
ISSUES IN RESEARCH

SOFTWARE

ABSTRACT
The paper describes how Data Packages can be used for creating reproducible
workflows in energy system modeling. The presented concept has been implemented
in the Python package oemof.tabular. The package is designed as an interface to
instantiate energy system models from tabular data sources based on the oemof.
solph library. To implement the data model, oemof.tabular extends the Open Energy
Modelling Framework (oemof) by facada classes. The developed data model allows
users to work with Data Packages and meta data information. The simplified tabular
data structure can be used for large energy system models as well as in teaching
environments leveraging functionalities of the already widely used oemof.solph library.

CORRESPONDING AUTHOR:
Simon Hilpert

Europa Universität Flensburg,
Germany

simon.hilpert@uni-flensburg.de

KEYWORDS:
energy system analysis;
renewable energy; energy
system modeling; open
science; reproducible
workflows

TO CITE THIS ARTICLE:
Hilpert S, Günther S, Söthe
M 2021 oemof.tabular –
Introducing Data Packages
for Reproducible Workflows
in Energy System Modeling.
Journal of Open Research
Software, 9: 6. DOI: https://doi.
org/10.5334/jors.320

SIMON HILPERT

STEPHAN GÜNTHER

MARTIN SÖTHE

*Author affiliations can be found in the back matter of this article

oemof.tabular – Introducing
Data Packages for
Reproducible Workflows in
Energy System Modeling

mailto:simon.hilpert@uni-flensburg.de
https://doi.org/10.5334/jors.320
https://doi.org/10.5334/jors.320
https://orcid.org/0000-0001-6625-3041

2Hilpert et al. Journal of Open Research DOI: 10.5334/jors.320

1 INTRODUCTION

Analyses of future energy systems are based on tools
for complex socio-techno-economic systems. The
complexity of these systems increases due to the
intermittent supply characteristics of renewable energies
which require high temporal and spatial resolution
modeling. Additionally, a higher interaction between
sectors such as heat, power and transport leads to the
need for comprehensive sector coupled approaches.
At the same time, a trend towards open source energy
(system) models can be observed in the energy system
modeling research field [15], as models have been
criticized for lack of transparency and reproducibility [17].

For energy system modelers, data handling including
input collection, processing and result analysis is one of
the most time-consuming tasks. Therefore, open source
and open data modeling approaches are put forward
as an argument for efficient use of resources [19]. Yet,
there is no standardized or broadly used model-agnostic
data container in the scientific field of energy system
modeling to hold energy system related data. In most
cases every software comes with its own logic relating
to input-data and output-data of the model. In addition,
the decision about how to create the required data sets
from raw data sources and the post-processing of result
data is often left to the user. Due to these two reasons,
re-use of data and more importantly reproducibility of
model results is a challenging task, even for experienced
modelers.

To improve reproducibility of model results and re-
usability of existing data, the following data model

description has been developed. Energy system related
data is stored in the Data Package format. The complete
reproducible workflow from raw-data to final results is
described for this data model. The data model has been
implemented in the Python package oemof.tabular [7]
which is based on the Open Energy Modeling Framework
(oemof). However, the concept is not restricted to this
package, but can be applied with other software as well.

2 BACKGROUND

Oemof is a powerful tool for the modeling of energy
systems [8]. Functionalities range from large linear
programming (sector coupled) market models [6, 23,
16] to detailed mixed integer heating system [2, 27]
or battery models to assess the profitability of power
plants in current and future market environments. The
underlying concept and its generic implementation
allows for this versatile application. It is based on a
bipartite graph structure, where nodes are partitioned
into buses and components. Most oemof components are
of a rather abstract type. For example the Transformer
class can be used to model different energy system
components such as power plants (1 input, 1 output) as
well as a heat pump (2 inputs, 1 output) or any other
conversion process. To illustrate the concept, Figure 1
shows a Transformer connected to different buses (1
input, 2 outputs) to model a combined heat and power
(CHP) plant.

The usage of the Python API for this component in
oemof.solph is shown in Figure 2.

