
Figueras i Ventura, J, et al. 2020 Pyrad: A Real-Time Weather Radar
Data Processing Framework Based on Py-ART. Journal of Open
Research Software, 8: 28. DOI: https://doi.org/10.5334/jors.330

Journal of
open research software

SOFTWARE METAPAPER

Pyrad: A Real-Time Weather Radar Data Processing
Framework Based on Py-ART
Jordi Figueras i Ventura, Martin Lainer, Zaira Schauwecker, Jacopo Grazioli and
Urs Germann
MeteoSwiss, Locarno, CH
Corresponding author: Jordi Figueras i Ventura (jordi.figuerasiventura@meteoswiss.ch)

Pyrad is a real-time data processing framework developed by MeteoSwiss. The framework is aimed at
reading, processing and visualizing polar data from individual weather radars as well as composite Cartesian
products both off-line and in real time. The processing flow is controlled by three simple configuration
files. This allows the construction of reproducible data processing chains. In the off-line mode, data from
multiple radars can be ingested. It is written in the Python programming language. Most of the signal
processing and part of the data visualization is performed by a MeteoSwiss-developed version of the
Py-ART radar toolkit, which contains enhanced features. Thanks to the broad types of input files accepted
and its flexibility it can be easily adapted and used by any member of the weather radar community. The
source code is available on GitHub. Compiled versions are also available on PyPI and conda-forge. They are
distributed under a BSD license.

Keywords: Python; radar; weather radar; quality control; real-time; visualization; data processing

(1) Overview
Introduction
Due to their wide coverage, 24/7 automatic operation and
the capability to provide useful information in almost any
condition, weather radars have an ever-expanding range of
applications (see for example [1] and [2] for an overview).
Direct applications include severe weather detection
(e.g. [3]), cloud and precipitation type identification (e.g.
[4]), quantitative precipitation estimation (e.g. [5]) and
wind speed and direction retrievals (e.g. [6]) as well as in
microphysical studies of clouds and precipitation. Radar
data is also widely used in precipitation nowcasting (e.g.
[7]) and can substantially improve weather forecasts if
properly assimilated ([8]). Furthermore, radar data has
multiple applications in the field of hydrology and is also
essential in issuing automatic weather warnings (e.g. [9]).

The extraction of meaningful information from radar
returns is a complex task and quite often depends on the
desired application. Moreover, the data processing can be
viewed as a chain of individual algorithms. Oftentimes how
the data is processed at the earliest stages of the processing
chain has a significant impact on the end result. Hence,
even if a well-documented algorithm is implemented,
the outcome may vary significantly from the reference
due to divergences in the previous processing steps.
Further enhancing the problem of reproducibility, many
scientists are at least partially dependent on commercial
software which, in the first place, is usually a black box

and, secondly, makes the reproducibility of the results by
other scientists complicated if they do not have the same
software.

In the last years, a number of initiatives towards a
more open weather radar science have been produced
[10]. A pioneer among them was BALTRAD [11], which
was designed primarily for the efficient exchange of data
but that contains a processing toolbox with a wide range
of functionality. BALTRAD contains many submodules
which are written in a mixture of C/C++, Python and
Java. Roughly at the same time of BALTRAD, wradlib
was released [12]. wradlib is essentially a Python-based
library containing a growing collection of functions to
read, correct and transform radar data. Since the focus
is primarily in data processing, it is easier to integrate in
an existing processing chain than BALTRAD. Shortly after
wradlib, Py-ART was released [13]. Py-ART was developed
in the context of the Atmospheric Radiation Measurement
(ARM) programme [14]. Py-ART is also a python-based
library as wradlib. The main difference between the two is
that Py-ART is based on a data model that closely follows
the standards of CfRadial whereas wradlib is mostly data
agnostic. wradlib and Py-ART are very complementary
and indeed some features of Py-ART already use wradlib.
Py-ART has had some success with extensions for
interactive visualization of data such as ARTView [15] and
specific projects built around the Py-ART radar object such
as PyTDA [16] which estimates turbulence from Doppler

https://doi.org/10.5334/jors.330
mailto:jordi.figuerasiventura@meteoswiss.ch

Figueras i Ventura et al: PyradArt. 28, page 2 of 10

radar data. Another important contribution to the open
source ecosystem is LROSE, which builds on the legacy
left by TITAN [17]. Similar to Py-ART and wradlib, the idea
behind LROSE is to provide building blocks, written in
C/C++, taking care of the routine tasks while scientists
can focus on the development of algorithms. Finally,
another noteworthy software package in the field of radar
meteorology is pySTEPS [18]. This package is a library
with a set of methods used for probabilistic precipitation
nowcasting.

The aim of Pyrad is to provide users with a tool to
easily construct real-time and offline weather radar data
processing chains in a transparent and reproducible
manner. The program controls the data flow and the
datasets and products to be created. We use here dataset
as a broad concept. It can be anything from a secondary
radar field (e.g. a rainfall rate field) to a different data
object such a time series of data in a point in space.
The behavior of the processing chain is controlled by
three simple user-defined configuration files so there
is no need for the user to actually program anything.
The exact data processing can be reproduced by simply
sharing the configuration files. Pyrad is built on top of
Py-ART, and in fact it can be seen as an extension of it.
As such, it can make full use of the Py-ART capabilities in
a structured manner. In the process of developing Pyrad,
we built an enhanced version of Py-ART (hereby called
MCH Py-ART) with many additional capabilities. Indeed,
to our knowledge, Pyrad using the MeteoSwiss Py-ART
is the first open source project that offers basic IQ and
spectral processing capabilities. Pyrad is compatible with
both the MCH Py-ART and ARM Py-ART. If used with the
ARM Py-ART, simply some of the Pyrad capabilities will not
be available. However we regularly contribute to the ARM
Py-ART features of MCH Py-ART which we consider mature
and of interest for the broader weather radar community.
Hence MCH Py-ART can be regarded as a bleeding edge
version of the ARM Py-ART.

