
Pluta, A and Lünsdorf, O 2020 esy-osmfilter – A Python Library to
Efficiently Extract OpenStreetMap Data. Journal of Open Research
Software, 8: 19. DOI: https://doi.org/10.5334/jors.317

Journal of
open research software

SOFTWARE METAPAPER

esy-osmfilter – A Python Library to Efficiently Extract
OpenStreetMap Data
Adam Pluta and Ontje Lünsdorf
DLR Institute of Networked Energy Systems – Energy Systems Analysis, DE
Corresponding author: Adam Pluta (adam.pluta@dlr.de)

OpenStreetMap is the largest freely accessible geographic database of the world. The necessary processing
steps to extract information from this database, namely reading, converting and filtering, can be very
consuming in terms of computational time and disk space.

esy-osmfilter is a Python library designed to read and filter OpenStreetMap data under optimization
of disc space and computational time. It uses parallelized prefiltering for the OSM pbf-files data in order
to quickly reduce the original data size. It can store the prefiltered data to the hard drive. In the main
filtering process, these prefiltered data can be reused repeatedly to identify different items with the help
of more specialized main filters. At the end, the output can be exported to the GeoJSON format.

Keywords: OSM; OpenStreetMap; Python; GeoJSON; PBF; Protocol buffers; GeoJSON; geo
Funding statement: This work was funded as part of DLR Institute for Networked Energy Systems
project SciGRID_gas by the German Federal Ministry for Economic Affairs and Energy (BMWi) within the
funding of the 6. Energieforschungsprogramm der Bundesregierung. Funding Code: 03ET4063.

(1) Overview
Introduction
OpenStreetMap (OSM) is a powerful and freely accessible
database of geo-referenced objects with continuously
increasing data coverage and data quality. The open access
policy of OSM contributes to many research areas. In the
field of energy system modelling, for example, it has been
used successfully in the creation of power grid models [1]
or for the optimisation of flexibility options in urban areas
[2, 3]. In general, within OSM data, items can be identified
by relevant key-value pairs, called tags. However, the
correct identification of relevant tags can be an iterative
process. Often, it will require the user to repeatedly
filter the data and adapt the used filters. It can be very
inefficient to filter the whole OSM data files repeatedly as
they can be quite large (pbf-file Europe 2019: 20.6 GB). For
this reason, it is of advantage to optimize these processes,
especially if they are applied to big data. esy-osmfilter is
a direct outcome of the SciGRID_gas project.1 The library
can read OSM pbf-files, which are downloadable from
geofabrik.2

Within the SciGRID_gas project, esy-osmfilter has been
used to extract European gas transport pipelines from
OSM and further to identify other relevant components
(e.g. gas compressor stations, pipeline marker, gas
storages) of the European gas transport network.

Outside of Python, such tasks could also be realised
with popular tool as IMPOSM3 or OSMOSIS.4 The first is

a PostgreSQL/PostGIS tool, the second is a JAVA open
source command-line software. The authors of this work
have only personal experience with the tool OSMOSIS.
From their point of view, the OSMOSIS syntax is not very
user friendly if used for sophisticated filter operations.

OSM element types
The performance of filtering OSM data scales not only
with the size of the underlying pbf-file and the complexity
of the defined filter rules but also with the count and
type of each identified OSM element. The three standard
OSM element types, are explained in details on the
OpenStreetMap webpage.5 However, we give a brief
summary. Each OSM item contains a unique ID and
optionally meta information in the form of a list of key-
value pairs.

•	 OSM Nodes are geo-referenced points on the surface
of earth. They are used to represent smaller standalone
features, for instance traffics signals or benches. The
are also referenced in OSM Ways, to define the shape
of a way.

•	 OSM Ways can represent linear features as rivers
and roads or boundaries of areas such as buildings
or forests.

•	 OSM Relations represents relationships between
nodes, ways and/or other relations. They can repre-
sent a bus route or complex areas with holes.

https://doi.org/10.5334/jors.317
mailto:adam.pluta@dlr.de

Pluta and Lünsdorf: esy-osmfilter – A Python Library to Efficiently Extract OpenStreetMap DataArt. 19, page 2 of 6

Obviously, the identification of ways requires a second
filter loop for the referenced nodes. In the case of relations,
this even requires recursive looping over the referenced
nodes, relation members in order to find sub-sequential
OSM elements.

