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ABSTRACT
We present embo, a Python package to analyze empirical data using the Information 
Bottleneck (IB) method and its variants, such as the Deterministic Information 
Bottleneck (DIB). Given two random variables X and Y, the IB finds the stochastic 
mapping M of X that encodes the most information about Y, subject to a constraint on 
the information that M is allowed to retain about X. Despite the popularity of the IB, an 
accessible implementation of the reference algorithm oriented towards ease of use on 
empirical data was missing. Embo is optimized for the common case of discrete, low-
dimensional data. Embo is fast, provides a standard data-processing pipeline, offers a 
parallel implementation of key computational steps, and includes reasonable defaults 
for the method parameters. Embo is broadly applicable to different problem domains, 
as it can be employed with any dataset consisting in joint observations of two discrete 
variables. It is available from the Python Package Index (PyPI), Zenodo and GitLab.
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(1) OVERVIEW
INTRODUCTION
The Information Bottleneck Method
In the Information Bottleneck (IB) framework [1], given 
two random variables X and Y, we are interested in 
extracting all the information that X may contain about 
Y and discarding the rest as irrelevant. To solve this 
problem, we seek a third random variable M that solves 
the following optimization problem:

 
min ( : ) ( : )

( | )
I M X I M Y

p m x
b-

 (1)

where I(˙:˙) is Shannon’s mutual information [2], and M 
is constrained to be independent of Y conditional on X:

 ( , , ) ( ) ( | ) ( | )p x m y p x p m x p y x=  (2)

Intuitively, Equation (1) says that we are looking for 
a stochastic mapping of X to M that keeps as little 
information about X as possible while maximizing the 
information about Y. β is an arbitrary (positive) parameter 
quantifying the relative importance of these two 
competing goals. In the spirit of rate distortion theory 
[2], it can be shown [1] that the set of solutions to this 
method for all possible values of β gives an upper bound 
to the amount of information one can encode about Y 
given a certain amount of information about X, or vice 
versa, the minimum amount of information about X 

needed to encode a certain amount of information about 
Y. These bounds are typically summarized by plotting a 
curve showing I(M : Y) vs I(M : X), obtained by computing 
these quantities for the solution of Equation (1) across 
many different values of β. This is known as the IB curve. 
Example IB curves, taken from one of the notebooks in 
embo’s documentation, are shown in Figure 1.

Because of its appealing theoretical properties, since 
it inception the IB has enjoyed continued attention as 
a method for unsupervised [3] and supervised [4, 5] 
learning, as well as becoming more recently a popular 
tool in the study of learning and generalization in deep 
neural networks [6, 7] and in neuroscience [8, 9, 10, 11].

Generalized and Deterministic Information 
Bottleneck
A useful generalization of the Information Bottleneck was 
introduced by [12]. By noting that I(M : X) = H(M) – H(M|X), 
one observes that there are two different ways in which the 
bottleneck variable M can have limited information about 
X: it can have limited variability (small H(M)), or it can be 
very noisy (large H(M|X)). These possibilities suggests that 
we could modify the cost function in (1) as follows:

 
min ( ) ( | ) ( : )

( | )
H M H M X I M Y

p m x
a b- -

 (3)

where α ≥ 0. We call this the Generalized Information 
Bottleneck problem, or GIB (note that the same acronym 

Figure 1 From embo’s documentation (examples/Basic-example.ipynb): Top, red: IB curves for two simple synthetic datasets, 
one where both X and Y are binary (left column, “Two symbols”) and one where they can both take on 4 possible states (right 
column, “Four symbols”). Each dot represents the solution of Equation (1) for a particular value of β (solid lines connecting the dots 
are added for legibility). Gray: identity line. Bottom: values of I(M : Y)and I(M : X) vs their corresponding values of β. See the software 
documentation for further detail on how these figures were generated. Note that the IB curve is always below the identity line and 
that the values of I(M : Y) and I(M : X) are never larger than the base 2 logarithm of the number of states (1 bit and 2 bits, respectively, 
corresponding to 2 and 4 states, respectively). These are conditions that the IB curve should always satisfy [1] and can be taken as 
sanity checks for embo’s correct operation.

https://doi.org/10.5334/jors.322
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is used in [13] with a different meaning). The GIB reduces 
to the standard IB as a special case for α = 1.

If α = 0, the problem consists of finding the minimum-
entropy bottleneck variable M that contains a certain 
amount of information about Y (or the M with the largest 
amount of information about Y among all Ms with a set 
entropy). This is called the Deterministic Information 
Bottleneck (DIB) by [12]. The term “deterministic” comes 
from the fact that solutions in the α = 0 case are shown to 
be deterministic mappings from X to M, with H (M|X) = 0. A 
simple demonstration of application of the DIB, inspired by 
one of the examples given in [12], is illustrated in Figure 2.

