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ABSTRACT
BayesFactorFMRI is a tool developed with R and Python to allow neuroimaging 
researchers to conduct Bayesian second-level analysis and Bayesian meta-analysis of 
fMRI image data with multiprocessing. This tool expedites computationally intensive 
Bayesian fMRI analysis through multiprocessing. Its GUI allows researchers who are 
not experts in computer programming to feasibly perform Bayesian fMRI analysis. 
BayesFactorFMRI is available via Zenodo and GitHub for download. It would be 
widely reused by neuroimaging researchers who intend to analyse their fMRI data 
with Bayesian analysis with better sensitivity compared with classical analysis while 
improving performance by distributing analysis tasks into multiple processors.
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(1) OVERVIEW
INTRODUCTION 
BayesFactorFMRI is a tool developed with R and Python 
to allow neuroimaging researchers to conduct Bayesian 
second-level analysis and Bayesian meta-analysis of fMRI 
data with multiprocessing [3, 5]. Previous studies have 
shown that using Bayesian statistics in fMRI analysis can 
be a way to address limitations in classical analysis based 
on p-values [4, 8]. For example, a Bayes factor, which is 
one of the most frequently used statistical indicators in 
Bayesian inference, can show us to which extent observed 
data supports a hypothesis of interest unlike a p-value 
that merely shows the extremity of observed data given 
the hypothesis [6, 7]. Furthermore, Bayesian analysis is 
more robust against noise, which is a significant issue 
in fMRI research, compared with classical analysis even 
with a small sample size [3].

However, there is a significant practical limitation 
in implementing Bayesian analysis in the context of 
neuroimaging. As the previous studies presented [3], it 
would take up to ten hours to complete Bayesian analysis 
with fMRI data because up to nine hundred thousand 
voxels may have to be analysed included in each image 
file. In addition, given that Bayesian analysis is based on 

iterative observations of data, such iterative processes 
per se can also be time consuming. 

In order to address the aforementioned limitation of 
Bayesian fMRI analysis, a multiprocessing implementation 
of the Bayesian method in BayesFactorFMRI was 
attempted. Given that each fMRI image file consists of up 
to nine hundred thousand voxels to be tested, it would be 
possible to improve performance by assigning the voxels 
to multiple processors. BayesFactorFMRI uses NIfTI (.nii) or 
ANALYZE (.img + .hdr) image files as input files. For Bayesian 
second-level analysis, contrast images files that are 
created from first-level analysis performed by other fMRI 
analysis tools (e.g., SPM, FSL, AFNI) can be used for inputs. 
Moreover, to determine how many voxels are tested, a 
mask file that specify voxels to be tested is also used as 
an input. For Bayesian meta-analysis, statistical images 
from previous fMRI studies that report t- or z-statistics in 
each voxel can be used. Output images are created in the 
NIfTI format. BayesFactorFMRI creates output images files 
that report calculated Bayes factor values for hypothesis 
testing and calculated effect size values in tested voxels.

In addition to the parallelization of Bayesian analysis, 
BayesFactorFMRI provides users with a graphical user 
interface (GUI; see Figure 1). Because BayesFactorFMRI 

Figure 1 BayesFactorFMRI GUI. Top: GUI for Bayesian second-level analysis. Bottom: GUI for Bayesian meta-analysis.
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consists of R and Python codes, users might not be able 
to conduct Bayesian analysis as they intend without any 
further guidance, if they do not have sufficient expertise 
in computer languages. Hence a simple GUI was created 
so that end users can perform Bayesian analysis by 
following directions. Directions about how to use the 
GUI for Bayesian second-level analysis are available at 
https://github.com/hyemin-han/BayesFactorFMRI/blob/master/