Performance
The performance of esy-osmfilter has been compared
to the performance of OSMOSIS on an Intel(R) Xeon(R)
CPU E5-2630 v2 2.60GHz machine, which has 24 CPUs.
For the comparison we have chosen to filter all ways
and referenced nodes of the tags “railway:tram” and
“railway:tram_stop” from three different sized pbf-files
[2.2 MB, 59 MB, 707 MB] on a linux machine.

The performance of esy-osmfilter [0.6s, 8.9s, 98.45s] has
been consistently about four times as fast as OSMOSIS
[2.8s, 36.0s, 416.5s]. Both performances are depicted in
Figure 1.

However, we do not state that our software outperforms
established software in every case, as this statement would
require more testing. Nevertheless, we expect that the real
time advantage for the user can be much larger if he uses
the esy-osmfilter structure appropriately. The user could
use a very permeable prefilter once and than reuse the
stored prefiltered data in the data dictionary to customize
his black and whitefilters. This will significantly reduce the
computational cost for each reuse.

Implementation
This Python library has been tested on Unix and Windows.
On some older windows machines we noticed problems
with the python multiprocessing library. As workaround,
the user can switch of the multiprocessing, as described in
the documentation.

Architecture
OSM objects are stored in OSM pbf-files, which serve as
a input to esy-osmfilter. The second input consists of the
three customizable filters: a) prefilter, b) whitefilter,
and c) blackfilter. They are described in more detail in
the documentation.6 In Figure 2 we demonstrate the
workflow of the esy-osmfilter, which consist of a read
phase, a prefilter phase and a mainfilter phase.

In the read phase, the internal blocks in the pbf-file are
read with the help of the esy-osm-pbf library.

In the prefilter phase, the esy-osmfilter takes advantage
of the pbf-file block structure. It reduces the computational
time for the prefiltering by parallelizing this process. This is
done with the help of the standard python multiprocessing
module. In this phase, the user can define a customizable
prefilter with complex filter rules for all OSM element
types, namely nodes, ways, and relations. The prefilter
searches for the all OSM items which fulfill the filter rules.
Additionally, it also searches for the references and relation
members of these items, which are equally OSM items by
themselves, and stores all items in the Data dictionary.
Here, we give a brief overview of the stored items:

•	 nodes
•	 ways + way nodes
•	 relations + relation nodes

+ member ways
+ way nodes

During the mainfilter phase our library applies the user
defined whitefilters and blackfilters to select specific items
from the Data dictionary. These items are stored in the
Elements dictionary, which can subsequently be written to a
pickle-file for quick reuse or to a human-readable JSON-file.

Figure 1: Performance comparison of esy-osmfilter and OSMOSIS for the same filter operation in 3 different-sized
pbf-files.

Pluta and Lünsdorf: esy-osmfilter – A Python Library to Efficiently Extract OpenStreetMap Data Art. 19, page 3 of 6

It should be emphasised again that the Elements dictionary
contains only those items from the Data dictionary, which
directly fulfil the main filter rules. However, all referenced
nodes and relation members can still be accessed by their
IDs from the Data dictionary.

Export to GeoJSON
GeoJSON is an open format for geographic data. It is
compatible with geographic information system (GIS)
applications or the very popular python shapely library.7
Further it is also easily convertible to other popular
data formats (e.g. shapefiles). esy-osmfilter provides the
function export_geojson which takes both, the Data and
the Elements dictionary, as input. Therefrom, it constructs
GeoJSON Line or Point objects, which are finally stored
in a GeoJSON file. This procedure is demonstrated in the
already mentioned sample.py file. It has to be noted, that
the conversion with export_geojson to other GeoJSON
object types as Polygons, MultiPoints, MultiLineStrings
and MultiPolygons is currently not implemented.
However, this might change with future updates.

Visualisation
The visualisation of the final results is beyond the scope
of esy-osmfilter. However, the user can drag and drop the
resulting GeoJSON files on the map at https://geojson.io
to visualise the results in no time.

Installation
To install on Linux run ‘sudo python setup.py install’.