This papers aims to present the main features and
the current state of the Pyrad software. First a history
of the genesis of the package will be given. It will follow
a discussion on the main features and how they were
implemented. The subsequent section will provide a
description of the way quality is ensured. It follows
information on the repository of the source code of the
software (from the repository compiled packages stored in
PyPI and conda-forge can be accessed) and concludes with
a discussion on how the package can be used for radar
applications.

We struggle to make Pyrad as simply to use and user-
friendly as possible. Still, it is a software aimed at people
that have at least a basic understanding of weather radar.
There are numerous books that can help providing a good
understanding of the topic (e.g. [2, 19, 20 and 21]).

History of the package
Since 2012, MeteoSwiss operates a mobile X-band
Doppler polarimetric weather radar. The system is used
primarily for measurement campaigns tailored for specific
customers. When there is no specific request from such

customers, it is also used as a research and development
platform in order to test new algorithms and scanning
modes. Quite often, the customer has specific needs that
are non-conventional in weather radar data and therefore
not easily tackled using existing commercial software.
Consequently we have developed a considerable amount
of software to control the data flow, process the data and
display it in a convenient manner. A first processing and
interactive analysis framework was created in the nineties
in the Interactive Data Language (IDL), which at the time
was one of the officially approved programming languages
at MeteoSwiss, to process data from the 3rd generation
operational weather radar network. Since there was a
considerable in-house know-how, the real-time processing
framework for the X-band radar was also developed in IDL.
However, over the years it became clear that IDL had some
major limitations: 1) The fact that requires a license to
execute the code limits the re-use and sharing of the code
by external partners, 2) IDL is a relatively old language,
with many issues that makes it a somehow rigid language
and difficult to write code with by non-experts, such as
for example, the single namespace. 3) The number of IDL
users in meteorological applications is dwindling and
consequently the number of readily available libraries
and online support is limited compared with other
programming languages.

Due to the perceived limitations of the IDL language,
in 2016 it was decided to abandon new developments of
the IDL processing framework and explore other options.
The driving criteria that the new option had to fulfill were
identified as the following: 1) The programming language
should not be subject to license fees, in order to facilitate
its use and sharing by external partners. 2) It should be
flexible and easily programmable by non-experts, yet
at the same time fast enough for real-time execution.
3) It should have a sizable user-base to ensure extensive
support, both in the form of readily usable software
libraries and online support.

Very quickly it became clear that Python was the best
choice available. Factors on the choice included its wide-
spread use by the scientific community, the multitude
of open source scientific packages available (e.g. the
SciPy ecosystem [22]) and the vibrant online community.
Additional factors were the easiness with which software
documentation can be produced by using docstrings
(by using sphinx [23] for example) and the existence
of software quality control checkers such as Pylint [24].
Two other factors contributed to the choice: the fact
that at that time Python was officially approved as a
usable programming language by MeteoSwiss and, more
importantly, the level of maturity that at that stage had
reached open source radar data processing packages such
as wradlib and Py-ART.

Over the last years, MeteoSwiss and, more specifically the
Radar, Satellite and Nowcasting division of MeteoSwiss has
established numerous formal and informal partnerships
with Swiss research institutions, e.g. EPFL, ETH Zurich,
the University of Bern, etc. Within the weather radar
community, and the scientific community in general,
there is an increased perception that collaboration has

Figueras i Ventura et al: Pyrad Art. 28, page 3 of 10

to extend beyond the knowledge and data exchange to
include also software. Pyrad was hence created to fulfill not
only the specific MeteoSwiss needs towards our customers
but also as an open platform to exchange software with
our partners. The idea behind is that the framework takes
care of the data flow and visualization and therefore the
developer needs only to implement its specific algorithm.

It was also evident that, with two mature python-based
weather radar processing toolkits available at the time
(wradlib and Py-ART), it would have been absurd to start a
new open source project from scratch. Py-ART has a data
model in the form of the radar object whereas wradlib
is data agnostic to a certain extent. It was decided that
having a data model would emulate better the functioning
of the IDL framework and hence Pyrad was built as a
“wrapper” of Py-ART, with wradlib providing support for
some specific functions. This setup had also the advantage
that Py-ART was starting to be used by one of the main
partners of MeteoSwiss, i.e. EPFL, and that would facilitate
the collaboration between the two groups.

The first phase of the development was to quickly
implement a data flow control, similar to that implemented
in the previous IDL version but with increased flexibility. A
second phase consisted in implementing the functionality
(file reading, data processing and visualization) in order
to perform the core duties of the team in charge of the
mobile X-band radar. It was immediately apparent that,
regarding data processing and visualization, we had
developed many more functionalities in IDL than what
was readily available in Py-ART at the time. Hence we
setup our own version of Py-ART. We were constrained to
favor fast implementation rather than robustness so we
developed a lot of code in a short time, testing mostly its
overall functionality rather than individual functions, but
we always had in mind to pull relevant functions to the
original ARM Py-ART. The fact that at the core of Pyrad lies
Py-ART and that we already had a processing framework
in IDL greatly sped up the development phase. In few
months we had a working prototype and in less than
one year we were able to substitute the IDL framework
entirely for 90% of our operational needs regarding the
mobile X-band radar.

