using this option generates a much more 
compact data set, with empty collections removed and 
all leaf nodes promoted to the highest level possible, 
while maintaining the integrity of the data. In this 
example, the data is presented as a list of Service nodes, 
with each node value represented as a top-level element 
of the Service.

A similar flag “Eliminate NULL Values” can be used to 
specify that only selected leaf nodes that contain data 
should be returned.

The final element of auto{API} functionality recognises 
that data providers sometimes employ URLs with 
embedded parameters that identify the specific data to 
serve. In the case of the example presented here, part of 
the URL is a code denoting the station for which passenger 
information is delivered. Hence the URL http://apis.

opendatani.gov.uk/translink/3042AA.xml returns real-time 
information for Ballymoney Train Station, while the URL 
http://apis.opendatani.gov.uk/translink/3045CE.xml returns 
similar information for Portadown Train Station. Using 
auto{API}, the user can identify the variable element 

Figure 6 Assigning unique sequence numbers to elements.

http://apis.opendatani.gov.uk/translink/3042AA.xml
http://apis.opendatani.gov.uk/translink/3042AA.xml
http://apis.opendatani.gov.uk/translink/3045CE.xml


7Moore Journal of Open Research DOI: 10.5334/jors.335

of the URL by enclosing it within < and > characters in 
the Parameterise text box and then provide the actual 
station code to be used by POSTing it as a field with the 
name parameter. A database table stores details of any 
variable URLs specified so that the parameterisation 
can be automatically restored the next time that data 
set is requested. Figure 9 illustrates the specification of 
the variable element of the URL in the Parameterise text 

box, while Figure 10 shows how this causes the Parameter 
value text box to be revealed so that the user can provide 
the value to be substituted into the URL, as well as the 
JSON result that is returned.

QUALITY CONTROL 
The software has been extensively tested for functionality 
and usability. Each of the endpoints has been tested by 

Figure 7 Selected fields and resulting JSON output.

Figure 8 Collapsing the JSON result.

https://doi.org/10.5334/jors.335


8Moore Journal of Open Research DOI: 10.5334/jors.335

providing a range of valid and invalid input and examining 
the results obtained. In addition, the test suite capabilities 
of the Postman API development platform have been 
used to ensure that run-time errors are trapped and 
appropriate JSON error messages returned. The software 
has been tested on Windows and MacOS environments, 
with a wide range of modern web browsers.

(2) AVAILABILITY 
OPERATING SYSTEM
A platform-independent application, running in any 
modern web browser (Safari, Chrome, Edge, Firefox, etc.)

PROGRAMMING LANGUAGE
Python v3.x

ADDITIONAL SYSTEM REQUIREMENTS
None.

DEPENDENCIES
Uses the following Python packages

•	 Flask (https://flask.palletsprojects.com/en/ 

1.1.x/)
•	 xmltodict (https://pypi.org/project/xmlto 

dict/) 

Figure 9 Parameterise the URL.

Figure 10 Supply a parameter value to request a specific data set.

https://flask.palletsprojects.com/en/1.1.x/
https://flask.palletsprojects.com/en/1.1.x/
https://pypi.org/project/xmltodict/
https://pypi.org/project/xmltodict/


9Moore Journal of Open Research DOI: 10.5334/jors.335

INSTALLATION

1. Install the packages xmltodict and flask to a Python 
3 environment. This is most easily done using the pip 
package manager with the commands pip install 
xmltodict and pip install flask.

2. Copy the source file autoAPI.py and the database file 
autoAPI.db to the selected working directory.

3. Create a sub-folder “templates” and copy the file 
index.html to this location

4. In the working directory, invoke the application by the 
command python autoAPI.py

5. With the python application running, use a 
web browser to visit the location http://
localhost:5000/?url where url is the address of 
the XML source that you want to use. For example, 
the URL http://localhost:5000/?http://apis.opendatani.gov.

uk/translink/3042AA.xml will launch the application with 
the XML passenger information data described in this 
paper.

SOFTWARE LOCATION
Archive (e.g. institutional repository, general repository) 
(required – please see instructions on journal website 
for depositing archive copy of software in a suitable 
repository) 

Name: Zenodo
Persistent identifier: DOI 10.5281/zenodo.3889859 
Licence: MIT
Publisher: Moore, Adrian
Version published: v1.1
Date published: 25/05/2020

Code repository
Name: GitHub
Identifier: https://github.com/aamoore/autoAPI 
Licence: MIT
Date published: 19/05/2020

LANGUAGE
English

(3) REUSE POTENTIAL 

The software can be used in any situation where an XML 
data source is required to be converted to JSON for use in 
an online application. 

As an example, the author has incorporated 
auto{API} into a voice interface research project as the 
data retrieval module for an Amazon Alexa Skill that 
implements a voice interface to the Northern Ireland 
Railways live passenger information discussed in this 
paper. In this application, a user can query Alexa with a 
question such as “when is the next train from Coleraine 
to Belfast?” so that the Skill logic calls the appropriate 

endpoint via auto{API}, parses the JSON result and 
returns the output to be voiced by the Alexa-enabled 
device. Additional logic adds context to the conversation 
by maintaining state information to facilitate follow-
up queries such as “is there a later train?” or “when is 
the first train this afternoon?”. This research is ongoing, 
but auto{API} has been a very useful tool in making the 
native XML data available in a format much better suited 
to query and analysis.