Usage
The usage of this tool is well documented in the README.
md file provided in the GitLab repository mentioned
below. The tool is also accompanied by an executable
sample file sample.py, which guides the user through the
download of pbf-files, the usage of the different filters and
the conversion of the filter results towards the GeoJSON

format. We strongly recommend new users to download
this file from the repository and simply customizing it to
their own needs. Please find further information on this
topic in the esy-osmfilter online documentation.8

Quality control
The filter results of esy-osmfilter for European gas pipelines
in June 2020 are displayed in Figure 3. We compare them
visually to the results produced by the IMPOSM extraction
tool, which are displayed in Figure 4 and taken from
openinframap.9 Obviously inframap has intentionally
removed short OSM ways from their map for a better
visibility. However, this might even result in the loss of
some longer pipelines, as some are internally constructed
from very short OSM ways. Besides that, both gas pipeline
networks appear very similar.

To make further comparisons available, we have also
used esy-osmfilter together with historical European pbf-
files from 2014 to 2019 to create a video of the annual gas
pipeline data within the OSM database.10

In order to confirm that our application delivers the
same filter results as established tools, we have also
used OSMOSIS to reproduce the results from sample.py,
described in the usage section of the documentation.11
This comparison is based on finding all pipelines within
the accompanied pbf-file (liechtenstein-191101.osm.pbf).
In both cases we have only identified the same two drain
pipelines named “Wäschgräble” and “Wäschgräbli”.

Developer Tests
Developer-tests have been implemented under esy-
osmfilter/test, which can confirm the integrity of esy-
osmfilter. They can be executed manually with the
execution of pytest module from the main program folder.
In addition, comparable tests have been implemented in
the README.md file which can be executed with python
module doctest. They are automatically executed with
each push to GitLab.

Figure 2: Diagram of the esy-osmfilter architecture.

https://geojson.io

Pluta and Lünsdorf: esy-osmfilter – A Python Library to Efficiently Extract OpenStreetMap DataArt. 19, page 4 of 6

Figure 3: European gas transport pipelines extracted from OSM with esy-osmfilter in June 2020.

Figure 4: European gas (black) and oil (orange) transport pipelines from openinframap extracted from OSM with
IMPOSM in June 2020. Image colors have been enhanced.

Pluta and Lünsdorf: esy-osmfilter – A Python Library to Efficiently Extract OpenStreetMap Data Art. 19, page 5 of 6

(2) Availability
Operating system
OS and Windows

Programming language
Python > 3.6

Dependencies
esy-osm-pbf
protobuf

Software location
Name: Zenodo
 Persistent identifier: https://doi.org/10.5281/zenodo.
3874597
Licence: GNU GPL v3.0
Date published: 06/03/2020
Version: 1.0.7

Code repository
Name: GitLab
Identifier: https://gitlab.com/dlr-ve-esy/esy-osmfilter
Licence: GNU GPL v3.0
Date published: 02/11/2020
Version: 1.0.7

Language
English

(3) Reuse potential
This software can be used for most purposes, which
involve the extraction of geographic infrastructure from
the OSM database. This can be realized by the adaption of
the customizable filters to the relevant OSM tags. In the
reference section, we give some examples for the potential
reuse potential of our application. Also, an introduction
to OpenStreetMap in geographic information science can
be found in the book of Arsanjani et al. [4].

Limitations
We have noticed the current two limitations:

• Bounding boxes/bounding polygon files
	 esy-osmfilter does not allow for regional filtering via

bounding boxes or bounding polygon files. However,
we do not regard this as a real limitation, as pbf-files
are available on different regional levels. Due to the
fast performance of esy-osmfilter, users can filter the
results for an upper level pbf-file and afterwards filter
the GeoJSON files for the desired specific region, which
is a very easy task.

 Alternatively, one can use OSMOSIS to prefilter pbf-
files to a desired sub-region and write the filter results
back to a pbf-file, which is a one line command.

•	 Export of Relations
 The current version of the export_geojson function

can not export entire relations to complex GeoJSON

objects, as mentioned earlier. This functionality
has not been implemented as it was needed within
the scope of the SciGRID_gas project. We believe
that such a functionality in the export_geojson
could be very useful. Therefore, we are considering
the implementation of such a feature with a future
update.

Support
Support is currently provided via GitLab issues. You can
also contact the developers via email.

