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ABSTRACT
The paper describes how Data Packages can be used for creating reproducible 
workflows in energy system modeling. The presented concept has been implemented 
in the Python package oemof.tabular. The package is designed as an interface to 
instantiate energy system models from tabular data sources based on the oemof.
solph library. To implement the data model, oemof.tabular extends the Open Energy 
Modelling Framework (oemof) by facada classes. The developed data model allows 
users to work with Data Packages and meta data information. The simplified tabular 
data structure can be used for large energy system models as well as in teaching 
environments leveraging functionalities of the already widely used oemof.solph library.
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1 INTRODUCTION

Analyses of future energy systems are based on tools 
for complex socio-techno-economic systems. The 
complexity of these systems increases due to the 
intermittent supply characteristics of renewable energies 
which require high temporal and spatial resolution 
modeling. Additionally, a higher interaction between 
sectors such as heat, power and transport leads to the 
need for comprehensive sector coupled approaches. 
At the same time, a trend towards open source energy 
(system) models can be observed in the energy system 
modeling research field [15], as models have been 
criticized for lack of transparency and reproducibility [17].

For energy system modelers, data handling including 
input collection, processing and result analysis is one of 
the most time-consuming tasks. Therefore, open source 
and open data modeling approaches are put forward 
as an argument for efficient use of resources [19]. Yet, 
there is no standardized or broadly used model-agnostic 
data container in the scientific field of energy system 
modeling to hold energy system related data. In most 
cases every software comes with its own logic relating 
to input-data and output-data of the model. In addition, 
the decision about how to create the required data sets 
from raw data sources and the post-processing of result 
data is often left to the user. Due to these two reasons, 
re-use of data and more importantly reproducibility of 
model results is a challenging task, even for experienced 
modelers.

To improve reproducibility of model results and re-
usability of existing data, the following data model 

description has been developed. Energy system related 
data is stored in the Data Package format. The complete 
reproducible workflow from raw-data to final results is 
described for this data model. The data model has been 
implemented in the Python package oemof.tabular [7] 
which is based on the Open Energy Modeling Framework 
(oemof). However, the concept is not restricted to this 
package, but can be applied with other software as well.

2 BACKGROUND

Oemof is a powerful tool for the modeling of energy 
systems [8]. Functionalities range from large linear 
programming (sector coupled) market models [6, 23, 
16] to detailed mixed integer heating system [2, 27] 
or battery models to assess the profitability of power 
plants in current and future market environments. The 
underlying concept and its generic implementation 
allows for this versatile application. It is based on a 
bipartite graph structure, where nodes are partitioned 
into buses and components. Most oemof components are 
of a rather abstract type. For example the Transformer 
class can be used to model different energy system 
components such as power plants (1 input, 1 output) as 
well as a heat pump (2 inputs, 1 output) or any other 
conversion process. To illustrate the concept, Figure 1 
shows a Transformer connected to different buses (1 
input, 2 outputs) to model a combined heat and power 
(CHP) plant.

The usage of the Python API for this component in 
oemof.solph is shown in Figure 2.

CHP

Heat

Edge (CHP, Heat)

Elec

Gas

Edge (CHP, Elec)
Edge(Gas, CHP)

Figure 1 Illustration of a CHP plant model based on the oemof.solph Transformer class. Nodes are shown as ellipses/squares and 
edges between the nodes are depicted as arrows.

import oemof.solph

Transformer(
label=’CHP’,
inputs={

Gas: Flow(variable_cost=0.6)},
outputs={

Elec: Flow(investment=Investment(ep_costs=50)),
Heat: Flow(nominal_value=40)}

conversion_factors={Elec: 0.4, Heat: 0.35})

Figure 2 Example of the oemof.solph Application Programming Interface (API) for a transformer component with one input and two 
outputs.

https://doi.org/10.5334/jors.320
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When building energy system models, data is often 
stored in a tabular data format, for example, CSV 
files, Excel files or relational databases. However, the 
design and implementation of a generic tabular data 
input processing tool for oemof.solph has proven to be 
difficult. One of the reasons is that tables are a flat and 
two dimensional data structure whereas oemof.solph’s 
API utilizes a high degree of nested objects and data 
structures. Mapping this nested approach onto flat tables 
is a non-trivial task.

