
SOFTWARE 

METAPAPER

ABSTRACT
CMakeCatchTemplate (https://github.com/MattClarkson/CMakeCatchTemplate) is a project 
to provide a starting structure for C++ projects configured with CMake, that can be 
customised to work in a variety of scenarios, allowing developers to deploy new 
algorithms to users in a shorter timeframe. Main features include a SuperBuild to build 
optional dependencies; unit tests using Catch; support for CUDA, OpenMP and MPI; 
examples of command line and GUI applications; Doxygen integration; Continuous 
Integration templates and support for building/deploying Python modules.

CORRESPONDING AUTHOR:
Thomas Dowrick

Wellcome EPSRC Centre for 
Interventional and Surgical 
Sciences, UCL

t.dowrick@ucl.ac.uk

KEYWORDS:
CMake; C++; Project template; 
Scaffolding

TO CITE THIS ARTICLE:
Dowrick T, Ahmed M, 
Thompson S, Hetherington 
J, Cooper J, Clarkson M 2021 
CMakeCatchTemplate: A C++ 
template project. Journal of 
Open Research Software, 9: 17. 
DOI: https://doi.org/10.5334/
jors.319

THOMAS DOWRICK 

MIAN AHMED

STEPHEN THOMPSON 

JAMES HETHERINGTON 

JONATHAN COOPER 

MATT CLARKSON 

*Author affiliations can be found in the back matter of this article

CMakeCatchTemplate: A 
C++ template project

https://github.com/MattClarkson/CMakeCatchTemplate
mailto:t.dowrick@ucl.ac.uk
https://doi.org/10.5334/jors.319
https://doi.org/10.5334/jors.319
https://orcid.org/0000-0002-2712-4447
https://orcid.org/0000-0001-7286-1326
https://orcid.org/0000-0001-6993-0319
https://orcid.org/0000-0001-6009-3542
https://orcid.org/0000-0002-5565-1252


2Dowrick et al. Journal of Open Research DOI: 10.5334/jors.319

1 INTRODUCTION

CMakeCatchTemplate was originally developed as a 
teaching aid for UCL’s Research Computing with C++ 
course, to demonstrate how a complex C++ project 
might be structured, and provide a starting point for 
student’s own projects. Subsequently, the project has 
been expanded upon and  is now employed as a template 
project for a range of C++ projects within the Wellcome/
EPSRC Centre for Interventional and Surgical Sciences 
(WEISS),1,2 as part of the SNAPPY library.3 By reducing the 
amount of boilerplate code and providing support for a 
range of common libraries for scientific computing, the 
template allows a developer to quickly prototype and 
release a new library.

In addition to scaffolding to provide the structure for a 
C++ project, particular features provided are:

1. A Meta-Build, also known as a SuperBuild, to 
optionally download and build any of the following: 
Boost, Eigen, FLANN, OpenCV, glog, gflags, VTK, PCL 
and ArrayFire. This results in a top-level build folder 
containing the compiled dependencies, and then 
a sub-folder containing the compiled code of this 
project.

2. A single library into which the user can code their 
main algorithms.

3. Unit tests using Catch.
4. A single command line application, to give the end 

user a minimalist runnable program.
5. Basic examples of how to create a Qt+VTK, 

Qt+OpenGL or QML+VTK user interface, ensuring the 
VTK render engine works in Qt or QML framework, 
on Windows, Linux and Mac. Qt installation is not 
included, and must be carried out separately.

6. CPack setup to produce installers for the GUI apps.
7. KWStyle config, to check for consistent code style 

(requires KWStyle installed on user’s system).
8. CppCheck config, to check for performance, style and 

correctness issues (requires CppCheck installed on 
user’s system).