IB for empirical data; comparison with other 
software
Despite the large body of existing work on the IB (and GIB), 
public, off-the-shelf implementations of its “reference” 
version based on the Blahut-Arimoto algorithm [1, 12] 
have been lacking. The supplementary Python code 
associated with [12] implements the GIB, but it is rather 
tightly coupled to the specifics of that paper and is not 

distributed as a standard package (it does not contain 
tests or licensing information and is not available on 
the Python Package Index). To our knowledge, the only 
existing Python implementation that offers a reasonably 
flexible and documented interface is that contained in 
dit [14], a multipurpose information theory toolbox. By 
focusing narrowly on the IB, embo can offer greater 
ease of use for the most common applications (by 
removing the need to preprocess the data and reducing 
the amount of boilerplate code to a minimum) and 
support for specialized applications such as the past-
future information bottleneck [15] (documented more 
in detail in the notebook located at examples/Markov-
Chains.ipynb within the source distribution). Moreover, 
and very importantly for the application of IB methods 
to real-world research problems, embo is much more 
computationally efficient than dit. Figure 3 shows that 
embo offers a 1000x–10000x speedup over dit on a set of 
simple problems (embo can solve much larger problems, 
but these are not included in the comparison because 
they become prohibitively time-consuming with dit).

Figure 2 From the documentation (examples/Deterministic-Bottleneck.ipynb): comparison of IB and DIB, similarly to 
Figure 2 in [12]. In this example, X can take on one out of 128 possible states, Y can take on one out of 32 states, and p(x) is close 
to uniform (see the notebook for details about the joint p(x,y)). Left: IB and DIB solutions for a range of β values, visualized in the “IB 
plane” where I(M : Y) is plotted against I(M : X). Right: same solutions as in the left panel, visualized in the “DIB plane” where I(M : Y) 
is plotted against H(M). As expected from [12], in the IB plane the two methods behave similarly. In the DIB plane, however, the DIB 
performs better than the IB in the sense that H(M) is much lower for the DIB than for the IB, for any given value of I(M : Y).

Figure 3 From embo’s documentation (examples/Compare-embo-dit.ipynb): comparison of embo and dit [14] on sample IB 
problems of different dimensionality, defined as the number of possible states for the joint random variable (X,Y). The problem with 
dimensionality 9 (where both X and Y have three possible states) is taken from the documentation of the current version of dit. Left: runtime 

vs dimensionality. Dit/sp and dit/ba indicate the algorithm used by dit: sp for scipy.optimize and ba for the Blahut-Arimoto algorithm. 
It was not possible to run dit on the smallest problem due to a software bug. Center: IB bound for the problem with dimensionality 9, 
computed with embo and dit. Embo and dit/sp (blue and orange) find the same solution, while dit/ba (green) finds a suboptimal one. 
Right: I(M : X)  and I(M : Y)  as a function of β. Note how dit/ba (green) becomes unstable at large β. See notebook for more details.
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Taken together, the features discussed in this section 
help to remove all barriers in going from empirical data to 
an IB curve, thus making the IB method more accessible 
to a broad generalist audience.

IMPLEMENTATION AND ARCHITECTURE
The main point of entry to the package is the 
InformationBottleneck class. In its constructor, 
InformationBottleneck takes as arguments an 
array of observations for X and an (equally long) array 
of observations for Y, together with other optional 
parameters (see the software documentation for 
details). Alternatively, a joint probability mass function 
p(x,y) can be directly specified. In the most basic use 
case, users can call the get_bottleneck method of an 
InformationBottleneck object. Embo will then solve 
the optimization problem in Equation (1) for a certain 
set of values of β and will return the set of solutions, 
composed of the optimal values of I(M : X), I(M : Y) and 
H(M) corresponding to each of those β. The IB bound can 
then be visualised by plotting I(M : Y) vs I(M : X), as we 
have done in Figure 1 (top panels). If an alpha argument 
was passed to the InformationBottleneck constructor, 
the corresponding GIB problem as per Equation (3) 
will be solved instead. To visualize the DIB bound, it is 
then sufficient to specify alpha=0 and plot I(M : Y) vs 
H(M), as we have done in Figure 2. Usage examples of 
InformationBottleneck, illustrating the output to be 
expected on some sample input data, are given in the 
software’s documentation.

From the architectural standpoint, embo can parallelize 
the computation of the IB curve on multicore machines 
by breaking down the set of β values into k smaller subsets 
and running each subset in parallel. This functionality is 
implemented with the multiprocessing Python module 
and can be controlled by the user by setting an optional 
parameter specifying the number k of processes to use.

Embo has several other optional parameters, which 
allow the user to control precisely the range and number 
of β values to be considered, as well as finer aspects 
of the behaviour of the algorithm that solves the 
optimization problem (3) for a given β (the Blahut-Arimoto 
algorithm[1, 2, 12] and to automatically preprocess data 
for the application of the past-future bottleneck method 
[15]. These parameters are all described in the software’s 
documentation, but embo comes with reasonable 
defaults allowing users to worry about such details only 
if needed.