CHP

Heat

Edge (CHP, Heat)

Elec

Gas

Edge (CHP, Elec)
Edge(Gas, CHP)

Figure 1 Illustration of a CHP plant model based on the oemof.solph Transformer class. Nodes are shown as ellipses/squares and
edges between the nodes are depicted as arrows.

import oemof.solph

Transformer(
label=’CHP’,
inputs={

Gas: Flow(variable_cost=0.6)},
outputs={

Elec: Flow(investment=Investment(ep_costs=50)),
Heat: Flow(nominal_value=40)}

conversion_factors={Elec: 0.4, Heat: 0.35})

Figure 2 Example of the oemof.solph Application Programming Interface (API) for a transformer component with one input and two
outputs.

https://doi.org/10.5334/jors.320

3Hilpert et al. Journal of Open Research DOI: 10.5334/jors.320

When building energy system models, data is often
stored in a tabular data format, for example, CSV
files, Excel files or relational databases. However, the
design and implementation of a generic tabular data
input processing tool for oemof.solph has proven to be
difficult. One of the reasons is that tables are a flat and
two dimensional data structure whereas oemof.solph’s
API utilizes a high degree of nested objects and data
structures. Mapping this nested approach onto flat tables
is a non-trivial task.

3 FACADES

Facilitating the task outlined above is one of the functions
oemof.tabular needs to accomplish. The package was
developed in order to allow the user to create an oemof
model via tabular data sources. This means that it must
also enable her to specify oemof.solph components using
such flat structures. In oemof.tabular, this is done by using
the façade design pattern first introduced introduced by
Gamma et al. in 1994 [5]. The facade design pattern has
two main purposes: 1. it provides a simple interface for
users to access functionalities of a complex subsystem and
2. it loosens the coupling of consumers of the subsystem’s
interface with the components of the subsystem.

Therefore, facade classes have the following
advantages when viewed in the context of oemof.tabular:

•	 Facades allow instantiation of models from two
dimensional data sources as they provide a simplified
interface to complex underlying structures.

•	 The simplified and thus restricted and less generic
mathematical representation leads a more
transparent modeling approach.

•	 The simplified interface is easy to use and integrate
within the context of teaching and capacity building.

•	 It also allows building an interface for composed
components which are constructed using multiple
oemof.solph objects.

•	 Facades can be used with a different back-end,
which allows the integration of other energy system
modeling frameworks which may not even have to
be written in the same programming language.

The implementation
A user of oemof and oemof.solph is expected to use
instances of classes from a particular class hierarchy
to build a model. Thus, facades are integrated into this
class hierarchy as a mix-in class: a facade to a specific
oemof.solph class is created by sub-classing it, mixing in
the Facade class via cooperative multiple inheritance and
then using the general facade methods to simplify the
interface of the original oemof.solph class.

This allows for a two step approach to build complex
components out of simple ones. One can first aggregate

a complex subsystem using composition, without having
to think about simplifying the interface of that system.
Simplifying the interface can be done in a second step by
creating a facade via inheritance.

The oemof.tabular package not only provides the
facade infrastructure, but also implements a number
of facades to regular simple oemof.solph components
as well as complex compositions of oemof.solph
components.

Since facades are integrated into oemof.solph’s class
hierarchy, the classes of all oemof.tabular components
are sub-classes of oemof.solph components, which
means that they can freely be mixed with all their more
generic parent class objects in a model. In addition, the
data model is extendable and could be applied for various
model generators, like for example PyPSA [13] or calliope
[21]. However, currently the implementation for reading
Data Packages is limited to oemof.tabular classes. The
facade concept as used in oemof.tabular has also proved
it’s applicability by being transported to and used in the
oemof.thermal [14] package.

The issue of transparency
Model generators such as oemof.solph can indeed simplify
energy system modeling. However, it is noteworthy that
this is a double-edged approach. Simplification for the
user always comes with drawbacks as the complexity
remains hidden from the user. Depending on the
parameters provided, different sets of constraints are
created. Nonetheless, resulting mathematical equations
are not visible at any stage of the modeling process.
Therefore, approaches like OSeMOSYS [11] can have a
higher level of transparency than other object oriented
model generators. As such models or model generators
are implemented in a pure algebraic modeling
language, every part of the model (variable definitions,
constraints, etc.) is clearly and transparently detectable
in the source code files. In the case of facades in oemof.
tabular, mathematical relations of the models and their
implementation are hidden by an additional layer of
classes. However, since the oemof.tabular API is less
generic and more restricted than the oemof.solph API,
the additional layer may actually increase transparency
compared to oemof.solph components by creating a
clear link between input-parameters and the resulting
mathematical model.