9. Doxygen config, so you can generate documentation 
via make docs, or a DOCS task in Visual Studio.

10. GitHub CI, Travis and Appveyor examples, to register 
the code with a Continuous Integration service.

11. An example of the CMake required to build Python 
interfaces to your C++ code, using Boost.Python.

12. An example of the CMake required to build Python 
interfaces to your C++ code, using pybind11.4 Also 
includes an example of passing numpy/OpenCV data 
through Boost.Python, thanks to Gregory Kramida’s 
pyboostcvconverter.5

13. An example of the CMake required to export a 
C-style module into Unity.

14. Support for OpenMP, which is passed through to 
FLANN and OpenCV.

15. Support for CUDA, which is passed through to 
FLANN, OpenCV and PCL.

16. Support for MPI, which by default sets up the C++ 
libraries.

17. Support for Python Wheels, thanks to Matthew 
Brett’s multibuild.6

In practice, most developers will only require a subset 
of the available features for a particular project. We 
envisage a range of project types that might commonly 
be implemented:

•	 C++ library, with C++ command line interfaces.
•	 C++ library with C++ user interface, using Qt or QML.
•	 C++ library deployed as a Python module to PyPI, 

with separate Python code written outside of the 
project to make use of the module.

•	 Arrayfire/CUDA project.
•	 C++ library used in an environment such as Unity, 

which is developed outside of the project.

The template is a starting point for developers wishing 
to avoid some of the overheads associated with setting 
up a new project, but still requires input from the user to 
customise to their particular application, and a working 
knowledge of CMake to get the maximum benefit.

In addition to the combination of functionality 
listed above, which are not found in any single existing 
C++ project template,7 particular features which 
differentiate CMakeCatchTemplate include the ability 
to generate Python wheels, support for CUDA/OpenMP/
MPI, and examples usage for Qt/QML applications. 
Further, the laborious process of manually renaming/
editing files upon first creating a project, as is typically 
required when using other templates, is removed by the 
addition of the CMakeCatchTemplateRenamer8 helper 
script.

2 IMPLEMENTATION AND 
ARCHITECTURE

Features have been added over time based on feedback/
requests from users, who are typically C++ developers 
aiming to write a small algorithm library for  a particular 
application and get it into the hands of their users, who 
may not themselves be familiar with C++.

2.1 PROJECT STRUCTURE
The template provides a ready-made structure for C++ 
projects (Figures 1 and 2). The user can build on this 
structure by adding their own code, primarily in Code/Lib.

2.2 BUILD OPTIONS
Build options (Figure 3) can be passed to CMake depending 
on the external libraries required.

https://doi.org/10.5334/jors.319


3Dowrick et al. Journal of Open Research DOI: 10.5334/jors.319

2.3 PYTHON WHEELS
Deploying cross-platform Python wheels from C++ code 
can be a difficult process. To help, we have been inspired 
and assisted by Matthew Brett’s multibuild,9 with the 
included travis.yml and appveyor.yml used to deploy the 
example code included with CMakeCatchTemplate to 

PyPI.9 Users can re-use, or modify these configurations 
as needed.  

2.4 FURTHER CUSTOMISATION
We believe that it is preferable to provide tested code that 
may not be needed by all users, rather than requiring the 
user to spend time writing potentially complex CMake. 
However, once a user has established a working build 
for their particular needs, it is possible to pare down the 
codebase by removing segments that will no longer be 
needed. 

For example:

•	 In the Code directory, subfolders for GUIs or Python/
Unity bindings can be deleted if not required.

•	 3rd party libraries can be removed from the top 
level CMakeLists.txt e.g. by removing references to 
mpAddBoost or mpIncludeBoost.

•	 Unused items from the Utilities folder can be 
removed.

•	 CI files (.travis.yml, appveyor.yml, .github/workflows) 
can be modified/removed.

2.5 QUALITY CONTROL
Continous Integration (CI) is used to test a range of 
CMake build options, and provide example use cases. 

GitHub workflows are used to build/test some common 
configurations (Boost, OpenCV, PyBoost, PyBind, Qt) on 
an Ubuntu VM, which also provide a starting point for 
users to build their own projects. Workflows are stored in 
the .github/workflows directory.

