
SOFTWARE

METAPAPER

ABSTRACT
BayesFactorFMRI is a tool developed with R and Python to allow neuroimaging
researchers to conduct Bayesian second-level analysis and Bayesian meta-analysis of
fMRI image data with multiprocessing. This tool expedites computationally intensive
Bayesian fMRI analysis through multiprocessing. Its GUI allows researchers who are
not experts in computer programming to feasibly perform Bayesian fMRI analysis.
BayesFactorFMRI is available via Zenodo and GitHub for download. It would be
widely reused by neuroimaging researchers who intend to analyse their fMRI data
with Bayesian analysis with better sensitivity compared with classical analysis while
improving performance by distributing analysis tasks into multiple processors.

CORRESPONDING AUTHOR:
Hyemin Han
Educational Psychology
Program, University of
Alabama, Tuscaloosa, AL, USA

hyemin.han@ua.edu

KEYWORDS:
Bayesian analysis; fMRI;
multiple comparison
correction; meta-analysis;
multiprocessing

TO CITE THIS ARTICLE:
Han H 2021 BayesFactorFMRI:
Implementing Bayesian
Second-Level fMRI Analysis
with Multiple Comparison
Correction and Bayesian Meta-
Analysis of fMRI Images with
Multiprocessing. Journal of
Open Research Software, 9: 1.
DOI: https://doi.org/10.5334/
jors.328

HYEMIN HAN

*Author affiliations can be found in the back matter of this article

BayesFactorFMRI:
Implementing Bayesian
Second-Level fMRI Analysis
with Multiple Comparison
Correction and Bayesian
Meta-Analysis of fMRI
Images with Multiprocessing

mailto:hyemin.han@ua.edu
https://doi.org/10.5334/jors.328
https://doi.org/10.5334/jors.328
https://orcid.org/0000-0001-7181-2565

2Han Journal of Open Research DOI: 10.5334/jors.328

(1) OVERVIEW
INTRODUCTION
BayesFactorFMRI is a tool developed with R and Python
to allow neuroimaging researchers to conduct Bayesian
second-level analysis and Bayesian meta-analysis of fMRI
data with multiprocessing [3, 5]. Previous studies have
shown that using Bayesian statistics in fMRI analysis can
be a way to address limitations in classical analysis based
on p-values [4, 8]. For example, a Bayes factor, which is
one of the most frequently used statistical indicators in
Bayesian inference, can show us to which extent observed
data supports a hypothesis of interest unlike a p-value
that merely shows the extremity of observed data given
the hypothesis [6, 7]. Furthermore, Bayesian analysis is
more robust against noise, which is a significant issue
in fMRI research, compared with classical analysis even
with a small sample size [3].

However, there is a significant practical limitation
in implementing Bayesian analysis in the context of
neuroimaging. As the previous studies presented [3], it
would take up to ten hours to complete Bayesian analysis
with fMRI data because up to nine hundred thousand
voxels may have to be analysed included in each image
file. In addition, given that Bayesian analysis is based on

iterative observations of data, such iterative processes
per se can also be time consuming.

In order to address the aforementioned limitation of
Bayesian fMRI analysis, a multiprocessing implementation
of the Bayesian method in BayesFactorFMRI was
attempted. Given that each fMRI image file consists of up
to nine hundred thousand voxels to be tested, it would be
possible to improve performance by assigning the voxels
to multiple processors. BayesFactorFMRI uses NIfTI (.nii) or
ANALYZE (.img + .hdr) image files as input files. For Bayesian
second-level analysis, contrast images files that are
created from first-level analysis performed by other fMRI
analysis tools (e.g., SPM, FSL, AFNI) can be used for inputs.
Moreover, to determine how many voxels are tested, a
mask file that specify voxels to be tested is also used as
an input. For Bayesian meta-analysis, statistical images
from previous fMRI studies that report t- or z-statistics in
each voxel can be used. Output images are created in the
NIfTI format. BayesFactorFMRI creates output images files
that report calculated Bayes factor values for hypothesis
testing and calculated effect size values in tested voxels.

