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ABSTRACT
Smurf is an open source modular system developed in Python for running and cycling 
data assimilation (DA) systems. It is organised around three super classes for numerical 
model management, assimilation schemes and observation instruments. Any new 
item can be easily plugged in by defining a child class that will override as many 
methods as necessary. Non intrusive, Smurf can be used in any applicative domain for 
numerical models written in any language.
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INTRODUCTION

Data assimilation (DA) aims to reduce the uncertainties in 
a modelled system by correcting the initial and boundary 
conditions, the current state, and the parameters of this 
system. Firstly developed in the sixties by meteorologists 
[12, 2, 4], it has widely spread through different domains 
within geosciences (ocean, hydrology, atmospheric 
chemistry, …), and different schemes have been designed 
(variational, filtering, …). DA is schematically presented 
in Figure 1 and DA variables are represented along with 
their uncertainty. A focus is made on filtering algorithm 
hereafter for illustrative purposes only, but it should 
be noted that any other scheme can nevertheless be 
implemented in SMURF. The classical form of the Kalman 
Filter (KF) [7] is illustrated in Figure 1a and the ensemble 
Kalman filter (EnKF) [3] is illustrated in Figure 1b. KF 
stands in two steps: the prediction and the analysis that 
are sequenced over assimilation cycles indexed by k in 
the following. The first step of DA consists of defining the 
control vector x that gathers the control variables, i.e. the 
quantities to correct. The control vector is propagated 
from time tk to time tk+1 by the operator Mk,k+1, a numerical 
model generally. At DA cycle k, the values firstly assigned 
to these quantities are provided either by the user, 
a previous simulation, or an estimate, and form the 
background vector xb

k (represented by blue dots in Figure 1 
along with its associated uncertainties whose covariance 
matrix is noted Bk). When the quantities are of the 
same nature as the available observations yo

k they can 
easily be compared to these observations (represented 
by green stars in Figure 1 along with their associated 
uncertainties whose covariance matrix is noted Rk), 
possibly by using interpolation. When the corrected 
quantities and the observations are of a different nature, 
an observation operator Hk (or tangent linear Hk) must be 
used to define the model counterpart in the observation 
space. Whether the observation operator is simple 
(interpolation) or complex (a dedicated model or the 
model itself), it is used to calculate the innovation vector 

dk, i.e. the difference between the observations and the 
model counterparts. The analysis step then provides 
an analysis vector xa

k (represented by red squares in 
Figure 1 along with its associated uncertainties whose 
covariance matrix is noted A), i.e. the control vector 
whose values are corrected by adding an increment to 
the background vector as displayed in Eq. 1. Calculating 
the increment is then done by defining a gain matrix Kk 
(filtering DA) to weight the innovations as displayed in 
Eq. 2. In the prediction step, the analysis is propagated 
over time and provides the background vector xb

k+1 for 
the next assimilation cycle k+1 (Eq. 3). The analysis can 
be computed at each observation time, or over a time 
window within which several observations are available:
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The background and observation accuracy is accounted 
for by involving the covariance matrices of their respective 
errors. The background error covariance matrix Bk can 
either be static by defining a unique matrix that is used 
all along the simulation, or it can be recomputed using 
the errors of the moment. For example, in the EnKF, an 
ensemble of analysis vectors (red squares in Figure 1b) 
is computed from an ensemble of background vectors 
(blue dots in Figure 1b). The background (resp. analysis) 
error covariance matrix is computed stochastically 
using a Monte Carlo technique from the ensemble of N 
background (resp. analysis) values represented in Figure 

1b (Eq. 4):

 
b b b b .

1
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DA systems are often constructed around a specific 
numerical model and for a particular scheme. Although 
this structure allows the implementation of appropriate 

Figure 1 Data assimilation scheme. (a) At each cycle k of the KF, an analysis (red squares) is calculated from the comparison of the 
background (blue dots) with the observation (green stars). (b) At each cycle k of the EnKF, an ensemble of analyses (red squares) is 
calculated from the comparison of each background (blue dots) with the observation (green stars).
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and ad hoc algorithms, it can make it difficult and 
time consuming to implement new schemes, to take 
into account new observation types, or to change the 
numerical solver for the physics involved, especially for 
huge systems such as Numerical Weather Prediction 
(NWP) or Ocean Prediction. To address this issue, technical 
infrastructures such as OOPS1 (Object Oriented Prediction 
System) at ECMWF (European Center for Medium-range 
Weather Forecasting) and JEDI2 (Joint Effort for Data 
assimilation Integration) at NCAR (National Center for 
Atmospheric Research) have been designed. These 
infrastructures aim to couple different components of a 
DA system.