In a third phase we expanded the functionality in
order to allow the data processing and visualization of
our C-band radars and the mobile X-band radar owned
by EPFL, hence the software became truly a platform for
the processing of all Swiss weather radars. Additionally
we implemented reading and visualization routines for
all the Cartesian products generated from the C-band
operational radar to facilitate its use by MeteoSwiss
partners. More recently we have added the capability to
ingest ODIM_H5 [25] and Nexrad level II [26] file formats.
In addition to the native CfRadial V1 [27] file format used
by Py-ART, it makes it a truly globally usable software
package. The most recent software developments have
been the capability to process spectral and IQ data. Hence
the software can be used to process radar data from IQ
to Cartesian composite products. Nowadays, Pyrad has
reached a mature stage, it has multiple capabilities and it
is used both operationally and for research purposes. At

this point we are working in three directions: 1) Facilitate
its use by external partners. A main step in this direction
was creating PyPI and conda-forge packages which are
easily downloadable by the user. We are also working
constantly to improve the documentation and provide
configuration file examples that can be easily interpreted.
2) Consolidate the software by increasing the coverage
of the unit-tests and 3) Contribute back to Py-ART in a
more systematic way so that the software developed by
MeteoSwiss can serve a broader audience.

Implementation and architecture
Pyrad is a Python package that provides a variety of
routines for reading, processing, analyzing and visualizing
data from weather radars and, up to a certain extent, from
other active remote sensing instruments such as lidars. It
can be used as a toolbox of individual functions but it is
most powerful when used as a processing framework. In
such case, the full functionality of Pyrad can be used by
writing 3 simple configuration files. Pyrad is built around
the data models defined in the “core” module of MCH
Py-ART. Currently there are 3 classes in this module: Radar,
Grid and RadarSpectra. Radar and Grid are also defined in
the ARM Py-ART while RadarSpectra is, at the moment, only
implemented in the MeteoSwiss version. Those classes are
used to store the data and the metadata necessary for the
processing. The Radar object stores radar polar moments
in two-dimensional matrices (ray, range), the Grid object
stores gridded data whereas the RadarSpectra is a class
based on Radar that stores IQ and complex spectra data
in a three-dimensional matrix (ray, range, npulses_max).
npulses_max is the maximum number of pulses per ray
collected during a scan.

At its most basic, the processing (see Figure 1) consists
in sequentially ingesting one volume of radar data in the
adequate object, performing a data manipulation on that
object to create a new dataset (usually using a function
implemented in Py-ART) and generating products out of
the new dataset. The production of a dataset or product
may require the use of auxiliary data. For example, the solar
flux from the Dominion Radio Astrophysical Observatory
(DRAO) research facility observatory in Canada is used to
estimate the receiver bias in the sun monitoring function.
Another example is a function that compares rainfall
rate estimates obtained from radar data to data from
SwissMetNet rain gauges or from disdrometers. The newly-
generated dataset may be added as a set of additional data
fields (if it is an object with similar characteristics as the
input, e.g. a rainfall rate field obtained from a reflectivity
field) or make it to entirely replace the initial object (e.g.
polarimetric moments computed from IQ data), allowing
subsequent levels of processing on the same data. Once
all levels of processing have been performed, a new radar
object is ingested.

Each dataset to be generated has a dictionary structure
called dataset configuration (dscfg) attached that stores
the parametrization used to produce it. One of the
keywords in dscfg is global_data. This keyword is used to
store any information that needs to be persistent in time,
i.e. usable beyond the current radar scan. For example,

Figueras i Ventura et al: PyradArt. 28, page 4 of 10

there is a Pyrad function that computes temporal averages.
In this function the global_data variable is used to store a
variable with the starting date and time of the averaging
and a Radar object containing a field with the cumulative
sum of values at each range gate and another field with
the number of time steps used. At each time step, the
difference between the starting time of the averaging
and the current scan time is computed and if the desired
averaging time is reached the average can simply be
computed by dividing the field with the cumulative sum
by the number of points. In the offline mode, once all radar
volumes within the processing period specified have been
consumed, post-processing of the data can be performed,
e.g. output of global statistics, time series plots, etc. Here
by radar volume we mean all the data that is obtained in
the course of an individual radar scan.

The processing is controlled using 3 simple configuration
files. The main one specifies the base paths where the input
data is stored, the output should be located and the path
to the other two configuration files. All configuration files
can have any arbitrary name. The second configuration
file, so-called location configuration file, contains general
specification such as the name of the radar(s), its location
(if not in the file metadata), general specifications about
the graphic output format (dimensions, dpi, etc.) and
radar metadata that is not readable from the radar file or
that for some reason needs to be overridden. The third
configuration file, the so called product configuration
file, contains an ordered list of datasets to generate. For
each dataset, a series of keywords specify which are the
required dataset inputs and whatever parametrization is
necessary to obtain the dataset. If the keyword “MAKE_
GLOBAL” is set, the dataset will be made available for the
next processing level. Within the dataset, the keyword
“products”, if specified, contains which products should be
generated out of the dataset, e.g. (pseudo) Plan Position
Indicators (PPIs) i.e. displays of data in the horizontal
plane, (pseudo) Range Height Indicators (RHIs) i.e.
displays of data in the vertical plane, etc. We opted for

separating the configuration in 3 files so that they can be
easily re-used. For example, if we process data from the
same data and in the same way in two different computers
with different storing configuration we only need to have
one main configuration file for each machine that point
to the same location and product files.