A more complex example, of building a project and 
deploying to PyPI, is tested using Travis (Mac/Linux) and 
AppVeyor (Windows). Users can find more details in the 
.travis.yml and appveyor.yml files in the top level directory.

Further examples can be found in projects which have 
been derived from CMakeCatchTemplate – scikitsurgery-
opencvcpp[10 and scikit-surgerypclcpp,11 which each 
implement new algorithms within the /Code/Lib folders, 
and unit tests in /Testing. Again, the Travis and AppVeyor 
configuration files detail an up-to-date build procedure.

The default project structure includes some 
rudimentary unit tests. Once built, these tests are placed 
in the MYPROJECT-build/bin folder. The CI examples 
demonstrate how to run tests. The included tests serve 
to illustrate the structure/framework that has been 
implemented. Further unit tests should be added by the 
user once they have added their own code to the project.

3 AVAILABILITY 
OPERATING SYSTEM
Tested locally on:
Windows - Windows 8/10, VS2013, CMake 3.6.3, Qt 5.4.2 
Linux - Centos 7/Ubuntu 16, g++ 4.8.5, CMake 3.5.1, Qt 
5.6.2 

CMakeCatchTemplate 
│ CMakeLists.txt 
│ 
│ .travis.yml 
│ appveyor.yml  
├─.github 
│ └─workflows 
│ 
├─CMake 
│  
├─Code 
│ ├─CommandLineApps 
│ │   mpMyFirstApp.cpp 
│ │        
│ ├─GuiApps 
│ │ │    
│ │ ├─QMLVTKDemo 
│ │ ├─QOpenGLDemo         
│ │ └─QtVTKDemo 
│ │                
│ ├─Lib 
│ │   mpMyFunctions.cpp 
│ │        
│ ├─PythonBoost 
│ │   mpLibPython.cpp 
│ ├─PythonPyBind 
│ │   mpLibPython.cpp 
│ ├─UnityWrapper 
│ │   mpUnityWrapper.cpp 
│          
├─Documentation 
│           
├─multibuild 
│ 
├─Testing 
│            
└─Utilities 
  ├─CppCheck       
  ├─Doxygen 
  └─KWStyle             

Figure 1 Simplified file structure showing key project 
components.



4Dowrick et al. Journal of Open Research DOI: 10.5334/jors.319

Mac - OSX 10.10.5, clang 6.0, CMake 3.9.4, Qt 5.6.2
Refer to CI files for details on other test environments 
used.

PROGRAMMING LANGUAGE
C++ 11

ADDITIONAL SYSTEM REQUIREMENTS
None

DEPENDENCIES
CMake > 3.5
If Qt is enabled, minimum version is Qt5.

SOFTWARE LOCATION
Archive

Name: CMakeCatchTemplate
Persistent identifier: https://doi.org/10.5281/

zenodo.4954783

Licence: BSD 3-clause
Publisher: Zenodo
Version published: 0.3
Date published: 15/06/2021

Code repository
Name: CMakeCatchTemplate
Persistent identifier: https://github.com/MattClarkson/

CMakeCatchTemplate

Figure 2 Explanation of key directories/files.

.travis.yml 
 appveyor.yml 
.github/workflows/ 

CI scripts for Travis, AppVeyor and GitHub CI, 
testing various build options. 

CMakeLists.txt Top level CMake configuration. 

CMake/ CMake configuration files for local and externally 
build libraries. 

Code/CommandLineApps/ Example implementation of command line 
application, calling functions from 
Code/Lib/myMyFunctions.cpp. Includes optional 
functionality depending on build options (Boost, 
Eigen, OpenCV etc.). 

Code/GuiApps/ Example GUI applications using QtVTK, QMLVTK or 
QOpenGL, based on Model View Controller pattern. 

Code/Lib/ Main algorithms/library directory. New algorithms 
can be placed in mpMyFunctions.cpp/.h. 

Code/PythonBoost/ Code for Python wrapping using PythonBoost. 