In addition to the parallelization of Bayesian analysis,
BayesFactorFMRI provides users with a graphical user
interface (GUI; see Figure 1). Because BayesFactorFMRI

Figure 1 BayesFactorFMRI GUI. Top: GUI for Bayesian second-level analysis. Bottom: GUI for Bayesian meta-analysis.

https://doi.org/10.5334/jors.328

3Han Journal of Open Research DOI: 10.5334/jors.328

consists of R and Python codes, users might not be able
to conduct Bayesian analysis as they intend without any
further guidance, if they do not have sufficient expertise
in computer languages. Hence a simple GUI was created
so that end users can perform Bayesian analysis by
following directions. Directions about how to use the
GUI for Bayesian second-level analysis are available at
https://github.com/hyemin-han/BayesFactorFMRI/blob/master/

HowTo_2nd.md, and those for Bayesian meta-analysis are
available at https://github.com/hyemin-han/BayesFactorFMRI/

blob/master/HowTo_meta.md.
The performances of Bayesian second-level analysis

and meta-analysis were tested on the University of
Alabama High-Performance Computing System (UAHPC;
hardware and software specifications are described at
https://oit.ua.edu/service/research/). In the case of Bayesian
second-level analysis, the performances when 1, 2, 4, 8,
16, and 32 processors were employed were examined.
For input images for the test, 16 NIfTI images that contain
both true signals (activation foci extracted from) and the
random noise were used. To create an original image
with true signals, the activation foci that were reported
in a previous neuroimaging study were utilized [2].
Figure 2 shows the original image with true signals (left)
and noise-added image sample (middle). The analysis
was repeated ten times per each processor condition and
the mean elapsed time was calculated each time.

In the case of Bayesian meta-analysis, 2, 4, 8, 16, 32,
and 64 processors were used. To test the performance
of Bayesian meta-analysis, six NIfTI images that were
created in previous fMRI studies that examined the
neural correlates of the working memory were analyzed.
These six images were downloaded from NeuroVault
(https://neurovault.org/), an open repository for statistics
image files created by previous fMRI studies, by using
a keyword, “working memory” (For the full list of the
studies, refer to Table S1 in [5]). For each condition, the
test was repeated ten times and the mean elapsed time

was calculated each time. Figure 3 (left) shows these six
meta-analysed images.

When the performances of Bayesian second-level
analysis and meta-analysis with multiprocessing
were tested, the increase of the number of employed
processors resulted in the improved performance in
terms of the decrease in the elapsed time. Figure 4

demonstrates the change in the elapsed time by the
number of processors. As shown, the mean elapsed time
decreased in a power scale as the number of employed
processors increased.

IMPLEMENTATION AND ARCHITECTURE
The overall organization of BayesFactorFMRI is presented
in Figure 5. Both Bayesian second-level analysis with
multiple comparison correction and meta-analysis are
performed with R codes based on BayesFactor package.
In addition, custom Python codes are used to distribute
voxels into different processors for multiprocessing and
to present a GUI. The GUI of BayesFactorFMRI creates
“run_this.py,” which calls the aforementioned codes for
multiprocessing-applied Bayesian analysis. Following the
user’s preference, run_this.py can be executed locally
immediately after the closure of the GUI or can be
uploaded to a computing cluster.

When run_this.py is executed, a Python code that
distributes voxels into different processors is called. In the
case of Bayesian second-level analysis, “bayes_correction_
main.py” is called, and in the case of Bayesian meta-
analysis, “bmeta_main.py” is called. Both Python codes
assign voxels into the designated number of processors
so that workloads are evenly distributed to the processors.
Then, R codes for the intended statistical analysis are called.
By using “popen” in subprocess, the R codes are called
multiple times according to the number of processors.

First, Bayesian second-level analysis is performed after
adjusting the prior probability distribution to address
multiple comparisons. This adjustment process occurs

Figure 2 A tutorial example of Bayesian second-level analysis with BayesFactorFMRI. Left: The original image with true signals (blue:
true positives). Middle: A sample of analysed images with original and noise signals. Right: The result of analysis when BFs.nii is
thresholded with a Bayes factor threshold ≥3 (black: survived voxels).

https://doi.org/10.5334/jors.328
https://github.com/hyemin-han/BayesFactorFMRI/blob/master/HowTo_2nd.md
https://github.com/hyemin-han/BayesFactorFMRI/blob/master/HowTo_2nd.md
https://github.com/hyemin-han/BayesFactorFMRI/blob/master/HowTo_meta.md
https://github.com/hyemin-han/BayesFactorFMRI/blob/master/HowTo_meta.md
https://oit.ua.edu/service/research/
https://neurovault.org/

4Han Journal of Open Research DOI: 10.5334/jors.328

Figure 3 A tutorial example of Bayesian meta-analysis with BayesFactorFMRI. Left: Six statistics images that are used for meta-
analysis. Right: The result of Bayesian meta-analysis when BFs.nii is thresholded with the Bayes Factor threshold ≥3. Only survived
voxels are presented.