Notes
 1 https://www.gas.scigrid.de/.
 2 https://download.geofabrik.de/.
 3 https://imposm.org/.
 4 https://learnosm.org/en/osm-data/osmosis/.
 5 https://wiki.openstreetmap.org/wiki/Elements.
 6 https://dlr-ve-esy.gitlab.io/esy-osmfilter/.
 7 https://pypi.org/project/Shapely/.
 8 https://gitlab.com/dlr-ve-esy/esy-osmfilter.
 9 https://openinframap.org/.
 10 https://www.gas.scigrid.de/pdfs/GasPipelines_his-

tory_new.mp4.
 11 https://dlr-ve-esy.gitlab.io/esy-osmfilter/usage.html.

Acknowledgements
These authors like to acknowledge the contribution of Jan
Diettrich and Jan Dasenbrock to the overall project.

Competing Interests
The authors have no competing interests to declare.

References
1. Medjroubi, W, Philipp Müller, U, Scharf, M,

Matke, C and Kleinhans, D 2017 Open data in power
grid modelling: New approaches towards transparent
grid models. Energy	Reports, 3: 14–21. DOI: https://
doi.org/10.1016/j.egyr.2016.12.001

2. Alhamwi, A, Medjroubi, W, Vogt, T and Agert, C
Apr 2017 GIS-based urban energy systems models
and tools: Introducing a model for the optimization
of flexibilisation technologies in urban areas. Applied	
Energy, 191: 1–9. DOI: https://doi.org/10.1016/j.
apenergy.2017.01.048

3. Alhamwi, A, Medjroubi, W, Vogt, T and Agert, C
2017 Openstreetmap data in modelling the urban
energy infrastructure: a first assessment and analysis.
In Proceedings	 of	 the	 9th	 International	 Conference	
on	 Applied	 Energy, 142: 1968–1976. Elsevier. DOI:
https://doi.org/10.1016/j.egypro.2017.12.397

4. Arsanjani, J J, Zipf, A, Mooney, P and Helbich, M
2015 An introduction to openstreetmap in geographic
information science: Experiences, research, and
applications. In OpenStreetMap	 in	 GIScience, 1–15.
Springer. DOI: https://doi.org/10.1007/978-3-319-
14280-7_1

https://doi.org/10.5281/zenodo.3874597
https://doi.org/10.5281/zenodo.3874597
https://gitlab.com/dlr-ve-esy/esy-osmfilter
https://www.gas.scigrid.de/
https://download.geofabrik.de/
https://imposm.org/
https://learnosm.org/en/osm-data/osmosis/
https://wiki.openstreetmap.org/wiki/Elements
https://dlr-ve-esy.gitlab.io/esy-osmfilter/
https://pypi.org/project/Shapely/
https://gitlab.com/dlr-ve-esy/esy-osmfilter
https://openinframap.org/
https://www.gas.scigrid.de/pdfs/GasPipelines_history_new.mp4
https://www.gas.scigrid.de/pdfs/GasPipelines_history_new.mp4
https://dlr-ve-esy.gitlab.io/esy-osmfilter/usage.html
https://doi.org/10.1016/j.egyr.2016.12.001
https://doi.org/10.1016/j.egyr.2016.12.001
https://doi.org/10.1016/j.apenergy.2017.01.048
https://doi.org/10.1016/j.apenergy.2017.01.048
https://doi.org/10.1016/j.egypro.2017.12.397
https://doi.org/10.1007/978-3-319-14280-7_1
https://doi.org/10.1007/978-3-319-14280-7_1

Pluta and Lünsdorf: esy-osmfilter – A Python Library to Efficiently Extract OpenStreetMap DataArt. 19, page 6 of 6

How to cite this article: Pluta, A and Lünsdorf, O 2020 esy-osmfilter – A Python Library to Efficiently Extract OpenStreetMap
Data. Journal of Open Research Software, 8: 19. DOI: https://doi.org/10.5334/jors.317

Submitted: 27 January 2020 Accepted: 22 June 2020 Published: 01 September 2020

Copyright: © 2020 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

OPEN ACCESSJournal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press.

https://doi.org/10.5334/jors.317
http://creativecommons.org/licenses/by/4.0/

	(1) Overview
	Introduction
	OSM element types
	Performance
	Implementation
	Architecture
	Export to GeoJSON
	Visualisation
	Installation
	Usage
	Quality control
	Developer Tests

	(2) Availability
	Operating system
	Programming language
	Dependencies
	Software location
	Code repository

	Language

	(3) Reuse potential
	Limitations
	Support

	Notes
	Acknowledgements
	Competing Interests
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4