3 FACADES

Facilitating the task outlined above is one of the functions 
oemof.tabular needs to accomplish. The package was 
developed in order to allow the user to create an oemof 
model via tabular data sources. This means that it must 
also enable her to specify oemof.solph components using 
such flat structures. In oemof.tabular, this is done by using 
the façade design pattern first introduced introduced by 
Gamma et al. in 1994 [5]. The facade design pattern has 
two main purposes: 1. it provides a simple interface for 
users to access functionalities of a complex subsystem and 
2. it loosens the coupling of consumers of the subsystem’s 
interface with the components of the subsystem.

Therefore, facade classes have the following 
advantages when viewed in the context of oemof.tabular:

•	 Facades allow instantiation of models from two 
dimensional data sources as they provide a simplified 
interface to complex underlying structures.

•	 The simplified and thus restricted and less generic 
mathematical representation leads a more 
transparent modeling approach.

•	 The simplified interface is easy to use and integrate 
within the context of teaching and capacity building.

•	 It also allows building an interface for composed 
components which are constructed using multiple 
oemof.solph objects.

•	 Facades can be used with a different back-end, 
which allows the integration of other energy system 
modeling frameworks which may not even have to 
be written in the same programming language.

The implementation
A user of oemof and oemof.solph is expected to use 
instances of classes from a particular class hierarchy 
to build a model. Thus, facades are integrated into this 
class hierarchy as a mix-in class: a facade to a specific 
oemof.solph class is created by sub-classing it, mixing in 
the Facade class via cooperative multiple inheritance and 
then using the general facade methods to simplify the 
interface of the original oemof.solph class.

This allows for a two step approach to build complex 
components out of simple ones. One can first aggregate 

a complex subsystem using composition, without having 
to think about simplifying the interface of that system. 
Simplifying the interface can be done in a second step by 
creating a facade via inheritance.

The oemof.tabular package not only provides the 
facade infrastructure, but also implements a number 
of facades to regular simple oemof.solph components 
as well as complex compositions of oemof.solph 
components.

Since facades are integrated into oemof.solph’s class 
hierarchy, the classes of all oemof.tabular components 
are sub-classes of oemof.solph components, which 
means that they can freely be mixed with all their more 
generic parent class objects in a model. In addition, the 
data model is extendable and could be applied for various 
model generators, like for example PyPSA [13] or calliope 
[21]. However, currently the implementation for reading 
Data Packages is limited to oemof.tabular classes. The 
facade concept as used in oemof.tabular has also proved 
it’s applicability by being transported to and used in the 
oemof.thermal [14] package.

The issue of transparency
Model generators such as oemof.solph can indeed simplify 
energy system modeling. However, it is noteworthy that 
this is a double-edged approach. Simplification for the 
user always comes with drawbacks as the complexity 
remains hidden from the user. Depending on the 
parameters provided, different sets of constraints are 
created. Nonetheless, resulting mathematical equations 
are not visible at any stage of the modeling process. 
Therefore, approaches like OSeMOSYS [11] can have a 
higher level of transparency than other object oriented 
model generators. As such models or model generators 
are implemented in a pure algebraic modeling 
language, every part of the model (variable definitions, 
constraints, etc.) is clearly and transparently detectable 
in the source code files. In the case of facades in oemof.
tabular, mathematical relations of the models and their 
implementation are hidden by an additional layer of 
classes. However, since the oemof.tabular API is less 
generic and more restricted than the oemof.solph API, 
the additional layer may actually increase transparency 
compared to oemof.solph components by creating a 
clear link between input-parameters and the resulting 
mathematical model.

FACADE EXAMPLE: HYDRO RESERVOIR 
MODELING
To illustrate the facade concept, subsequently an oemof.
tabular storage example is compared to the classical 
oemof.solph approach. The oemof.solph package provides 
a GenericStorage class to model different storages 
such as batteries, hot water storages or pumped hydro-
electric storages. To model reservoir storages with an 
inflow and possible spillage, a set of connected oemof.
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solph components is required. To simplify modeling, the 
Reservoir facade bundles these components and provides 
a high level API access to a more complex underlying model. 
Figure 3 provides an illustration of the Reservoir facade.

The facade class itself is a subclass of the 
GenericStorage. However, to allow for a constant inflow 
into the storage, an additional Source object is created.