Modules
Internally, Pyrad is organized in 6 sub-packages according
to the type of functionality that they provide: “flow”, “io”,
“proc”, “prod”, “graph” and “util” (see Figure 2). The “flow”
sub-package contains the functions that control the
data flow. This package contains the “main” and “main_
rt” functions which perform the off-line and real-time
processing respectively. The “io” sub-package provides
the ability to read in all the data used by Pyrad: individual
radar data (IQ, spectra and polarimetric moments), radar

Figure 1: Pyrad flow diagram.

Figure 2: Structure of the Pyrad superproject software.

Figueras i Ventura et al: Pyrad Art. 28, page 5 of 10

composite data, e.g. QPE products but also auxiliary
data such as data from NWP models (temperature, wind,
etc.), radar visibility, disdrometer data, rain gauges,
plane trajectories and many more. The “io” module calls
functions contained in the “io” and “aux_io” modules
in Py-ART to read radar and gridded data. This module
also manages the writing of outputs. Radar data can be
stored in the ODIM_H5 file format or in CfRadial. Most
of the other data outputs are written as .csv files. The
“proc” sub-package contains all functions to process the
datasets. Most of these functions are mere wrappers
to Py-ART functions that perform some sort of data
processing. The “prod” sub-package contains all functions
to generate products out of the datasets. Datasets are
organized in categories. For example, there are categories
for volumetric data, inter-comparison data, etc. Each
data processing function has assigned a dataset category
which defines which type of products can be generated.
The “graph” module implements visualization functions.
Some of these functions internally call visualization
functions implemented in the graph sub-package in
Py-ART while others generate specialized visualization and
are implemented directly in the module. Examples of the
latter are time-series plots or sun hits plots. Finally, the
“util” module contains a collection of auxiliary functions
to manipulate the data, such as functions to get data along
a particular range, to compute histograms, etc.

As an experimental feature, off-line Pyrad allows for
parallel processing using dask [28]. It can be parallelized
the generation of products out of a dataset or the
generation of datasets in the same processing level or
eventually both.

Scripts
Pyrad provides users with 3 main scripts:
main_process_data_rt.py, main_process_data_period.py
and main_process_data.py. main_process_data_rt.py is
used for real-time processing. It internally calls the function
main_rt. As positional argument, it requires a coma-
separated list of main configuration files which covers
all the data processing that should be performed. Thus,
multiple scan modes or multiple radars can be processed
using a single instance. Starting and ending times of the
processing can optionally be specified. The real-time
processing can be performed either continuously keeping
main_rt in “listening” mode or by periodically calling
main_rt, which would then process all new data arrived in
the interval between calls. main_process_data_period.py
is used to process data obtained over several days off-line.
As positional argument it expects the name of the main
config file and the starting and ending dates to process.
Keyword arguments that may be specified include the start
time and end time of the processing each day. This script
will process all the radar volumes, obtained within the
specified time interval, of one day, make a post-processing
at the end of the interval and repeat sequentially this
process until the end date. The obvious application of such
script is the data quality monitoring, where statistics are
performed on a daily basis. Finally main_process_data.py
is used for off-line processing. As a positional argument

requires the name of a main configuration file. The most
obvious mode of operation is to specify a date and time
to start (keyword “startime”) and end (keyword “endtime”)
the processing. The script will then look for all the data
within the period and process it sequentially. The behavior
of the script changes if instead of the time keywords
a trajectory file is specified with the keyword “trajfile”.
There are three different trajectory types (specified with
keyword “trajtype”): plane, lightning or proc_periods. The
“plane” type is used to get time series of radar data which
is co-located to the position of a moving object, e.g. a
plane. It is very useful to match data obtained in-situ by a
plane with radar data. The “lightning” type is similar to the
plane type but it was designed to co-locate lightning data
obtained from Lightning Mapping Arrays (LMAs) to radar
data. It has the particularity that it can be used to obtain
data matching a specific flash (through the keyword
“flashnr”) or data matching all flashes in a lightning data
file (when “flashnr” is 0). Figure 3 shows an example of
the type of product that can be obtained using this script.
Finally, the proc_periods type expects a file with a list of
start and end processing dates and times. It is meant to
be able to process (and eventually post-process) disjoined
periods of data with the utmost flexibility. For example,
if one is interested in getting statistics of radar data over
periods where a certain condition was met (processing
only rainy periods for example) this function could be
used.

Capabilities
Since the functionalities of Pyrad are continuously
expanding there is no point in explaining them in detail
here. At the moment there are 16 different dataset
groups, more than 80 different processing functions
and more than 40 different product types that can
be generated. Most processing capability is used for
polarimetric moments processing (see Figure 4 for
a list of functionalities available for polar moments).
Products that can be generated from Radar objects can be
categorized as visualization products or data file products.
Visualization products include all the standard weather
radar visualization products (e.g. (pseudo)PPI, (pseudo)
RHI, B-scope, CAPPI, cross-sections, etc.) but also non-
standard products such as data histograms, time series
at points of interest, time-range plots, scatter plots, etc.
Radar objects can be saved in CfRadial or ODIM_H5
convention while other data is typically saved as CSV files.