FACADE EXAMPLE: HYDRO RESERVOIR
MODELING
To illustrate the facade concept, subsequently an oemof.
tabular storage example is compared to the classical
oemof.solph approach. The oemof.solph package provides
a GenericStorage class to model different storages
such as batteries, hot water storages or pumped hydro-
electric storages. To model reservoir storages with an
inflow and possible spillage, a set of connected oemof.

4Hilpert et al. Journal of Open Research DOI: 10.5334/jors.320

solph components is required. To simplify modeling, the
Reservoir facade bundles these components and provides
a high level API access to a more complex underlying model.
Figure 3 provides an illustration of the Reservoir facade.

The facade class itself is a subclass of the
GenericStorage. However, to allow for a constant inflow
into the storage, an additional Source object is created.

The reservoir is modeled as a storage with a constant
inflow (x denote endogenous variables, c denote
exogenous variables):

,
_ ()

() (1) (1 ()) ()
()

flow out
level level loss rate profile

efficiency

x t
x t x t c t x t t T

c t
 (1)

_ _(0)level initial storage level capacityx c c (2)

The inflow is bounded by the exogenous inflow profile.
Thus, if the inflow exceeds the maximum capacity of the
storage, spillage is possible by setting xprofile(t) to lower
values.

 0 () ()profile profilex t c t t T (3)

The spillage of the reservoir is therefore defined by
cprofile(t) – xprofile(t). Additional constraints apply which have
been omitted in the description but can be retrieved from
the oemof documentation.

API comparison for the reservoir example
Subsequently, in Figure 4, the Python code to instantiate
this component is shown. In comparison to the
oemof.tabular code, the required oemof.solph code differs
significantly (see Figure 5). First of all, more objects with
a nested set of objects need to be instantiated (Flows,
Sources). This nested structure allows for a very flexible
modeling approach. However, it creates hurdles for
writing a generic data interface to instantiate all these
objects, due to the large set of possible combinations. In
contrast, the flat structure of the facade arguments allows
for a simple interface to tabular data. One additional
difference which can be observed is the (energy) specific
naming of attributes, for example efficiency, compared
to outflow_conversion_factor. As the Reservoir class is
a subclass of the GenericStorage class, some attributes

Figure 3 Illustration of a reservoir model in oemof.tabular.

Source

Storage

Bus

Edge (Storage, Bus)

Edge (Source, Storage)

Reservoir

Figure 4 API example for an oemof.tabular reservoir facade.

from oemof.tabular.facades import Reservoir
from oemof.solph import Bus

bus = Bus("Bus")
rsv = Reservoir(

label="rsv",
bus=bus,
carrier="water",
tech="reservoir",
storage_capacity=1000,
capacity=50,
profile=[1, 2, 6],
initial_storage_level=0,
efficiency=1)

5Hilpert et al. Journal of Open Research DOI: 10.5334/jors.320

of the parent class are also available in the child class
(initial_storage_level).

Even for comparably small systems, the example
underlines the advantages of the approach.

4 DATA PACKAGES

A Data Package is, in its simplest form, not more than
a valid JSON [4] file named “datapackage.json”. The file
contains meta data about data resources which can
be specified inline in the same file. For more complex
cases, data resources are stored in separate files inside
the directory containing the “datapackage.json” file. The
contents of the mentioned JSON file are standardized
via the Data Package specification [22]. An example
fragment of such a datapackage.json JSON file can be
seen in Figure 7. The Data Package has been extended
by other standards, which further refine the format and
contents of the meta data file and the resources to suit
different application contexts. Examples of this are Fiscal
Data Packages [25], meant to store fiscal data, as well
as Tabular Data Packages [26], which refine the original
Data Package [22] specification to handle table like data.
The latter combines the advantages of databases and
spreadsheets with the ubiquity and user-friendliness of
CSV files. Tabular Data Packages allow storing type meta
data and set primary keys as well as foreign keys across
resources, i.e. different CSV files. They are more lightweight
than databases and they are both, human readable and
easily processable in almost any programming language.
In recent years, different European projects in the field
of energy system modeling have decided to opt for Data
Packages to store model relevant data [18, 10]. Using
Data Packages in the correct manner also allows to
adhere to the FAIR principle of data handling proposed
by Wilkonsen et al. 2016 [29].