The reservoir is modeled as a storage with a constant 
inflow (x denote endogenous variables, c denote 
exogenous variables):

,
_ ( )

( ) ( 1) (1 ( )) ( )
( )

flow out
level level loss rate profile

efficiency

x t
x t x t c t x t t T

c t
         (1)

 
_ _(0)level initial storage level capacityx c c   (2)

The inflow is bounded by the exogenous inflow profile. 
Thus, if the inflow exceeds the maximum capacity of the 
storage, spillage is possible by setting xprofile(t) to lower 
values.

 0 ( ) ( )profile profilex t c t t T     (3)

The spillage of the reservoir is therefore defined by 
cprofile(t) – xprofile(t). Additional constraints apply which have 
been omitted in the description but can be retrieved from 
the oemof documentation.

API comparison for the reservoir example
Subsequently, in Figure 4, the Python code to instantiate 
this component is shown. In comparison to the 
oemof.tabular code, the required oemof.solph code differs 
significantly (see Figure 5). First of all, more objects with 
a nested set of objects need to be instantiated (Flows, 
Sources). This nested structure allows for a very flexible 
modeling approach. However, it creates hurdles for 
writing a generic data interface to instantiate all these 
objects, due to the large set of possible combinations. In 
contrast, the flat structure of the facade arguments allows 
for a simple interface to tabular data. One additional 
difference which can be observed is the (energy) specific 
naming of attributes, for example efficiency, compared 
to outflow_conversion_factor. As the Reservoir class is 
a subclass of the GenericStorage class, some attributes 

Figure 3 Illustration of a reservoir model in oemof.tabular.

Source

Storage

Bus

Edge (Storage, Bus)

Edge (Source, Storage)

Reservoir

Figure 4 API example for an oemof.tabular reservoir facade.

from oemof.tabular.facades import Reservoir
from oemof.solph import Bus

bus = Bus("Bus")
rsv = Reservoir(

label="rsv",
bus=bus,
carrier="water",
tech="reservoir",
storage_capacity=1000,
capacity=50,
profile=[1, 2, 6],
initial_storage_level=0,
efficiency=1)
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of the parent class are also available in the child class 
(initial_storage_level).

Even for comparably small systems, the example 
underlines the advantages of the approach.

4 DATA PACKAGES

A Data Package is, in its simplest form, not more than 
a valid JSON [4] file named “datapackage.json”. The file 
contains meta data about data resources which can 
be specified inline in the same file. For more complex 
cases, data resources are stored in separate files inside 
the directory containing the “datapackage.json” file. The 
contents of the mentioned JSON file are standardized 
via the Data Package specification [22]. An example 
fragment of such a datapackage.json JSON file can be 
seen in Figure 7. The Data Package has been extended 
by other standards, which further refine the format and 
contents of the meta data file and the resources to suit 
different application contexts. Examples of this are Fiscal 
Data Packages [25], meant to store fiscal data, as well 
as Tabular Data Packages [26], which refine the original 
Data Package [22] specification to handle table like data. 
The latter combines the advantages of databases and 
spreadsheets with the ubiquity and user-friendliness of 
CSV files. Tabular Data Packages allow storing type meta 
data and set primary keys as well as foreign keys across 
resources, i.e. different CSV files. They are more lightweight 
than databases and they are both, human readable and 
easily processable in almost any programming language. 
In recent years, different European projects in the field 
of energy system modeling have decided to opt for Data 
Packages to store model relevant data [18, 10]. Using 
Data Packages in the correct manner also allows to 
adhere to the FAIR principle of data handling proposed 
by Wilkonsen et al. 2016 [29].

In the context of oemof.tabular, Data Packages 
are used to hold information on the topology and 

parameters of an energy system model instance. At a 
minimum this includes all exogenous model variables 
and associated meta data. However, it may also include 
raw data and scripts for pre- and post processing. On 
top of the Tabular Data Package structure an structure 
an energy system specific logic is added, which adds 
minimal additional constraints on the format of Tabular 
Data Packages used to specify an oemof.tabular model, 
while still keeping them valid Tabular Data Packages 
according to the original specification. Therefore, 
oemof.tabular requires the following parts in a Tabular 
Data Package:

1. a directory named data containing at least one sub-
folder called elements, which may optionally contain 
a directory called sequences and a directory called 
geometries and

2. a valid meta-data .json file for the Data Package.

The exemplary folder tree of such a Data Package is 
depicted in Figure 6.