Figure 4 Changes in performance in terms of the elapsed time as a function of the number of employed processes. Top: Bayesian
second-level analysis. Bottom: Bayesian meta-analysis.

https://doi.org/10.5334/jors.328

5Han Journal of Open Research DOI: 10.5334/jors.328

before multiprocessing is initiated. The prior probability,
which follows the Cauchy distribution, is adjusted
according to how many voxels are tested (performed
by correct_scale.R). The number of voxels to be tested is
specified by a mask image in NIfTI. Then, “popen” creates
multiple processes to distribute voxels into different
professors. Bayesian one-sample t-test is performed
to examine whether there is a significant effect (e.g., a
difference in neural activity) in each voxel (performed by
Bayes_segment.R). Finally, integrate_result.R integrates
the resultant Bayes Factor and median effect size value
at each voxel in two NIfTI whole brain image files.

Second, Bayesian meta-analysis performed by
performing random-effect meta-analysis of effect
size values reported in previous studies in each voxel
(fmri_bmeta_random1.R). At the beginning, “popen”
calls multiple “fmri_bmeta_random1.R” to distribute
voxels into the designated number of processors for
multiprocessing. The effect size value in each voxel in
each reported previous study is standardized. Then,
Bayesian random-effect meta-analysis is performed at
each voxel to examine whether there is a significant non-
zero effect. Similar to the case of Bayesian second-level
analysis, the analysis result in all voxels are integrated
into whole-brain NIfTI image files. Three output images
files, one reporting Bayes factors, one reporting mean
effect size values, one reporting median effect size
values, are created.

QUALITY CONTROL
Both Bayesian second-level analysis and meta-analysis
implemented in BayesFactorFMRI can be tested with
tutorial datasets shared in GitHub (see https://github.com/

hyemin-han/BayesFactorFMRI for further details). In the
GitHub repository, further details regarding how to set
options in the GUI are specified (refer to https://github.

com/hyemin-han/BayesFactorFMRI/blob/master/README.md
for general information, https://github.com/hyemin-han/

BayesFactorFMRI/blob/master/HowTo_2nd.md for Bayesian
second-level analysis, https://github.com/hyemin-han/

BayesFactorFMRI/blob/master/HowTo_meta.md and for
Bayesian meta-analysis). Following the directions, users
can create “run_this.py” for either Bayesian second-level
analysis or meta-analysis of the provided tutorial dataset.
To initial the GUI, at the terminal, execute: python (or
python3) bayes_select_ui.py. Once “run_this.py” is
created, this code can be executed locally or uploaded
to a cluster as per users’ preference. Whether the code
is executed locally or uploaded to another place can be
determined in the GUI.

Once “run_this.py” is executed, it calls R codes for
either Bayesian second-level analysis or meta-analysis
following the selected option. At the end of the analysis
process, NIfTI files reporting analysis outcomes are
created. When BayesFactorFMRI is executed successfully,
users should be able to see two (in the case of Bayesian
second-level analysis) or three (in the case of Bayesian
meta-analysis) created NIfTI output files. In the case
of Bayesian second-level analysis “BFs.nii” and “Ds.nii”
are created. “BFs.nii” reports the resultant Bayes factor
value and “Ds.nii” reports the median effect size value in
Cohen’s D in each voxel. In the case of Bayesian meta-
analysis, three output files, “BFs.nii,” “Medians.nii,” and
“Means.nii,” are created. “BFs.nii” shows the resultant
Bayes Factor value, “Medians.nii” does the median effect
size value, and “Means.nii” does the mean effect size

Figure 5 Organization of BayesFactorFMRI.