HowTo_2nd.md, and those for Bayesian meta-analysis are 
available at https://github.com/hyemin-han/BayesFactorFMRI/

blob/master/HowTo_meta.md.
The performances of Bayesian second-level analysis 

and meta-analysis were tested on the University of 
Alabama High-Performance Computing System (UAHPC; 
hardware and software specifications are described at 
https://oit.ua.edu/service/research/). In the case of Bayesian 
second-level analysis, the performances when 1, 2, 4, 8, 
16, and 32 processors were employed were examined. 
For input images for the test, 16 NIfTI images that contain 
both true signals (activation foci extracted from) and the 
random noise were used. To create an original image 
with true signals, the activation foci that were reported 
in a previous neuroimaging study were utilized [2]. 
Figure 2 shows the original image with true signals (left) 
and noise-added image sample (middle). The analysis 
was repeated ten times per each processor condition and 
the mean elapsed time was calculated each time.

In the case of Bayesian meta-analysis, 2, 4, 8, 16, 32, 
and 64 processors were used. To test the performance 
of Bayesian meta-analysis, six NIfTI images that were 
created in previous fMRI studies that examined the 
neural correlates of the working memory were analyzed. 
These six images were downloaded from NeuroVault 
(https://neurovault.org/), an open repository for statistics 
image files created by previous fMRI studies, by using 
a keyword, “working memory” (For the full list of the 
studies, refer to Table S1 in [5]). For each condition, the 
test was repeated ten times and the mean elapsed time 

was calculated each time. Figure 3 (left) shows these six 
meta-analysed images.

When the performances of Bayesian second-level 
analysis and meta-analysis with multiprocessing 
were tested, the increase of the number of employed 
processors resulted in the improved performance in 
terms of the decrease in the elapsed time. Figure 4 

demonstrates the change in the elapsed time by the 
number of processors. As shown, the mean elapsed time 
decreased in a power scale as the number of employed 
processors increased. 

IMPLEMENTATION AND ARCHITECTURE
The overall organization of BayesFactorFMRI is presented 
in Figure 5. Both Bayesian second-level analysis with 
multiple comparison correction and meta-analysis are 
performed with R codes based on BayesFactor package. 
In addition, custom Python codes are used to distribute 
voxels into different processors for multiprocessing and 
to present a GUI. The GUI of BayesFactorFMRI creates 
“run_this.py,” which calls the aforementioned codes for 
multiprocessing-applied Bayesian analysis. Following the 
user’s preference, run_this.py can be executed locally 
immediately after the closure of the GUI or can be 
uploaded to a computing cluster.

When run_this.py is executed, a Python code that 
distributes voxels into different processors is called. In the 
case of Bayesian second-level analysis, “bayes_correction_
main.py” is called, and in the case of Bayesian meta-
analysis, “bmeta_main.py” is called. Both Python codes 
assign voxels into the designated number of processors 
so that workloads are evenly distributed to the processors. 
Then, R codes for the intended statistical analysis are called. 
By using “popen” in subprocess, the R codes are called 
multiple times according to the number of processors.

First, Bayesian second-level analysis is performed after 
adjusting the prior probability distribution to address 
multiple comparisons. This adjustment process occurs 

Figure 2 A tutorial example of Bayesian second-level analysis with BayesFactorFMRI. Left: The original image with true signals (blue: 
true positives). Middle: A sample of analysed images with original and noise signals. Right: The result of analysis when BFs.nii is 
thresholded with a Bayes factor threshold ≥3 (black: survived voxels).
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Figure 3 A tutorial example of Bayesian meta-analysis with BayesFactorFMRI. Left: Six statistics images that are used for meta-
analysis. Right: The result of Bayesian meta-analysis when BFs.nii is thresholded with the Bayes Factor threshold ≥3. Only survived 
voxels are presented.