In the context of oemof.tabular, Data Packages
are used to hold information on the topology and

parameters of an energy system model instance. At a
minimum this includes all exogenous model variables
and associated meta data. However, it may also include
raw data and scripts for pre- and post processing. On
top of the Tabular Data Package structure an structure
an energy system specific logic is added, which adds
minimal additional constraints on the format of Tabular
Data Packages used to specify an oemof.tabular model,
while still keeping them valid Tabular Data Packages
according to the original specification. Therefore,
oemof.tabular requires the following parts in a Tabular
Data Package:

1. a directory named data containing at least one sub-
folder called elements, which may optionally contain
a directory called sequences and a directory called
geometries and

2. a valid meta-data .json file for the Data Package.

The exemplary folder tree of such a Data Package is
depicted in Figure 6.

As stated above, data inside Data Packages is
stored in so called resources, which, for a Tabular Data
Package, are CSV files. The columns of such resources
are referred to as fields. Therefore, field names of the
resources are equivalent to parameters of the energy
system elements and sequences. Connections between
components and buses can be defined via foreign keys.
These allow linking element fields to fields of other
elements stored in other resources. To reference the
name field of a resource with name bus a foreign key
can be set within the JSON meta data file using the
forgeinKeys key as shown in Figure 7.

To distinguish elements and sequences, these two
are stored in sub-directories of the data directory. In
addition geometrical information can be stored under
data/geometries in a .geojson format. To facilitate the
process of creating, processing and calculating a Data
Package, oemof.tabular offers several functionalities:

Figure 5 API example for a simple oemof.solph reservoir model.

from oemof.solph import (components, Source, Bus, Flow)

bus = Bus("Bus")
rsv_solph = components.GenericStorage(

label="rsv-solph",
nominal_storage_capacity=1000,
initial_storage_level=0,
outflow_conversion_factor=1,
outputs={bus: Flow(nominal_value=50)},
inputs={})

inflow = Source(
label="reservoir-inflow",
outputs={rsv_solph: Flow(nominal_value=1, max=[1, 2, 6],

fixed=False)})

6Hilpert et al. Journal of Open Research DOI: 10.5334/jors.320

•	 oemof.tabular.datapackage.building contains
functions to infer meta data, download raw data,
read and write elements, sequences etc.

•	 oemof.tabular.datapackage.processing contains
functions to process model results, which can be
used in the compute.py script.

•	 oemof.tabular.datapackage.aggregation allows
to aggregate time series to reduce model complexity.

5 REPRODUCIBLE WORKFLOWS

Reproducibility of results is a recurring point of discussions
in the energy system modeling community [17, 20].
These discussions have mainly been centered around the
availability of source code (open source) and data (open
data). Historically, for many prominent models neither the
source code nor all input data have been made available.
Thanks to new open source developments [8, 11, 13,
21] this has partly changed in recent years (for example
the open release of MESSAGEix [12]). However, not all
barriers have been removed yet. Firstly, closed models
are still being used for research purposes. Secondly, more
subtle barriers exist even for open source models. For one
of the first open source models, Balmoral [28], a GAMS
software license is required, which constitutes a barrier
to re-run computations. Another important issue is what
can be described as the difference between practical and
theoretical transparency. While for open source models

with open data theoretical reproducibility should be
possible, practical issues hamper such exercises. First of
all, not all necessary information may be given by the
respective authors. If provided, complexity of model
environments with poor documentation can make any
attempt time consuming. In these cases, reproducibility
is hardly possible from a practical point of view, even for
experienced researchers with domain-specific knowledge.