IQ data capability includes the computation of
polarimetric and Doppler moments in the time-domain
(using lag-N estimators) and the transformation into
spectral data using windowed FFTs. Spectral data
processing currently includes 0-Doppler filtering, spectral
co-polar correlation coefficient filtering, spectral noise
filtering (spectral clipping), computation of spectral
polarimetric moments, noise estimation from the spectra,
computation of polarimetric and Doppler moments and
obtaining data in points and regions of interest. Both IQ
and spectral data can be visualized in Range/Angle/Time-
Doppler/Pulses plots (see Figure 5 for an example of
visualization) and saved in a netcdf file.

Figueras i Ventura et al: PyradArt. 28, page 6 of 10

The capabilities implemented so far for the gridded data
include obtaining data at points and regions of interest
and performing temporal statistics. Gridded data can
be visualized as images and contours over a map, cross-
sections (see an example in Figure 6) or histograms and
saved in a netcdf file.

Quality control
The core of Pyrad is based on Py-ART. Py-ART includes
a large suit of unit tests for individual functions. At the
moment Pyrad has two levels of testing. A first level

automatically makes sure that new code does not break
the software. With each commit, a continuous integration
platform run by Travis CI build, builds the package from
source. If the package cannot be imported correctly we
get notified and can check where the issue is. The second
level of testing is focused on functionality. Both Pyrad
and MCH Py-ART have a development branch where
new functionality is first implemented and thoroughly
tested using MeteoSwiss radar data. Only once the new
functions have proved to work as expected they are
merged into the master branches. This process has not yet

Figure 3: Example of lightning trajectory product. It shows a Constant Altitude Plan Position Indicator (CAPPI) at
5000 m MSL altitude with crosses at the location of flash sources detected by an LMA superposed. The crosses are
color-coded as a function of time since the starting of the radar volume scan. Data was obtained by the MeteoSwiss
C-band network radar Albis on 2017-08-01 at 17:45 UTC.

Figure 4: Processing capabilities for polarimetric moments.

Figueras i Ventura et al: Pyrad Art. 28, page 7 of 10

Figure 5: Example of time-Doppler product featuring the spectral reflectivity. Data was obtained by a mobile
X-band radar operated by MeteoSwiss on 2020-02-28. The radar was operating in staring mode and pointing
towards a windmill.

Figure 6: Example of product obtained from a Cartesian grid. It features the MeteoSwiss radar rainfall rate composite
with the 80% probability of hail contours overplotted. Lakes and international borders are also shown. Data was
obtained on 2017-08-01 at 17:05UTC.

Figueras i Ventura et al: PyradArt. 28, page 8 of 10

been automatized. We plan to add unit tests also for Pyrad
testing in the near future.

A similar approach is used for the software package
releases in PyPI and conda-forge. Users can easily
understand whether the software was properly installed
simply by importing Pyrad in a python command shell.
Furthermore, they can use some of the MeteoSwiss
sample data and configuration files to check the main
Pyrad functionalities. The data samples and example of
configuration files are contained in the following github
repository: https://github.com/meteoswiss-mdr/pyrad-
examples. The repository also contains the expected output
for each configuration file.

(2) Availability
Operating system
Linux and OS X

Programming language
Python 3. (3.6 and 3.7 tested, 3.8 planned)

Additional system requirements
None.

Dependencies
Py-ART (preferably MCH Py-ART) and all its dependencies.
MCH Py-ART has the following additional optional
dependencies respect to ARM Py-ART: imageio and pysolar.
Pyrad has as optional dependencies pandas, shapely, dask,
bokeh and h5py. If PyTDA is used it requires also scikit-learn.

List of contributors
– Floortje Elisabeth Maria van den Heuvel and Daniel

Wolfensberger, EPFL, Lausanne, Switzerland
– Jordi Figueras i Ventura, Martin Lainer, Jacopo Grazioli

and Daniele Nerini, MeteoSwiss, Locarno, Switzerland
– Andreas Leuenberger, MeteoSwiss, Locarno, Switzer-

land now at Palindrome Remote Sensing, Landquart,
Switzerland

Software location
Archive

Name: GitHub
 Persistent identifier: https://github.com/meteoswiss-
mdr/pyrad
Licence: BSD
Publisher: MeteoSwiss
Version published: Latest tag 0.4.4
Date published: First commit 25/08/16

Code repository
Name: conda-forge
 Persistent identifier: https://anaconda.org/conda-forge/
pyrad_mch
Licence: BSD
Date published: 02/03/20

Language
English

(3) Reuse potential
Pyrad is currently used on an operational basis at Meteo-
Swiss in various domains: 1) Real-time processing of the
mobile X-band polarimetric moments, 2) Post-processing
of the mobile X-band data, 3) Polarimetric data quality
monitoring of both the C-band operational network and
the mobile X-band radar. It is also used extensively as
development platform for new algorithms by MeteoSwiss
and some of its partners. Moreover, it is widely used to read
and visualize MeteoSwiss radar data.

In principle, anybody wishing to process polar weather
radar data in the Rainbow, ODIM_H5, NEXRAD or
CfRadial file formats can use Pyrad as it is, without the
need to program anything, by simply preparing the 3
configuration files needed. Most of the standard weather
radar data processing functionalities (i.e. clutter detection
and suppression, attenuation correction, hydrometeor
classification, rainfall rate estimation, etc.) are readily
available in Pyrad. Users can also opt to integrate the
software package to their existing processing chain
and use individual components for their needs, such as
specialized plotting routines or IQ data processing. In
fact, data of any scanning or fixed pointing device can
potentially be processed by Pyrad and it has already
successfully been used to visualize data from scanning
lidars and cloud radars.