Apart from the Data Mining scenario outlined earlier, 
there are many other research areas where auto{API} 
has the potential to make an enabling contribution. 
These include (but are by no means limited to):

•	 Natural Language Processing (NLP): One active area of 
NLP research is in the provision of a natural language 
interface to an XML dataset. This is most often 
accomplished by converting the natural language query 
to an XQuery statement that can be applied to an XML 
database [5]. However, the structure and flexibility of 
XQuery has been  
subject to criticism [6] and conversion of the XML data 
to JSON by a tool such as auto{API} makes it more 
accessible to modern languages such as Python that 
provide native support for JSON structures. 

•	 Geographic Information Systems (GIS): The 
Geography Markup Language (GML) is an XML-based 
notation used to represent geographic information. It 
is commonly used as a data transfer syntax between 
applications that model and process such data, but 
the lack of complex query support and relatively high 
storage requirement of GML has been identified in 
the literature as a significant drawback [7]. Using 
auto{API} to retrieve the GML data as JSON would 
enable easy integration with modern database 
systems that provide greatly enhanced query and 
analysis facilities.

•	 Medical Data Analysis: Current medical practice 
generates an enormous volume of patient data 
which can be analysed to identify trends and other 
important features. XML-based tools such as SOMA 
have been used to parse and visualise the results 
to facilitate expert interpretation [8]. Integration 
of a tool such as auto{API} would allow the results 
to be easily made available in JSON so that more 
complex computation-based analysis can also be 
performed.

There is no explicit official support for auto{API}, but those 
with queries or expressions of interest in collaboration 
should contact the author by email at aa.moore@ulster.ac.uk.

COMPETING INTERESTS

The author has no competing interests to declare.

http://localhost:5000/?http://apis.opendatani.gov.uk/translink/3042AA.xml
http://localhost:5000/?http://apis.opendatani.gov.uk/translink/3042AA.xml
https://doi.org/10.5281/zenodo.3889859
https://github.com/aamoore/autoAPI
mailto:aa.moore@ulster.ac.uk


10Moore Journal of Open Research DOI: 10.5334/jors.335

TO CITE THIS ARTICLE: 
Moore A 2021 auto{API} – A Web-Based Tool for Specification of an API Endpoint to Return JSON Data From an XML Source. Journal of 
Open Research Software, 9: 24. DOI: https://doi.org/10.5334/jors.335

Submitted: 15 June 2020     Accepted: 05 August 2021     Published: 20 August 2021

COPYRIGHT: 
© 2021 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 
International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by Ubiquity Press.

AUTHOR AFFILIATION
Adrian Moore  orcid.org/0000-0001-6545-3228 
School of Computing, Ulster University, UK

REFERENCES

1. Quin L. Extensible Markup Language (XML) [online]; 2016. 

Available at: https://www.w3.org/XML/ [Accessed 10 June 

2020].

2. ECMA International. The JSON Data interchange Syntax, 

2nd Ed. [online]; 2017. Available at: http://www.ecma-

international.org/publications/files/ECMA-ST/ECMA-404.pdf 

[Accessed 10 June 2020].

3. Blech M. xmltodict. Python module that makes working 

with XML feel like you are working with JSON. [online]; 2014. 

Available at: https://github.com/martinblech/xmltodict 

[Accessed 10 June 2020].

4. OpenDataNI. Open Data Northern Ireland. [online]; 2015. 

Available at https://www.opendatani.gov.uk [Accessed 10 

June 2020]. 

5. Jiffy J, Panicker J, Meera M. An efficient natural language 

interface to XML database. 2016 International Conference 

on Information Science (ICIS), Kochi, 2016; 207–212. DOI: 

https://doi.org/10.1109/INFOSCI.2016.7845328

6. David M. Ten Problems with XQuery and the SQL/XML 

Standard. [online]; 2010. Available at https://www.

databasejournal.com/sqletc/article.php/3865201/Ten-

Problems-with-XQuery-and-the-SQLXML-Standard.htm 

[Accessed 07 July 2020].

7. Lu C, Dos Santos RF, Sripada LN, Kou Y. Advances in GML 

for Geospatial Applications. Geoinformatica. 2007; 11: 

131–157. DOI: https://doi.org/10.1007/s10707-006-0013-9

8. Somaraki V, Xu Z. Knowledge representation of 

large medical data using XML. 22nd International 

Conference on Automation and Computing (ICAC), 

Colchester. 2016; 423–428. DOI: https://doi.org/10.1109/

IConAC.2016.7604956

https://doi.org/10.5334/jors.335
https://doi.org/10.5334/jors.335
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-6545-3228
https://orcid.org/0000-0001-6545-3228
https://www.w3.org/XML/
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://github.com/martinblech/xmltodict
https://www.opendatani.gov.uk
https://doi.org/10.1109/INFOSCI.2016.7845328
https://www.databasejournal.com/sqletc/article.php/3865201/Ten-Problems-with-XQuery-and-the-SQLXML-Standard.htm
https://www.databasejournal.com/sqletc/article.php/3865201/Ten-Problems-with-XQuery-and-the-SQLXML-Standard.htm
https://www.databasejournal.com/sqletc/article.php/3865201/Ten-Problems-with-XQuery-and-the-SQLXML-Standard.htm
https://doi.org/10.1007/s10707-006-0013-9
https://doi.org/10.1109/IConAC.2016.7604956
https://doi.org/10.1109/IConAC.2016.7604956