WORKFLOW DESCRIPTION
To improve reproducibilty of oemof.tabular-based
research, a structure and workflow is proposed which
is based on a the set of ten rules for reproducibility in
computational research presented by Sandve et al.
2013 [24]:

1. For every result, keep track of how it was produced
2. Avoid manual data manipulation steps
3. Archive the exact versions of all external programs

used
4. Version control all custom scripts
5. Record all intermediate results, when possible in

standardized formats
6. For analyses that include randomness, note

underlying random seeds
7. Always store raw data behind plots
8. Generate hierarchical analysis output, allowing

layers of increasing detail to be inspected
9. Connect textual statements to underlying results
10. Provide public access to scripts, runs, and results

The starting point of this workflow is the folder structure
shown in Figure 8.

Figure 6 Example of an oemof.tabular Data Package folder tree.

|-- datapackage
|-- data

|-- elements
|-- demand.csv
|-- generator.csv
|-- storage.csv
|-- bus.csv

|-- sequences
|-- volatile-profiles.csv

|-- geometries
|-- buses.geojson

|-- scripts
|-- datapackage.json

Figure 7 Setting foreign keys in the JSON meta data file for
cross referencing connected components.

...
"foreignKeys": [

{
"fields": "bus",
"reference": {

"fields": "name",
"resource": "bus"

}
}

]

Figure 8 Folder structure for a repository suitable for
reproducible workflows.

|-- repository
|-- environment

|--requirements.txt
...

|-- raw-data
|-- scenarios

|--scenario1.toml
|--scenario2.toml
...

|-- scripts
|--create-datapackages.py
|--compute-datapackages.py

...
|-- datapackages

|-- scenario1
|-- scenario2

|-- results
|--scenario1

|--input
|--output

|-- scenario2
...

7Hilpert et al. Journal of Open Research DOI: 10.5334/jors.320

1. Everything in the repository is (if possible)
generated by scripts, version controlled, and
documented to keep track of every step in result
production and avoid manual data manipulation
(rule 1, 2). Obviously, the repository is made publicly
available (rule 10).

2. The raw-data directory contains all input data
required to build the input Data Packages for the
model. Ideally, raw data sources come with meta
data information and open licenses. Unfortunately not
all data published comes with such information which
hinders reproducibility of workflows. Raw data can also
be bundled on remote persistent storages like Zenodo
[1], which are suitable for FAIR data distribution.

3. The scenarios directory allows to specify different
scenarios and describes them in a basic way. The
TOML format provides an easy and, if necessary
nested structure. In addition to a description,
configuration settings for constructing the input
Data Packages can be specified in these files. Figure

9 provides an example for a scenario file in the
TOML format. This file can be used in the scripts to
build Data Packages. Note that the user-specific
build-scripts will need to interpret keys and values.
Therefore, scenario files in the TOML format do not
follow a specific standardized structure, except using
the TOML language.

4. The scripts directory contains code to construct
input Data Packages for scenarios based on the
configuration .toml files and the raw-data (rule 2).
In addition, a script to compute the scenario(s) can
be stored there. If possible, raw data can also be
downloaded from persistent sources (for example
Zenodo) using scripts. Finally, this directory would
also contain code for post processing data and for
result visualization (rule 7).

5. Results are stored in the results directory. One
important part is the separation of input and output
data. Input data contains model specific exogenous

model variables (in this context, oemof.tabular
Data Packages). The output data directory contains
endogenous model variables. Altogether, this step
acknowledges rule 5 and 10 of the ten rules.

6. The open license and environment definition in
combination with a version control system such as
git allows to reproduce results on different operating
systems (rule 3, 4 and 10).

An example of this workflow has been published for a
model-based analysis of the German electricity system
[9]. The energy system model covers the German power
system with its neighboring countries. Similarly, the
workflow has been applied in an analysis for flexibilisation
of heat pumps [6].

It should be noted that energy modelers also need
to acknowledge energy modeling specific best practices
such as proposed by Decarolis et al. [3].

6 CONCLUSION

This paper introduces the application of the facade
concept and the usage of Data Packages for the Open
Energy System Modeling Framework (oemof). The
concept has been implemented in the Python package
oemof.tabular which is designed as an interface to
instantiate energy system models with the oemof.
solph library from Tabular Data Packages. Using facades
can (1) increase transparency by restricting generic
components to energy specific components, (2) allow
to build composed components and instantiate those
from tabular data sources, (3) facilitate the application
in teaching and capacity building environments and
(4) allow for reproducible workflows. Additionally, the
implementation based on the Data Package standard
allows to store meta data of the model input data in a
standardized way. To enable reproducibility of energy
research results a workflow is proposed which is based
on scientific literature.