Due to its modular nature, Pyrad can also easily be
extended. For example, as long as it can comply with
the data model, a user can easily add its own data reader
and, by adding just a few keywords, be able to use the
whole functionality of the package. Furthermore, new
algorithms can be easily implemented without the
burden of having to think about the data flow, inputs
and outputs. Since Pyrad is compatible with Py-ART and
wradlib, developments on those libraries are continuously
integrated in the Pyrad environment. To our knowledge,
Pyrad may be the only open source weather radar
software package providing functions for IQ and spectral
processing. It can, therefore, be used to double-check the
output of commercial weather radar signal processors,
which tipically are a black box for users. Again, it can be
used as a development platform for more sophisticated
algorithms since most of the typical visualization
functions are already implemented in it.

Since it is used for some of its operational needs, Pyrad
will be continuously developed and used at MeteoSwiss
in the foreseeable future. Hence, the stability and
continuous support of the package is not dependent on
transient money or a time-limited project, which should
be a guarantee for users. There are various ways in which
external users get support. The first is through the online
reference documentation, automatically generated from
the Python docstrings. Secondly, there is a detailed user
manual, in the Pyrad repository, with instructions on
how to install, develop, make pull requests and request
support. Bugs and code expansion requests can also be
signaled via the Github issues page. Pull requests from
external partners will be considered. We are very willing
to expand the package with functions that may serve to

https://github.com/meteoswiss-mdr/pyrad-examples
https://github.com/meteoswiss-mdr/pyrad-examples
https://github.com/meteoswiss-mdr/pyrad
https://github.com/meteoswiss-mdr/pyrad
https://anaconda.org/conda-forge/pyrad_mch
https://anaconda.org/conda-forge/pyrad_mch

Figueras i Ventura et al: Pyrad Art. 28, page 9 of 10

a broader community. Finally, the authors can be directly
contacted by email.

Pyrad can be installed from source from its github
repository or as a PyPI package (https://pypi.org/project/
pyrad-mch/) or conda package. For regular users we
recommend to install it as a conda package. Detailed
installation instructions are provided in the Pyrad user
manual which can be downloaded from the Pyrad
repository (https://github.com/meteoswiss-mdr/pyrad/
blob/master/doc/pyrad_user_manual.pdf). Examples of
configuration files with sample data and expected output
can be found in https://github.com/meteoswiss-mdr/
pyrad-examples.

Acknowledgements
The authors wish to thank the users of Pyrad for their
encouragement and suggestions. Many thanks also to the
creators and mantainers of Py-ART, on which the code is
founded, and to all the contributors to the various scientific
Python packages. They also wish to thank MeteoSwiss
and armasuisse for supporting the development of the
software.

Competing Interests
The authors have no competing interests to declare.

References
1. Bringi, V N and Chandrasekar, V 2001 Polarimetric

Doppler Weather Radar: Principles and Applications.
Cambridge University Press. DOI: https://doi.org/
10.1017/CBO9780511541094

2. Ryzhkov, A V and Zrnic, D S 2019 Radar Polarimetry
for Weather Observations. Springer Atmospheric
Sciences. Springer International Publishing. ISBN
9783030050924. URL https://books.google.ch/
books?id=d0uYvQEACAAJ. DOI: https://doi.org/10.
1007/978-3-030-05093-1

3. Tanamachi, R L and Heinselman, P L 2016
Rapid-scan, polarimetric observations of Central
Oklahoma severe storms on 31 may 2013. Weather
and Forecasting, 31(1): 19–42. DOI: https://doi.
org/10.1175/WAF-D-15-0111.1

4. Besic, N, Figueras i Ventura, J, Grazioli, J, Gabella,
M, Germann, U and Berne, A 2016 Hydrometeor
classification through statistical clustering of
polarimetric radar measurements: A semi-supervised
approach. Atmospheric Measurement Techniques, 9(9):
4425–4445. URL https://www.atmos-meas-tech.net/
9/4425/2016/. DOI: https://doi.org/10.5194/amt-9-
4425-2016

5. Figueras i Ventura, J and Tabary, P 2013 The
new french operational polarimetric radar rainfall
rate product. Journal of Applied Meteorology and
Climatology, 52(8): 1817–1835. DOI: https://doi.org/
10.1175/JAMC-D-12-0179.1

6. Bousquet, O and Chong, M 1998 A Multiple-Doppler
Synthesis and Continuity Adjustment Technique
(MUSCAT) to recover wind components from Doppler
radar measurements. J. Atmos. Oceanic Technol.

15(2): 343–359. DOI: https://doi.org/10.1175/1520-
0426(1998)015<0343:AMDSAC>2.0.CO;2

7. Sideris, I V, Foresti, L, Nerini, D and Germann, U
2020 Nowprecip: localized precipitation nowcasting in
the complex terrain of switzerland. Quarterly Journal
of the Royal Meteorological Society, 146(729): 1768–
1800. URL https://rmets.onlinelibrary.wiley.com/doi/
abs/10.1002/qj.3766. DOI: https://doi.org/10.1002/
qj.3766

8. Sun, J and Wilson, J W 2003 The assimilation of radar
data for weather prediction. Meteorological Monographs,
52: 175–198. DOI: https://doi.org/10.1175/0065-
9401(2003)030<0175:TAORDF>2.0.CO;2

9. Hering, A M, Nisi, L, della Bruna, G, Gaia, M,
Nerini, D, Ambrosetti, P, Hamann, U, Trefalt, S and
Germann, U 2015 Fully automated thunderstorm
warnings and operational nowcasting at meteoswiss.
In: 8th European Conference on Severe Storms ECSS
2015, Vienna, Austria.