Figure 4 Changes in performance in terms of the elapsed time as a function of the number of employed processes. Top: Bayesian 
second-level analysis. Bottom: Bayesian meta-analysis.
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before multiprocessing is initiated. The prior probability, 
which follows the Cauchy distribution, is adjusted 
according to how many voxels are tested (performed 
by correct_scale.R). The number of voxels to be tested is 
specified by a mask image in NIfTI. Then, “popen” creates 
multiple processes to distribute voxels into different 
professors. Bayesian one-sample t-test is performed 
to examine whether there is a significant effect (e.g., a 
difference in neural activity) in each voxel (performed by 
Bayes_segment.R). Finally, integrate_result.R integrates 
the resultant Bayes Factor and median effect size value 
at each voxel in two NIfTI whole brain image files.

Second, Bayesian meta-analysis performed by 
performing random-effect meta-analysis of effect 
size values reported in previous studies in each voxel 
(fmri_bmeta_random1.R). At the beginning, “popen” 
calls multiple “fmri_bmeta_random1.R” to distribute 
voxels into the designated number of processors for 
multiprocessing. The effect size value in each voxel in 
each reported previous study is standardized. Then, 
Bayesian random-effect meta-analysis is performed at 
each voxel to examine whether there is a significant non-
zero effect. Similar to the case of Bayesian second-level 
analysis, the analysis result in all voxels are integrated 
into whole-brain NIfTI image files. Three output images 
files, one reporting Bayes factors, one reporting mean 
effect size values, one reporting median effect size 
values, are created.

QUALITY CONTROL
Both Bayesian second-level analysis and meta-analysis 
implemented in BayesFactorFMRI can be tested with 
tutorial datasets shared in GitHub (see https://github.com/

hyemin-han/BayesFactorFMRI for further details). In the 
GitHub repository, further details regarding how to set 
options in the GUI are specified (refer to https://github.

com/hyemin-han/BayesFactorFMRI/blob/master/README.md 
for general information, https://github.com/hyemin-han/

BayesFactorFMRI/blob/master/HowTo_2nd.md for Bayesian 
second-level analysis, https://github.com/hyemin-han/

BayesFactorFMRI/blob/master/HowTo_meta.md and for 
Bayesian meta-analysis). Following the directions, users 
can create “run_this.py” for either Bayesian second-level 
analysis or meta-analysis of the provided tutorial dataset. 
To initial the GUI, at the terminal, execute: python (or 
python3) bayes_select_ui.py. Once “run_this.py” is 
created, this code can be executed locally or uploaded 
to a cluster as per users’ preference. Whether the code 
is executed locally or uploaded to another place can be 
determined in the GUI.

Once “run_this.py” is executed, it calls R codes for 
either Bayesian second-level analysis or meta-analysis 
following the selected option. At the end of the analysis 
process, NIfTI files reporting analysis outcomes are 
created. When BayesFactorFMRI is executed successfully, 
users should be able to see two (in the case of Bayesian 
second-level analysis) or three (in the case of Bayesian 
meta-analysis) created NIfTI output files. In the case 
of Bayesian second-level analysis “BFs.nii” and “Ds.nii” 
are created. “BFs.nii” reports the resultant Bayes factor 
value and “Ds.nii” reports the median effect size value in 
Cohen’s D in each voxel. In the case of Bayesian meta-
analysis, three output files, “BFs.nii,” “Medians.nii,” and 
“Means.nii,” are created. “BFs.nii” shows the resultant 
Bayes Factor value, “Medians.nii” does the median effect 
size value, and “Means.nii” does the mean effect size 

Figure 5 Organization of BayesFactorFMRI.

https://doi.org/10.5334/jors.328
https://github.com/hyemin-han/BayesFactorFMRI
https://github.com/hyemin-han/BayesFactorFMRI
https://github.com/hyemin-han/BayesFactorFMRI/blob/master/README.md
https://github.com/hyemin-han/BayesFactorFMRI/blob/master/README.md
https://github.com/hyemin-han/BayesFactorFMRI/blob/master/HowTo_2nd.md
https://github.com/hyemin-han/BayesFactorFMRI/blob/master/HowTo_2nd.md
https://github.com/hyemin-han/BayesFactorFMRI/blob/master/HowTo_meta.md
https://github.com/hyemin-han/BayesFactorFMRI/blob/master/HowTo_meta.md


6Han Journal of Open Research DOI: 10.5334/jors.328

value in each voxel. For hypothesis testing (e.g., whether 
a significant non-zero effect exists in a voxel), users can 
open “BFs.nii” with a NIfTI viewer, such as xjView [1] with 
MATLAB, and perform thresholding (e.g., Bayes factor ≥ 3). 