A lot of different institutes have developed their own 
DA codes for their own purposes. Some systems have 
also been developed with a view to being shared, either 
for research or training purposes. For example DART3 
(Data Assimilation Research Testbed) [1] at NCAR, written 
in Fortran 90 and distributed via a subversion repository 
(SVN), has already been used with different geophysical 
models (atmospheric chemistry, ocean, climate, …). It 
provides different sequential assimilation algorithms and 
particle filters, with Matlab post-processing scripts. For 
small to medium systems, DAPPER4 (Data Assimilation 
with Python: a Package for Experimental Research) [9] 
at NERSC (Nansen Environmental and Remote Sensing 
Center), written in Python and available under github, 
provides a large choice of assimilation algorithms 
(variational, sequential and particle filters) to be used 
with some academic models (e.g Lorenz). It has been 
used in research studies on assimilation methodology 
and for training purposes. A list of alternative projects is 
available on the DAPPER page.

The Smurf project comes from the requirement to 
design a DA system in Python for different hydraulic 
models with current and future observations, with as 
little as possible intrusion in the solvers. It seemed to us 
that designing a new architecture under this requirement 
would be more appropriate than reshaping an existing 
DA system. Even though the first desired method was 
an EnKF, other assimilation schemes are planned.  
Smurf answers the need for a modular system where 
new models, new assimilation schemes and new 
observation types can be plugged in easily. Smurf is thus 
not restricted to hydraulics but can be used in any other 
domain for small to medium systems. Non intrusive, it 
does not constrain the language the model is written in, 
it only requires to be able to launch a simulation with a 
set of new values for the control vector and to retrieve 
output quantities of interest. Smurf also manages 
the cycling of the assimilation corrections during the 
simulation, and the archiving of data. For flexibility 
purposes, the experiments are set up easily using 
external configuration files.

APPLICATIONS

Smurf is currently used in a hydraulic research project 
to prepare for the SWOT (Surface Water and Ocean 
Topography) mission5 that should be launched in 2021. 
The altimetry instrument on board SWOT is expected to 
provide water level observation maps at high-resolution 
for rivers over 100 meters wide. The project aims to study 
the merits of assimilating SWOT data to represent and 
forecast river discharge for ungauged catchments. So 
far, the one-dimensional solver Mascaret6 [5] has been 
used with Smurf to show the benefit of using SWOT-like 
observations in terms of mean and root mean square 
error for the water elevation [8].

On-going work in collaboration with CSIRO-Data61 
(Commonwealth Scientific and Industrial Research 
Organisation, Data61) aims to improve crowd evacuation 
modelling with the PiXIE7 solver [13]. In this study, Smurf 
is used to correct parameters related to social interaction 
and forces that influence the behaviour of agents in a 
room they must evacuate. The correction is calculated 
by assimilating snapshots of the evacuation (cumulated 
number of evacuated people) as well as the total time of 
evacuation [10].

In the domain of geological reservoir modelling, OPM8 
(Open Porous Media) has been plugged in to Smurf. The 
aim is to study history matching, i.e. to try and recover 
a geological configuration from oil/gas/water rates 
measurements in a well.

DEMONSTRATION

For pedagogical purposes, the toy model Barbatruc9 
developed at CERFACS has been plugged in to Smurf. 
Barbatruc solves the two-dimensional Navier-Stokes 
equations to study the expansion of a passive tracer 
source, e.g. a pollutant. The tracer source is specified 
as a simple scalar at a particular location within a 
squared domain. The model parameters ρ (density) and 
ν (kinematic viscosity) are set up, and a forcing term is 
defined at the western domain boundary to mimic the 
effect of a pressure-driven channel (u_west). The Navier-
Stokes equations are integrated over time and the solver 
outputs the horizontal components of the velocity, 
pressure and passive tracer fields.