ACKNOWLEDGEMENTS

The authors thank Clemens Wingenbach who took part
in the important initial discussions on Data Packages as
an input data format. In addition, the Open Modeling
Initiative Workshops, with some valuable inspirations
by Daniel Huppmann, have been very helpful for the
development.

The work has partly been funded by the Federal
Ministry of Economic Affairs and Energy, Germany (Grant
Number: 03ET6122E). In addition we acknowledge
financial support for the article processing charge by the
state of Schleswig-Holstein, Germany within the funding
program Open Access Publikationsfond.

Figure 9 Example TOML file with scenario specifications to build
input Data Packages.

title = "Toy Scenario"
description = "Toy scenario for 3 Nodes"
name = "toy-scenario"

[scenario]
cost = "2030-high"
weather_year = 2011
year = 2030
pv_profiles = "ninja"
onshore_profiles = "emhires"
offshore_profiles = "emhires"

[buses]
electricity = ["DK", "NO", "SE"]
biomass = ["DK", "NO", "SE"]

https://doi.org/10.5334/jors.320

8Hilpert et al. Journal of Open Research DOI: 10.5334/jors.320

COMPETING INTERESTS

The authors have no competing interests to declare.

AUTHOR AFFILIATIONS
Simon Hilpert orcid.org/0000-0001-6625-3041
Europa Universität Flensburg, Germany

Stephan Günther
Otto von Guerike University Magdeburg, Germany

Martin Söthe
Europa Universität Flensburg, Germany

REFERENCES

1. Zenodo – Research. Shared. https://zenodo.org/.

2. Boysen C, Kaldemeyer C, Hilpert S, Tuschy, I. Integration

of Flow Temperatures in Unit Commitment Models of Future

District Heating Systems. Energies. Mar. 2019; 12(6): 1061.

DOI: https://doi.org/10.3390/en12061061

3. DeCarolis J, Daly H, Dodds P, Keppo I, Li F, McDowall W,

Pye S, Strachan N, Trutnevyte E, Usher W, Winning M, Yeh

S, Zeyringer M. Formalizing best practice for energy system

optimization modelling. Applied Energy. May 2017; 194: 184–

198. DOI: https://doi.org/10.1016/j.apenergy.2017.03.001

4. ECMA. Standard ECMA-404 The JSON Data Interchange

Syntax; 2017.

5. Gamma E, Helm R, Johnson R, Vlissides J, Booch G. Design

Patterns: Elements of Reusable Object-Oriented Software.

Addison-Wesley Professional; 1994.

6. Hilpert S. Effects of Decentral Heat Pump Operation on

Electricity Storage Requirements in Germany. Energies.

June 2020; 13(11): 2878. DOI: https://doi.org/10.3390/

en13112878

7. Hilpert S, Günther S, Söthe M. oemof/oemof-tabular, June

2020. original-date: 2018-11-20T16:05:32Z. https://github.

com/oemof/oemof-tabular.

8. Hilpert S, Kaldemeyer C, Krien U, Günther S, Wingenbach

C, Plessmann G. The Open Energy Modelling Framework

(oemof) – A new approach to facilitate open science

in energy system modelling. Energy Strategy Reviews.

Nov. 2018; 22: 16–25. DOI: https://doi.org/10.1016/j.

esr.2018.07.001

9. Hilpert S, Söthe M, Wingenbach C. ANGUSII Scenarios:

German Energy System 2030. Zenodo, July 2019. DOI:

https://doi.org/10.5281/zenodo.3714708

10. Hotmaps. Hotmaps Toolbox; 2019. https://www.hotmaps-

project.eu/.

11. Howells M, Rogner H, Strachan N, Heaps C, Huntington

H, Kypreos S, Hughes A, Silveira S, DeCarolis J, Bazillian

M, Roehrl A. Osemosys: The open source energy modeling

system: An introduction to its ethos, structure and

development. Energy Policy. 2011; 39(10): 5850–5870.