When the analysis is properly done with the provided 
tutorial dataset, if “BFs.nii” is thresholded with xjView 
plus MATLAB with a Bayes factor threshold ≥ 3, the result 
of Bayesian second-level analysis should be similar to 
Figure 2 (right). The result of Bayesian meta-analysis of 
the provided tutorial dataset after thresholding with the 
same program and Bayes Factor threshold should be 
similar to Figure 3 (right).

(2) AVAILABILITY
OPERATING SYSTEM
BayesFactorFMRI has been developed and tested on 
macOS Mojave (not tested on Catalina at this point) 
and Centos 7. Given that BayesFactorFMRI has been 
developed with R and Python, it can be executed on 
macOS, Linux, or Windows with compatible R and Python 
environments.

PROGRAMMING LANGUAGE
R (>=3.5) and Python (>=3.7.3; Python 3.8 is not 
recommended due to package-related issues at this 
point). Developed and tested on R 3.5 and Python 3.7.3.

DEPENDENCIES
R: BayesFactor (developed with 0.9.12-4.2), metaBMA 
(developed with 0.6.1), oro.nifti (developed with 0.9.1).

Python: tkinter (developed with 8.6), shutil, pandas 
(developed with 0.24.2), nibabel (developed with 2.4.1), 
rpy2 (developed with 3.2.2), numpy (developed with 
1.16.2), nilearn (developed with 0.6.2), subprocess.

Specified directions about how to install required 
dependencies are available in https://github.com/hyemin-

han/BayesFactorFMRI/blob/master/README.md.

LIST OF CONTRIBUTORS
Hyemin Han developed the software and created 
tutorials.

SOFTWARE LOCATION
Archive (e.g. institutional repository, general repository) 
(required – please see instructions on journal website 
for depositing archive copy of software in a suitable 
repository) 

Name: Zenodo
Persistent identifier: 10.5281/zenodo.3976338

Licence: MIT License
Publisher: Hyemin Han
Version published: 1.0.0
Date published: 08/08/20

Code repository (e.g. SourceForge, GitHub etc.) (required) 
Name: Github

Identifier:  https://github.com/hyemin-han/BayesFactor 

FMRI

Licence: MIT License
Date published: 08/08/20

LANGUAGE
English

(3) REUSE POTENTIAL

BayesFactorFMRI is available via Zenodo and GitHub 
with tutorial datasets and directions. Given that it 
provides its potential users, neuroimaging researchers 
in particular, with the GUI, they will be able to 
perform Bayesian second-level analysis and meta-
analysis with their fMRI dataset feasibly even without 
expertise in Python and R programming. Because 
BayesFactorFMRI is a tool to analyse functional 
neuroimaging data, it cannot analyse other types of 
images, such as anatomical brain images, spine or 
other soft medical/biological tissue images. In the 
current version, for Bayesian second-level analysis, 
only a simple one-sample t-test is supported. Overall, 
because BayesFactorFMRI is distributed via open 
repositories and a tutorial with testable image files and 
directions are available for users, it will be widely and 
straightforwardly reused by neuroimaging researchers 
who intend to apply Bayesian analysis with enhanced 
sensitivity and performance through multiprocessing.

CONTACT AND SUPPORT

Any bugs, errors, questions, or suggestions associated 
with BayesFactorFMRI can be submitted via the “Issues” 
tab in the GitHub repository. Furthermore, the author, 
Hyemin Han, can be contacted via email (hyemin.han@

ua.edu) for support.
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