10. Heistermann, M, Collis, S, Dixon, M J, Giangrande,
S, Helmus, J J, Kelley, B, Koistinen, J, Michelson,
D B, Peura, M, Pfaff, T and Wolff, D B 2015
The emergence of open-source software for the
weather radar community. Bulletin of the American
Meteorological Society, 96(1): 117–128. DOI: https://
doi.org/10.1175/BAMS-D-13-00240.1

11. Michelson, D, Henja, A, Ernes, S, Haase, G, Koistinen,
J, Ośródka, K, Peltonen, T, Szewczykowski, M and
Szturc, J 2018 BALTRAD advanced weather radar
networking. Journal of Open Research Software, 6. DOI:
https://doi.org/10.5334/jors.193

12. Heistermann, M, Jacobi, S and Pfaff, T 2013
Technical note: An open source library for processing
weather radar data (wradlib). Hydrology and Earth
System Sciences, 17(2): 863–871. URL https://www.
hydrol-earth-syst-sci.net/17/863/2013/. DOI: https://
doi.org/10.5194/hess-17-863-2013

13. Helmus, J J and Collis, S M 2016 The Python ARM
radar toolkit (Py-ART), a library for working with
weather radar data in the python programming
language. Journal of Open Research Software, 4. DOI:
https://doi.org/10.5334/jors.119

14. Mather, J H and Voyles, J W 2013 The ARM climate
research facility: A review of structure and capabilities.
Bulletin of the American Meteorological Society,
94(3): 377–392. DOI: https://doi.org/10.1175/
BAMS-D-11-00218.1

15. Anderson, N G, Lang, T, Helmus, J J, Check
your git settings! and Nesbitt, S. nguy/artview:
Artview release v1.3, August 2017. DOI: https://doi.
org/10.5281/zenodo.853317

16. Lang, T 2015 Python-based scientific analysis and
visualization of precipitation systems at NASA Marshall
Space Flight Center. In: 5th Symposium on Advances
in Modeling and Analysis Using Python. URL https://
ams.confex.com/ams/95Annual/webprogram/
Paper262779.html.

17. Dixon, M and Wiener, G 1993 TITAN: Thunderstorm
Identification, Tracking, Analysis, and Nowcasting-a

https://pypi.org/project/pyrad-mch/
https://pypi.org/project/pyrad-mch/
https://github.com/meteoswiss-mdr/pyrad/blob/master/doc/pyrad_user_manual.pdf
https://github.com/meteoswiss-mdr/pyrad/blob/master/doc/pyrad_user_manual.pdf
https://github.com/meteoswiss-mdr/pyrad-examples
https://github.com/meteoswiss-mdr/pyrad-examples
https://doi.org/10.1017/CBO9780511541094
https://doi.org/10.1017/CBO9780511541094
https://books.google.ch/books?id=d0uYvQEACAAJ
https://books.google.ch/books?id=d0uYvQEACAAJ
https://doi.org/10.1007/978-3-030-05093-1
https://doi.org/10.1007/978-3-030-05093-1
https://doi.org/10.1175/WAF-D-15-0111.1
https://doi.org/10.1175/WAF-D-15-0111.1
https://www.atmos-meas-tech.net/9/4425/2016/
https://www.atmos-meas-tech.net/9/4425/2016/
https://doi.org/10.5194/amt-9-4425-2016
https://doi.org/10.5194/amt-9-4425-2016
https://doi.org/10.1175/JAMC-D-12-0179.1
https://doi.org/10.1175/JAMC-D-12-0179.1
https://doi.org/10.1175/1520-0426(1998)015<0343:AMDSAC>2.0.CO;2
https://doi.org/10.1175/1520-0426(1998)015<0343:AMDSAC>2.0.CO;2
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3766
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3766
https://doi.org/10.1002/qj.3766
https://doi.org/10.1002/qj.3766
https://doi.org/10.1175/0065-9401(2003)030<0175:TAORDF>2.0.CO;2
https://doi.org/10.1175/0065-9401(2003)030<0175:TAORDF>2.0.CO;2
https://doi.org/10.1175/BAMS-D-13-00240.1
https://doi.org/10.1175/BAMS-D-13-00240.1
https://doi.org/10.5334/jors.193
https://www.hydrol-earth-syst-sci.net/17/863/2013/
https://www.hydrol-earth-syst-sci.net/17/863/2013/
https://doi.org/10.5194/hess-17-863-2013
https://doi.org/10.5194/hess-17-863-2013
https://doi.org/10.5334/jors.119
https://doi.org/10.1175/BAMS-D-11-00218.1
https://doi.org/10.1175/BAMS-D-11-00218.1
https://doi.org/10.5281/zenodo.853317
https://doi.org/10.5281/zenodo.853317
https://ams.confex.com/ams/95Annual/webprogram/Paper262779.html
https://ams.confex.com/ams/95Annual/webprogram/Paper262779.html
https://ams.confex.com/ams/95Annual/webprogram/Paper262779.html

Figueras i Ventura et al: PyradArt. 28, page 10 of 10

radar-based methodology. Journal of Atmospheric and
Oceanic Technology, 10(6): 785–797. DOI: https://doi.
org/10.1175/1520-0426(1993)010<0785:TTITAA>2.0.
CO;2