Code/PythonPyBind/ Code for Python wrapping using PyBind. 

Code/UnityWrapper/ Code for Unity wrapping. 

Documentation/ License information for 3rd party libraries 

multibuild/ When building Python wheels for Mac/Linux, the 
multibuild library simplifies the process of deploying 
to different architectures. 

Testing/ Unit tests using the Catch framework. Tests 
implemented for mpMyFunctions (mpBasicTests) 
and mpMyFirstApp (mpCommandLineArgsTest). 

Utilities/ Configuration files for CppCheck, Doxygen and 
KWStyle. User should not have to edit these files. 

 

https://doi.org/10.5281/zenodo.4954783
https://doi.org/10.5281/zenodo.4954783
https://github.com/MattClarkson/CMakeCatchTemplate
https://github.com/MattClarkson/CMakeCatchTemplate


5Dowrick et al. Journal of Open Research DOI: 10.5334/jors.319

Licence: BSD 3-clause
Date published: 16/01/2020
Code repository: GitHub

LANGUAGE
C++/CMake

4 REUSE POTENTIAL 

This software can be used for rapid prototyping and 
deployment of novel C++ algorithms amongst research 

users, and also for teaching environments/student 
projects where CMake development is beyond the scope 
of the course material.

While long term support is not explicitly guaranteed for this 
project, the authors continue to maintain the repository and 
will reply to any GitHub issues raised, and this is not expected 
to change.  Further to this, the existing CI infrastructure will 
indicate if the software is still working as expected.

Users wishing to contribute towards the software 
could include additional libraries, develop new build/CI 
scripts for different applications, or share projects that 
they have made using the template.

Build option Notes 

BUILD_ArrayFire Enable ArrayFire build 

BUILD_Boost Enable Boost build 

BUILD_Eigen Enable Eigen build 

BUILD_OpenCV Enable OpenCV build 

BUILD_FLANN Enable FLANN build 

BUILD_PCL 
BUILD_PCL_VIS 

PCL_VIS not compatible with Python_Boost or 
PyBind. 

Requires BUILD_BOOST=ON, BUILD_EIGEN=ON 

BUILD_Python_Boost Enable Boost.Python for building Python Modules. 
Need to git clone --recursive to checkout submodules. 
Requires BUILD_BOOST=ON 

BUILD_Python_PyBind Enable PyBind for building Python modules.  
Need to git clone --recursive to checkout submodules. 

BUILD_SUPERBUILD Default is ON. If set to OFF, CMake will search for 
locally installed libraries (Boost, OpenCV, EIGEN etc.) 
rather than building from source. 

BUILD_SHARED_LIBS Set static or dynamic linking 

CMAKE_BUILD_TYPE Can be either “Debug” or “Release” 

BUILD_QMLVTKDemo Need to install/build Qt separately. 
Requires BUILD_VTK=ON, BUILD_SHARED_LIBS=ON 

BUILD_QOpenGLDemo Need to install/build Qt separately. 

BUILD_QtVTKDemo Need to install/build Qt separately. 
Requires BUILD_VTK=ON 

BUILD_TESTING Build unit tests (Default ON) 

BUILD_UNITY_WRAPPER Need to set MYPROJECT_UNITY_PLUGIN_DIR. 
Requires BUILD_SHARED_LIBS=OFF. 

BUILD_VTK  

BUILD_gflags Command line flags processor 

BUILD_glog Google logging module 

MYPROJECT_USE_CPPCHECK Enable Cppcheck static analysis support. Need to 
install cppcheck 

MYPROJECT_USE_KWSTYLE Enable KWStyle style checker support. Need to install 
KWStyle 

BUILD_Docs Build Docs using Doxygen. Need to install Doxygen 

Figure 3 Build options.