QUALITY CONTROL
Embo has a suite of unit tests to ensure basic functionality 
and prevent regressions. These tests are integrated with 
Gitlab’s continuous integration (CI) pipelines, so that unit 
tests are automatically run each time new commits are 
pushed to Gitlab. Tests include running (G)IB analyses on 

a variety of datasets and probability distributions, both 
fixed and randomly generated at test time. The tests 
check properties such as limβ→∞I(M : Y) = I(X : Y) and that 
embo’s internal functions for computing information-
theoretic quantities (such as entropy and Kullback-Leibler 
divergence) give the same results as those provided 
by SciPy. Tests are automatically run against multiple 
versions of NumPy using tox (https://pypi.org/project/tox/). 
CI reports are publicly available online at https://gitlab.com/

epiasini/embo/pipelines.
Meaningful examples of IB analyses are available 

as Jupyter notebooks in embo’s documentation. 
These examples are distributed with the software (for 
instance when it is installed via pip) and are listed in the 
package’s README and are viewable online at https://

gitlab.com/epiasini/embo/-/tree/master/embo/examples. These 
examples play a double role: as a tutorial on how to use 
the software, and as a sanity check that the software is 
behaving as expected. As mentioned in the caption to 
Figure 1 and explained in much further technical detail 
in the notebooks, the examples used in the Jupyter 
notebooks are chosen to make it easy for the user to 
gauge if embo is behaving correctly. For instance, by 
construction an IB curve should always lie below the 
identity line and never include points with coordinates 
larger than the base 2 logarithm of the number of 
possible values taken on by the variables being analyzed 
[1]. These properties can be immediately checked by 
visual inspection of Figure 1, which is taken from one of 
the notebooks mentioned above. 

The examples available in the documentation also 
showcase embo’s other features, such as facilities for 
solving the generalized and deterministic bottleneck 
problems, parallel computation of (G)IB bounds and the 
integrated facility for performing past-future-bottleneck 
type analyses.

(2) AVAILABILITY
OPERATING SYSTEM
Embo is a pure Python package and therefore has 
ample compatibility. It has been tested to run on Linux 
(Ubuntu 16.04, 18.04 and 20.04) and macOS (10.13 
and 10.14).

PROGRAMMING LANGUAGE

Embo requires Python 3.

ADDITIONAL SYSTEM REQUIREMENTS
Embo does not have any special system requirement. It 
supports parallel computation on multicore machines 
through the multiprocessing module in Python’s standard 
library.

https://pypi.org/project/tox/
https://gitlab.com/epiasini/embo/pipelines
https://gitlab.com/epiasini/embo/pipelines
https://gitlab.com/epiasini/embo/-/tree/master/embo/examples
https://gitlab.com/epiasini/embo/-/tree/master/embo/examples
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DEPENDENCIES
Embo requires a recent version of NumPy [16] (≥ 1.17) 
and SciPy [17]. Matplotlib [18] is recommended to plot IB 
curves, but is not a dependency. Embo can be installed 
using pip, the de-facto standard Python package 
management system, by simply running the command 
pip install embo, but installation from a source code 
archive (by downloading the source and running python 
setup.py install) is supported too.
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•	 Eugenio Piasini, University of Pennsylvania (developer)
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(developer)
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(developer)
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SOFTWARE LOCATION
Archive (1)

Name: Zenodo
Persistent identifier: 10.5281/zenodo.3625785

Licence: GNU General Public License v3.0 or later
Publisher: Eugenio Piasini, Alexandre L. Filipowicz, 

Jonathan Levine
Version published: 1.1.0
Date published: 22/02/2021

Archive (2)
Name: Python Package Index (PyPI)
Persistent identifier: https://pypi.org/project/embo/

Licence: GNU General Public License v3.0 or later
Publisher: Eugenio Piasini, Alexandre L. Filipowicz, 

Jonathan Levine
Version published: 1.1.0
Date published: 22/02/2021

Code repository
Name: Gitlab
Persistent identifier: https://gitlab.com/epiasini/embo

Licence: GNU General Public License v3.0 or later
Date published: 22/02/2021

LANGUAGE
English

(3) REUSE POTENTIAL

In [11], Embo has been used to assess the complexity 
of the strategies adopted by human subjects during 
cognitive tasks. In the computational cognitive science 
and neuroscience domain, the same approach can be 

used to analyze human or animal behavior in different 
tasks, as well as the statistical relationship between 
sensory stimuli and recorded neuronal activity [8, 9]. 
More generally, the Information Bottleneck method is 
entirely domain agnostic, and embo can be used in any 
setting involving joint observations of two discrete, low-
dimensional variables.

Embo may be extended in several ways. Possible 
technical upgrades include improving the software’s 
performance, for instance by rewriting the Blahut-
Arimoto algorithm implementation (or some critical 
paths of it) in C, or by using performance-oriented 
Python libraries such as Numba or Cython. Features that 
may be added include the estimation of finite sample 
bounds for the IB [19]. Finally, embo may be coupled 
with analyses based on multipartite information 
decompositions [20, 21] to study the mutual 
relationship of triplets of empirical variables, where 
one is hypothesized to act as a bottleneck between the 
other two. This condition is highly relevant for the study 
of neural activity recorded concomitantly with sensory 
stimulation and behavioural output in awake animals 
[22].

The recommended support channel for embo is via 
its GitLab project, where issues can be reported, and 
patches and merge requests are welcome. Additionally, 
the maintainers can be contacted directly at their 
institutional email addresses.
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