18. Pulkkinen, S, Nerini, D, Pérez Hortal, A A,
Velasco-Forero, C, Seed, A, Germann, U and
Foresti, L 2019 Pysteps: An open-source python
library for probabilistic precipitation nowcasting
(v1.0). Geoscientific Model Development, 12(10):
4185–4219. URL https://www.geosci-model-dev.
net/12/4185/2019/. DOI: https://doi.org/10.5194/
gmd-12-4185-2019

19. Fabry, F 2015 Radar Meteorology: Principles and
Practice. Cambridge University Press. DOI: https://doi.
org/10.1017/CBO9781107707405

20. Bringi, V N and Chandrasekar, V 2001
Polarimetric Doppler Weather Radar: Principles and
Applications. Cambridge University Press. ISBN
9780521623841. URL https://books.google.ch/
books?id=KvJvfP9t5Y8C. DOI: https://doi.org/10.
1017/CBO9780511541094

21. Doviak, R J and Zrnic, D S 2006 Doppler Radar and
Weather Observations. Dover Books on Engineering
Series. Dover Publications. ISBN 9780486450605.
URL https://books.google.ch/books?id=ispLkPX9n
2UC.

22. Millman, K J and Aivazis, M 2011 Python for
scientists and engineers. Computing in Science &
Engineering, 13(2): 9–12. URL https://aip.scitation.

org/doi/abs/10.1109/MCSE.2011.36. DOI: https://
doi.org/10.1109/MCSE.2011.36

23. SPHINX contributors 2020 Sphinx: Python
documentation generator. URL https://www.sphinx-
doc.org. [Online; accessed 10-March-2020].

24. Pylint contributors 2020 Pylint: Star your pyton
code! URL https://www.pylint.org/. [Online; accessed
10-March-2020].

25. Michelson, D B, Lewandowski, R, Szewczykowski,
M, Beekhuis, H, Haase, G, Mammen, T, Faure,
D, Simpson, M, Leijnse, H and Johnson, D 2019
EUMETNET OPERA weather radar information model
for implementation with the HDF5 file format
version 2.3. Technical report, EUMETNET OPERA. URL
https://www.eumetnet.eu/activities/observations-
programme/current-activities/opera/.

26. NOAA National Weather Service (NWS) Radar
Operations Center 1991 Noaa next generation
radar (nexrad) level 2 base data. Technical
report, NOAA National Centers for Environmental
Information.

27. Dixon, M and Lee, W-C 2016 CfRadial data file
format. Technical report, EOL, NCAR. URL https://
github.com/NCAR/CfRadial/tree/master/docs.

28. Rocklin, M 2015 Dask: Parallel Computation with
Blocked algorithms and Task Scheduling. In: Huff, K
and Bergstra, J (eds.), Proceedings of the 14th Python
in Science Conference, 126–132. DOI: https://doi.
org/10.25080/Majora-7b98e3ed-013

How to cite this article: Figueras i Ventura, J, Lainer, M, Schauwecker, Z, Grazioli, J and Germann, U 2020 Pyrad: A Real-
Time Weather Radar Data Processing Framework Based on Py-ART. Journal of Open Research Software, 8: 28. DOI: https://doi.
org/10.5334/jors.330

Submitted: 01 April 2020 Accepted: 16 September 2020 Published: 08 October 2020

Copyright: © 2020 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

OPEN ACCESSJournal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press.

https://doi.org/10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2
https://doi.org/10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2
https://doi.org/10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2
https://www.geosci-model-dev.net/12/4185/2019/
https://www.geosci-model-dev.net/12/4185/2019/
https://doi.org/10.5194/gmd-12-4185-2019
https://doi.org/10.5194/gmd-12-4185-2019
https://doi.org/10.1017/CBO9781107707405
https://doi.org/10.1017/CBO9781107707405
https://books.google.ch/books?id=KvJvfP9t5Y8C
https://books.google.ch/books?id=KvJvfP9t5Y8C
https://doi.org/10.1017/CBO9780511541094
https://doi.org/10.1017/CBO9780511541094
https://books.google.ch/books?id=ispLkPX9n2UC
https://books.google.ch/books?id=ispLkPX9n2UC
https://aip.scitation.org/doi/abs/10.1109/MCSE.2011.36
https://aip.scitation.org/doi/abs/10.1109/MCSE.2011.36
https://doi.org/10.1109/MCSE.2011.36
https://doi.org/10.1109/MCSE.2011.36
https://www.sphinx-doc.org
https://www.sphinx-doc.org
https://www.pylint.org/
https://www.eumetnet.eu/activities/observations-programme/current-activities/opera/
https://www.eumetnet.eu/activities/observations-programme/current-activities/opera/
https://github.com/NCAR/CfRadial/tree/master/docs
https://github.com/NCAR/CfRadial/tree/master/docs
https://doi.org/10.25080/Majora-7b98e3ed-013
https://doi.org/10.25080/Majora-7b98e3ed-013
https://doi.org/10.5334/jors.330
https://doi.org/10.5334/jors.330
http://creativecommons.org/licenses/by/4.0/

	(1) Overview
	Introduction
	History of the package
	Implementation and architecture
	Modules
	Scripts
	Capabilities
	Quality control

	(2) Availability
	Operating system
	Programming language
	Additional system requirements
	Dependencies
	List of contributors
	Software location
	Archive
	Code repository

	Language

	(3) Reuse potential
	Acknowledgements
	Competing Interests
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6