As stated above, data inside Data Packages is 
stored in so called resources, which, for a Tabular Data 
Package, are CSV files. The columns of such resources 
are referred to as fields. Therefore, field names of the 
resources are equivalent to parameters of the energy 
system elements and sequences. Connections between 
components and buses can be defined via foreign keys. 
These allow linking element fields to fields of other 
elements stored in other resources. To reference the 
name field of a resource with name bus a foreign key 
can be set within the JSON meta data file using the 
forgeinKeys key as shown in Figure 7.

To distinguish elements and sequences, these two 
are stored in sub-directories of the data directory. In 
addition geometrical information can be stored under 
data/geometries in a .geojson format. To facilitate the 
process of creating, processing and calculating a Data 
Package, oemof.tabular offers several functionalities:

Figure 5 API example for a simple oemof.solph reservoir model.

from oemof.solph import (components, Source, Bus, Flow)

bus = Bus("Bus")
rsv_solph = components.GenericStorage(

label="rsv-solph",
nominal_storage_capacity=1000,
initial_storage_level=0,
outflow_conversion_factor=1,
outputs={bus: Flow(nominal_value=50)},
inputs={})

inflow = Source(
label="reservoir-inflow",
outputs={rsv_solph: Flow(nominal_value=1, max=[1, 2, 6],

fixed=False)})
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•	 oemof.tabular.datapackage.building contains 
functions to infer meta data, download raw data, 
read and write elements, sequences etc.

•	 oemof.tabular.datapackage.processing contains 
functions to process model results, which can be 
used in the compute.py script.

•	 oemof.tabular.datapackage.aggregation allows 
to aggregate time series to reduce model complexity.

5 REPRODUCIBLE WORKFLOWS

Reproducibility of results is a recurring point of discussions 
in the energy system modeling community [17, 20]. 
These discussions have mainly been centered around the 
availability of source code (open source) and data (open 
data). Historically, for many prominent models neither the 
source code nor all input data have been made available. 
Thanks to new open source developments [8, 11, 13, 
21] this has partly changed in recent years (for example 
the open release of MESSAGEix [12]). However, not all 
barriers have been removed yet. Firstly, closed models 
are still being used for research purposes. Secondly, more 
subtle barriers exist even for open source models. For one 
of the first open source models, Balmoral [28], a GAMS 
software license is required, which constitutes a barrier 
to re-run computations. Another important issue is what 
can be described as the difference between practical and 
theoretical transparency. While for open source models 

with open data theoretical reproducibility should be 
possible, practical issues hamper such exercises. First of 
all, not all necessary information may be given by the 
respective authors. If provided, complexity of model 
environments with poor documentation can make any 
attempt time consuming. In these cases, reproducibility 
is hardly possible from a practical point of view, even for 
experienced researchers with domain-specific knowledge.

WORKFLOW DESCRIPTION
To improve reproducibilty of oemof.tabular-based 
research, a structure and workflow is proposed which 
is based on a the set of ten rules for reproducibility in 
computational research presented by Sandve et al. 
2013 [24]:

1. For every result, keep track of how it was produced
2. Avoid manual data manipulation steps
3. Archive the exact versions of all external programs 

used
4. Version control all custom scripts
5. Record all intermediate results, when possible in 

standardized formats
6. For analyses that include randomness, note 

underlying random seeds
7. Always store raw data behind plots
8. Generate hierarchical analysis output, allowing 

layers of increasing detail to be inspected
9. Connect textual statements to underlying results
10. Provide public access to scripts, runs, and results

The starting point of this workflow is the folder structure 
shown in Figure 8.

Figure 6 Example of an oemof.tabular Data Package folder tree.

|-- datapackage
|-- data

|-- elements
|-- demand.csv
|-- generator.csv
|-- storage.csv
|-- bus.csv

|-- sequences
|-- volatile-profiles.csv

|-- geometries
|-- buses.geojson

|-- scripts
|-- datapackage.json

Figure 7 Setting foreign keys in the JSON meta data file for 
cross referencing connected components.