Sustainability of biofuels. DOI: https://doi.org/10.1016/j.

enpol.2011.06.033

12. Huppmann D, Gidden M, Fricko O, Kolp P, Orthofer C,

Pimmer M, Kushin N, Vinca A, Mastrucci A, Riahi K, Krey

V. The MESSAGEix Integrated Assessment Model and

the ix modeling platform (ixmp): An open framework

for integrated and cross-cutting analysis of energy,

climate, the environment, and sustainable development.

Environmental Modelling & Software. Feb. 2019; 112: 143–

156. DOI: https://doi.org/10.1016/j.envsoft.2018.11.012

13. Hörsch J, Hofmann F, Schlachtberger D, Brown T.

PyPSA-Eur: An open optimisation model of the European

transmission system. Energy Strategy Reviews. Nov.

2018; 22: 207–215. DOI: https://doi.org/10.1016/j.

esr.2018.08.012

14. jnnr, FranziPl, Möller C, jakob wo, MaGering, Schönfeldt P,

Krien U, Kaldemeyer C, Günther S. oemof/oemof-thermal:

Amazing Absorption (v 0.0.3). July 2020. DOI: https://doi.

org/10.5281/zenodo.3929692

15. Lopion P, Markewitz P, Robinius M, Stolten D. A review of

current challenges and trends in energy systems modeling.

Renewable and Sustainable Energy Reviews. Nov. 2018; 96:

156–166. DOI: https://doi.org/10.1016/j.rser.2018.07.045

16. Maruf MNI. Sector Coupling in the North Sea Region—A

Review on the Energy System Modelling Perspective.

Energies. Nov. 2019; 12(22): 4298. DOI: https://doi.

org/10.3390/en12224298

17. Morrison R. Energy system modeling: Public transparency,

scientific reproducibility, and open development. Energy

Strategy Reviews. Apr. 2018; 20: 49–63. DOI: https://doi.

org/10.1016/j.esr.2017.12.010

18. OPSD. Open Power System Data – A platform for open data

of the European power system. 2019. https://open-power-

system-data.org/.

19. Pfenninger S, DeCarolis J, Hirth L, Quoilin S, Staffell I. The

importance of open data and software: Is energy research

lagging behind? Energy Policy. Feb. 2017; 101: 211–215.

DOI: https://doi.org/10.1016/j.enpol.2016.11.046

20. Pfenninger S, Hawkes A, Keirstead J. Energy systems

modeling for twenty-first century energy challenges.

Renewable and Sustainable Energy Reviews. 2014; 33:

74–86. DOI: https://doi.org/10.1016/j.rser.2014.02.003

21. Pfenninger S, Pickering B. Calliope: a multi-scale

energy systems modelling framework. Journal of Open

Source Software. Sept. 2018; 3(29): 825. DOI: https://doi.

org/10.21105/joss.00825

22. Pollock R, Walsh P. Data Package; 2007. https://specs.

frictionlessdata.io/data-package/.

23. Prina MG, Casalicchio V, Kaldemeyer C, Manzolini G,

Moser D, Wanitschke A, Sparber W. Multi-objective

investment optimization for energy system models in

high temporal and spatial resolution. Applied Energy.

Apr. 2020; 264: 114728. DOI: https://doi.org/10.1016/j.

apenergy.2020.114728

24. Sandve GK, Nekrutenko A, Taylor J, Hovig E. Ten Simple

Rules for Reproducible Computational Research. PLOS

Computational Biology. Oct. 2013; 9(10): e1003285. DOI:

https://doi.org/10.1371/journal.pcbi.1003285

https://orcid.org/0000-0001-6625-3041
https://orcid.org/0000-0001-6625-3041
https://zenodo.org/
https://doi.org/10.3390/en12061061
https://doi.org/10.1016/j.apenergy.2017.03.001
https://doi.org/10.3390/en13112878
https://doi.org/10.3390/en13112878
https://github.com/oemof/oemof-tabular
https://github.com/oemof/oemof-tabular
https://doi.org/10.1016/j.esr.2018.07.001
https://doi.org/10.1016/j.esr.2018.07.001
https://doi.org/10.5281/zenodo.3714708
https://www.hotmaps-project.eu/
https://www.hotmaps-project.eu/
https://doi.org/10.1016/j.enpol.2011.06.033
https://doi.org/10.1016/j.enpol.2011.06.033
https://doi.org/10.1016/j.envsoft.2018.11.012
https://doi.org/10.1016/j.esr.2018.08.012
https://doi.org/10.1016/j.esr.2018.08.012
https://doi.org/10.5281/zenodo.3929692
https://doi.org/10.5281/zenodo.3929692
https://doi.org/10.1016/j.rser.2018.07.045
https://doi.org/10.3390/en12224298
https://doi.org/10.3390/en12224298
https://doi.org/10.1016/j.esr.2017.12.010
https://doi.org/10.1016/j.esr.2017.12.010
https://open-power-system-data.org/
https://open-power-system-data.org/
https://doi.org/10.1016/j.enpol.2016.11.046
https://doi.org/10.1016/j.rser.2014.02.003
https://doi.org/10.21105/joss.00825
https://doi.org/10.21105/joss.00825
https://specs.frictionlessdata.io/data-package/
https://specs.frictionlessdata.io/data-package/
https://doi.org/10.1016/j.apenergy.2020.114728
https://doi.org/10.1016/j.apenergy.2020.114728
https://doi.org/10.1371/journal.pcbi.1003285

9Hilpert et al. Journal of Open Research DOI: 10.5334/jors.320

TO CITE THIS ARTICLE:
Hilpert S, Günther S, Söthe M 2021 oemof.tabular – Introducing Data Packages for Reproducible Workflows in Energy System
Modeling. Journal of Open Research Software, 9: 6. DOI: https://doi.org/10.5334/jors.320

Submitted: 30 January 2020 Accepted: 30 October 2020 Published: 05 May 2021

COPYRIGHT:
© 2021 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0
International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original
author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by Ubiquity Press.

25. Walsh P, Pollock R, Björgvinsson T, Bennett S, Kariv

A, Fowler D. Fiscal Data Package; 2014. https://specs.

frictionlessdata.io/fiscal-data-package/.

26. Wash P, Pollock R, Keegan M. Tabular Data Package; 2012.

https://specs.frictionlessdata.io/tabular-data-package/.

27. Wehkamp S, Schmeling L, Vorspel L, Roelcke F,

Windmeier K-L. District Energy Systems: Challenges and

New Tools for Planning and Evaluation. Energies. June 2020;

13(11): 2967. DOI: https://doi.org/10.3390/en13112967

28. Wiese F, Bramstoft R, Koduvere H, Pizarro Alonso A, Balyk

O, Kirkerud JG, Tveten AG, Bolkesjö TF, Münster M, Ravn

H. Balmorel open source energy system model. Energy

Strategy Reviews. Apr. 2018; 20: 26–34. DOI: https://doi.

org/10.1016/j.esr.2018.01.003

29. Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton

G, Axton M, Baak A, Blomberg N, Boiten J-W, da Silva

Santos LB, Bourne PE, Bouwman J, Brookes AJ, Clark T,

Crosas M, Dillo I, Dumon O, Edmunds S, Evelo CT, Finkers

R, Gonzalez-Beltran A, Gray AJ, Groth P, Goble C, Grethe

JS, Heringa J, ’t Hoen PA, Hooft R, Kuhn T, Kok R, Kok

J, Lusher SJ, Martone ME, Mons A, Packer AL, Persson

B, Rocca-Serra P, Roos M, van Schaik R, Sansone S-A,

Schultes E, Sengstag T, Slater T, Strawn G, Swertz MA,

Thompson M, van der Lei J, van Mulligen E, Velterop J,

Waagmeester A, Wittenburg P, Wolstencroft K, Zhao

J, Mons B. The FAIR Guiding Principles for scientific data

management and stewardship. Mar. 2016; 3: 160018. DOI:

https://doi.org/10.1038/sdata.2016.18

https://doi.org/10.5334/jors.320
https://doi.org/10.5334/jors.320
http://creativecommons.org/licenses/by/4.0/
https://specs.frictionlessdata.io/fiscal-data-package/
https://specs.frictionlessdata.io/fiscal-data-package/
https://specs.frictionlessdata.io/tabular-data-package/
https://doi.org/10.3390/en13112967
https://doi.org/10.1016/j.esr.2018.01.003
https://doi.org/10.1016/j.esr.2018.01.003
https://doi.org/10.1038/sdata.2016.18