https://doi.org/10.5334/jors.328
https://github.com/hyemin-han/BayesFactorFMRI
https://github.com/hyemin-han/BayesFactorFMRI
https://github.com/hyemin-han/BayesFactorFMRI/blob/master/README.md
https://github.com/hyemin-han/BayesFactorFMRI/blob/master/README.md
https://github.com/hyemin-han/BayesFactorFMRI/blob/master/HowTo_2nd.md
https://github.com/hyemin-han/BayesFactorFMRI/blob/master/HowTo_2nd.md
https://github.com/hyemin-han/BayesFactorFMRI/blob/master/HowTo_meta.md
https://github.com/hyemin-han/BayesFactorFMRI/blob/master/HowTo_meta.md

6Han Journal of Open Research DOI: 10.5334/jors.328

value in each voxel. For hypothesis testing (e.g., whether
a significant non-zero effect exists in a voxel), users can
open “BFs.nii” with a NIfTI viewer, such as xjView [1] with
MATLAB, and perform thresholding (e.g., Bayes factor ≥ 3).

When the analysis is properly done with the provided
tutorial dataset, if “BFs.nii” is thresholded with xjView
plus MATLAB with a Bayes factor threshold ≥ 3, the result
of Bayesian second-level analysis should be similar to
Figure 2 (right). The result of Bayesian meta-analysis of
the provided tutorial dataset after thresholding with the
same program and Bayes Factor threshold should be
similar to Figure 3 (right).

(2) AVAILABILITY
OPERATING SYSTEM
BayesFactorFMRI has been developed and tested on
macOS Mojave (not tested on Catalina at this point)
and Centos 7. Given that BayesFactorFMRI has been
developed with R and Python, it can be executed on
macOS, Linux, or Windows with compatible R and Python
environments.

PROGRAMMING LANGUAGE
R (>=3.5) and Python (>=3.7.3; Python 3.8 is not
recommended due to package-related issues at this
point). Developed and tested on R 3.5 and Python 3.7.3.

DEPENDENCIES
R: BayesFactor (developed with 0.9.12-4.2), metaBMA
(developed with 0.6.1), oro.nifti (developed with 0.9.1).

Python: tkinter (developed with 8.6), shutil, pandas
(developed with 0.24.2), nibabel (developed with 2.4.1),
rpy2 (developed with 3.2.2), numpy (developed with
1.16.2), nilearn (developed with 0.6.2), subprocess.

Specified directions about how to install required
dependencies are available in https://github.com/hyemin-

han/BayesFactorFMRI/blob/master/README.md.

LIST OF CONTRIBUTORS
Hyemin Han developed the software and created
tutorials.

SOFTWARE LOCATION
Archive (e.g. institutional repository, general repository)
(required – please see instructions on journal website
for depositing archive copy of software in a suitable
repository)

Name: Zenodo
Persistent identifier: 10.5281/zenodo.3976338

Licence: MIT License
Publisher: Hyemin Han
Version published: 1.0.0
Date published: 08/08/20

Code repository (e.g. SourceForge, GitHub etc.) (required)
Name: Github

Identifier: https://github.com/hyemin-han/BayesFactor

FMRI

Licence: MIT License
Date published: 08/08/20

LANGUAGE
English

(3) REUSE POTENTIAL

BayesFactorFMRI is available via Zenodo and GitHub
with tutorial datasets and directions. Given that it
provides its potential users, neuroimaging researchers
in particular, with the GUI, they will be able to
perform Bayesian second-level analysis and meta-
analysis with their fMRI dataset feasibly even without
expertise in Python and R programming. Because
BayesFactorFMRI is a tool to analyse functional
neuroimaging data, it cannot analyse other types of
images, such as anatomical brain images, spine or
other soft medical/biological tissue images. In the
current version, for Bayesian second-level analysis,
only a simple one-sample t-test is supported. Overall,
because BayesFactorFMRI is distributed via open
repositories and a tutorial with testable image files and
directions are available for users, it will be widely and
straightforwardly reused by neuroimaging researchers
who intend to apply Bayesian analysis with enhanced
sensitivity and performance through multiprocessing.

CONTACT AND SUPPORT

Any bugs, errors, questions, or suggestions associated
with BayesFactorFMRI can be submitted via the “Issues”
tab in the GitHub repository. Furthermore, the author,
Hyemin Han, can be contacted via email (hyemin.han@

ua.edu) for support.