...
"foreignKeys": [

{
"fields": "bus",
"reference": {

"fields": "name",
"resource": "bus"

}
}

]

Figure 8 Folder structure for a repository suitable for 
reproducible workflows.

|-- repository
|-- environment

|--requirements.txt
...

|-- raw-data
|-- scenarios

|--scenario1.toml
|--scenario2.toml
...

|-- scripts
|--create-datapackages.py
|--compute-datapackages.py

...
|-- datapackages

|-- scenario1
|-- scenario2

|-- results
|--scenario1

|--input
|--output

|-- scenario2
...
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1. Everything in the repository is (if possible) 
generated by scripts, version controlled, and 
documented to keep track of every step in result 
production and avoid manual data manipulation 
(rule 1, 2). Obviously, the repository is made publicly 
available (rule 10).

2. The raw-data directory contains all input data 
required to build the input Data Packages for the 
model. Ideally, raw data sources come with meta 
data information and open licenses. Unfortunately not 
all data published comes with such information which 
hinders reproducibility of workflows. Raw data can also 
be bundled on remote persistent storages like Zenodo 
[1], which are suitable for FAIR data distribution.

3. The scenarios directory allows to specify different 
scenarios and describes them in a basic way. The 
TOML format provides an easy and, if necessary 
nested structure. In addition to a description, 
configuration settings for constructing the input 
Data Packages can be specified in these files. Figure 

9 provides an example for a scenario file in the 
TOML format. This file can be used in the scripts to 
build Data Packages. Note that the user-specific 
build-scripts will need to interpret keys and values. 
Therefore, scenario files in the TOML format do not 
follow a specific standardized structure, except using 
the TOML language.

4. The scripts directory contains code to construct 
input Data Packages for scenarios based on the 
configuration .toml files and the raw-data (rule 2). 
In addition, a script to compute the scenario(s) can 
be stored there. If possible, raw data can also be 
downloaded from persistent sources (for example 
Zenodo) using scripts. Finally, this directory would 
also contain code for post processing data and for 
result visualization (rule 7).

5. Results are stored in the results directory. One 
important part is the separation of input and output 
data. Input data contains model specific exogenous 

model variables (in this context, oemof.tabular 
Data Packages). The output data directory contains 
endogenous model variables. Altogether, this step 
acknowledges rule 5 and 10 of the ten rules.

6. The open license and environment definition in 
combination with a version control system such as 
git allows to reproduce results on different operating 
systems (rule 3, 4 and 10).

An example of this workflow has been published for a 
model-based analysis of the German electricity system 
[9]. The energy system model covers the German power 
system with its neighboring countries. Similarly, the 
workflow has been applied in an analysis for flexibilisation 
of heat pumps [6].

It should be noted that energy modelers also need 
to acknowledge energy modeling specific best practices 
such as proposed by Decarolis et al. [3].

6 CONCLUSION

This paper introduces the application of the facade 
concept and the usage of Data Packages for the Open 
Energy System Modeling Framework (oemof). The 
concept has been implemented in the Python package 
oemof.tabular which is designed as an interface to 
instantiate energy system models with the oemof.
solph library from Tabular Data Packages. Using facades 
can (1) increase transparency by restricting generic 
components to energy specific components, (2) allow 
to build composed components and instantiate those 
from tabular data sources, (3) facilitate the application 
in teaching and capacity building environments and 
(4) allow for reproducible workflows. Additionally, the 
implementation based on the Data Package standard 
allows to store meta data of the model input data in a 
standardized way. To enable reproducibility of energy 
research results a workflow is proposed which is based 
on scientific literature.

ACKNOWLEDGEMENTS

The authors thank Clemens Wingenbach who took part 
in the important initial discussions on Data Packages as 
an input data format. In addition, the Open Modeling 
Initiative Workshops, with some valuable inspirations 
by Daniel Huppmann, have been very helpful for the 
development.

The work has partly been funded by the Federal 
Ministry of Economic Affairs and Energy, Germany (Grant 
Number: 03ET6122E). In addition we acknowledge 
financial support for the article processing charge by the 
state of Schleswig-Holstein, Germany within the funding 
program Open Access Publikationsfond.

Figure 9 Example TOML file with scenario specifications to build 
input Data Packages.

title = "Toy Scenario"
description = "Toy scenario for 3 Nodes"
name = "toy-scenario"

[scenario]
cost = "2030-high"
weather_year = 2011
year = 2030
pv_profiles = "ninja"
onshore_profiles = "emhires"
offshore_profiles = "emhires"

[buses]
electricity = ["DK", "NO", "SE"]
biomass = ["DK", "NO", "SE"]
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