6Dowrick et al. Journal of Open Research DOI: 10.5334/jors.319

TO CITE THIS ARTICLE: 
Dowrick T, Ahmed M, Thompson S, Hetherington J, Cooper J, Clarkson M 2021 CMakeCatchTemplate: A C++ template project. Journal 
of Open Research Software, 9: 17. DOI: https://doi.org/10.5334/jors.319

Submitted: 30 January 2020     Accepted: 07 July 2021     Published: 16 July 2021

COPYRIGHT: 
© 2021 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 
International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by Ubiquity Press.

NOTES
1 https://github.com/UCL/scikit-surgeryopencvcpp.

2 https://github.com/UCL/scikit-surgerypclcpp.

3 https://weisslab.cs.ucl.ac.uk/WEISS/.
PlatformManagement/SNAPPY/wikis/home.

4 https://github.com/pybind/cmake_example.

5 https://github.com/Algomorph/pyboostcvconverter.

6 https://github.com/matthew-brett/multibuild.

7 https://github.com/TheLartians/ModernCppStarter.

 https://github.com/cginternals/cmake-init.

 https://github.com/Lectem/cpp-boilerplate.

 https://github.com/arnavb/cpp14-project-template.

 https://github.com/joshpeterson/cpp-template.

8 https://github.com/MattClarkson/CMakeTemplateRenamer.

9 https://pypi.org/project/CMakeCatchTemplate/.

10 https://github.com/UCL/scikit-surgeryopencvcpp.

11 https://github.com/UCL/scikit-surgerypclcpp.

FUNDING STATEMENT

This work has been funded by Wellcome/EPSRC 
[203145Z/16/Z].

COMPETING INTERESTS

The authors have no competing interests to declare.

AUTHOR AFFILIATIONS
Thomas Dowrick  orcid.org/0000-0002-2712-4447 
Wellcome EPSRC Centre for Interventional and Surgical 
Sciences, UCL

Mian Ahmed 
Wellcome EPSRC Centre for Interventional and Surgical 
Sciences, UCL

Stephen Thompson  orcid.org/0000-0001-7286-1326 
Wellcome EPSRC Centre for Interventional and Surgical 
Sciences, UCL

James Hetherington  orcid.org/0000-0001-6993-0319 
Centre for Advanced Research Computing, UCL

Jonathan Cooper  orcid.org/0000-0001-6009-3542 
Research Software Development Group, Research IT Services, 
UCL

Matt Clarkson  orcid.org/0000-0002-5565-1252 
Wellcome EPSRC Centre for Interventional and Surgical 
Sciences, UCL

https://doi.org/10.5334/jors.319
https://doi.org/10.5334/jors.319
http://creativecommons.org/licenses/by/4.0/
https://github.com/UCL/scikit-surgeryopencvcpp
https://github.com/UCL/scikit-surgerypclcpp
https://weisslab.cs.ucl.ac.uk/WEISS/PlatformManagement/SNAPPY/wikis/home
https://weisslab.cs.ucl.ac.uk/WEISS/PlatformManagement/SNAPPY/wikis/home
https://github.com/pybind/cmake_example
https://github.com/Algomorph/pyboostcvconverter
https://github.com/matthew-brett/multibuild
https://github.com/TheLartians/ModernCppStarter
https://github.com/cginternals/cmake-init
https://github.com/Lectem/cpp-boilerplate
https://github.com/arnavb/cpp14-project-template
https://github.com/joshpeterson/cpp-template
https://github.com/MattClarkson/CMakeTemplateRenamer
https://pypi.org/project/CMakeCatchTemplate/
https://github.com/UCL/scikit-surgeryopencvcpp
https://github.com/UCL/scikit-surgerypclcpp
https://orcid.org/0000-0002-2712-4447
https://orcid.org/0000-0002-2712-4447
https://orcid.org/0000-0001-7286-1326
https://orcid.org/0000-0001-7286-1326
https://orcid.org/0000-0001-6993-0319
https://orcid.org/0000-0001-6993-0319
https://orcid.org/0000-0001-6009-3542
https://orcid.org/0000-0001-6009-3542
https://orcid.org/0000-0002-5565-1252
https://orcid.org/0000-0002-5565-1252