ACKNOWLEDGEMENTS

The author thanks Joonsuk Park and Ian M. McDonough
for their comments on this work.

COMPETING INTERESTS

The author has no competing interests to declare.

AUTHOR AFFILIATION
Hyemin Han orcid.org/0000-0001-7181-2565
Educational Psychology Program, University of Alabama,
Tuscaloosa, AL, USA

https://doi.org/10.5334/jors.328
https://github.com/hyemin-han/BayesFactorFMRI/blob/master/README.md
https://github.com/hyemin-han/BayesFactorFMRI/blob/master/README.md
https://doi.org/10.5281/zenodo.3976338
https://github.com/hyemin-han/BayesFactorFMRI
https://github.com/hyemin-han/BayesFactorFMRI
mailto:hyemin.han@ua.edu
mailto:hyemin.han@ua.edu
https://orcid.org/0000-0001-7181-2565
http://orcid.org/0000-0001-7181-2565

7Han Journal of Open Research DOI: 10.5334/jors.328

TO CITE THIS ARTICLE:
Han H 2021 BayesFactorFMRI: Implementing Bayesian Second-Level fMRI Analysis with Multiple Comparison Correction and Bayesian
Meta-Analysis of fMRI Images with Multiprocessing. Journal of Open Research Software, 9: 1. DOI: https://doi.org/10.5334/jors.328

Submitted: 17 March 2020 Accepted: 08 September 2020 Published: 02 February 2021

COPYRIGHT:
© 2021 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0
International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original
author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by Ubiquity Press.

REFERENCES

1. Cui X, Li J, Song X. xjview. 2015. Available at: http://www.

alivelearn.net/xjview (Accessed: 28 June 2015).

2. Han H. Neural correlates of moral sensitivity and moral

judgment associated with brain circuitries of selfhood: A

meta-analysis. Journal of Moral Education. 2017; 46(2):

97–113. DOI: https://doi.org/10.1080/03057240.2016.1262

834

3. Han H. Implementation of Bayesian multiple comparison

correction in the second-level analysis of fMRI data: With

pilot analyses of simulation and real fMRI datasets based

on voxewise inference. Cognitive Neuroscience. 2020; 11(3),

157–169. DOI: https://doi.org/10.1080/17588928.2019.170

0222

4. Han H, Park J. Using SPM 12’s second-level bayesian

inference procedure for fMRI analysis: Practical guidelines

for end users’. Frontiers in Neuroinformatics. 2018; 12. DOI:

https://doi.org/10.3389/fninf.2018.00001

5. Han H, Park J. Bayesian meta-analysis of fMRI image data.

Cognitive Neuroscience. 2019; 10(2): 66–76. DOI: https://doi.

org/10.1080/17588928.2019.1570103

6. Han H, Park J, Thoma SJ. Why do we need to employ

Bayesian statistics and how can we employ it in studies of

moral education? With practical guidelines to use JASP for

educators and researchers. Journal of Moral Education. 2018;

1–19. DOI: https://doi.org/10.1080/03057240.2018.1463204

7. Rouder JN, et al. Bayesian t tests for accepting and

rejecting the null hypothesis. Psychonomic Bulletin &

Review. 2009; 16(2): 225–237. DOI: https://doi.org/10.3758/

PBR.16.2.225

8. Wagenmakers E-J. A practical solution to the pervasive

problems of p values. Psychonomic Bulletin & Review. 2007;

14(5): 779–804. DOI: https://doi.org/10.3758/BF03194105

https://doi.org/10.5334/jors.328
https://doi.org/10.5334/jors.328
http://creativecommons.org/licenses/by/4.0/
http://www.alivelearn.net/xjview
http://www.alivelearn.net/xjview
https://doi.org/10.1080/03057240.2016.1262834
https://doi.org/10.1080/03057240.2016.1262834
https://doi.org/10.1080/17588928.2019.1700222
https://doi.org/10.1080/17588928.2019.1700222
https://doi.org/10.3389/fninf.2018.00001
https://doi.org/10.1080/17588928.2019.1570103
https://doi.org/10.1080/17588928.2019.1570103
https://doi.org/10.1080/03057240.2018.1463204
https://doi.org/10.3758/PBR.16.2.225
https://doi.org/10.3758/PBR.16.2.225
https://doi.org/10.3758/BF03194105