Validation of a DA system, is conveniently achieved in 
the framework of twin experiments. First, a deterministic 
reference experiment is set up assuming “true” values 
for the model parameters (MP), the initial (IC) and 
the boundary conditions (BC). Observations are then 
generated by extracting values of observed fields at 
chosen locations and times. A random noise is added to 
these values to simulate an observation error. Assuming 
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now that the MP, the IC and the BC are unknown, a priori 
values are set up for a deterministic control experiment. 
The output fields of the control show errors compared 
with the reference outputs. Assimilating observations 
in a third experiment (assimilation experiment), aims 
to correct the MP, the IC and the BC in order to reduce 
these errors, and hence brings output fields closer to the 
reference fields.

For the demonstration, twin experiments are carried 
out for two different cases: 1) MP and BC correction; 2) IC 
correction. The setup for each experiment is summarised 
in Table 1. The Navier-Stokes equations are integrated 
for 0.1 s, and the fields are recorded every 0.01 s. 
Observations are generated from the reference tracer 
field every 10 grid points at 0.05 s and 0.09 s, and an 
unbiased random normal error with a standard deviation 
of 10–5 is added. The assimilation experiments use an 
EnKF DA algorithm with 12 members split on 4 processors.  
The size of the ensemble is limited for the demonstration 
to avoid any computation resource requisite. Each 
member of the ensemble is generated using a control 
vector whose values are drawn from a uniform law in the 
range defined in Table 1.

The experiments are assessed using classical DA 
diagnostics for both test cases. Firstly, the final tracer 
field (at t = 0.1 s) is plotted for the reference (Figure 2) 
experiment, using green cross symbols to show the 
position of the observations assimilated in both test 
cases. Histograms of the background and analysis values 
are plotted for the different variables of the control 
vector, showing the possible reduction of the ensemble 
spread (uncertainty reduction) and recentering of the 
ensemble towards the reference values (Figures 4 and 
6). The root mean square (RMS) of the error between the 
control or assimilation final tracer field and the reference 
final tracer field is plotted (Figures 3 and 5).

In the first testing case, the MP ρ and ν, and the 
BC u_west are included in the control vector while the 
location and magnitude of the source (IC) are assumed 
to be known. As expected, assimilating the observations 
(Figure 3b) significantly reduces the RMS of the final tracer 
field error with respect to the reference experiment, 
compared to the control experiment (Figure 3a). As 
shown in Figure 4b and 4c, the ensemble spread for ν and 

u_west is smaller and centered closer to the reference 
values after DA analysis. No significant correction is seen 
for ρ (Figure 4a), suggesting that within the considered 
range, it has little significant influence on the tracer field.

In the second testing case, the MP ρ and ν, and the BC 
u_west are assumed to be known, while the location and 
magnitude of the source (IC) are included in the control 
vector. It should be noted that moving the source south 
west of the reference position reduces the RMS error 
north east of the true position (Figure 5a). As expected, 
assimilating the observations (Figure 5b) significantly 
reduces the RMS of the final tracer field error with respect 
to the reference experiment, compared to the control 
experiment (Figure 5a). We note, however, that there is 
still an important RMS error west of the true position. This 
is explained by the corrected position that is properly 
centered around the reference value 10 (Figure 6a) on the 
y-axis while en error remains for the correction on the 
x-axis (Figure 6b) with analysed value lower (around 8.5) 
than the reference value (10), i.e. west to the reference 
value. Regarding the source magnitude (Figure 6c), 
the correction allows for a significant reduction for all 
members, bringing the analysis closer to the reference 
value as expected.

Other DA diagnostics are used for both test cases 
although not shown in the paper. The uncertainty 
reduction is measured by comparing the norm of the 

MP BC IC

ρ ν u_west y x magnitude

Reference 1.0 1.0 20.0 10 10 1.0

Control 1 5.0 0.5 10.0 10 10 1.0

Assim 1 и[0.5, 8.5] и[0.2, 1.2] и[0.0, 20.0] 10 10 1.0

Control 2 1.0 1.0 20.0 12 8 2.0

Assim 2 1.0 1.0 20.0 и[10, 14] и[6, 10] и[1.0, 3.0]

Table 1 Set up of the twin experiments for the model parameters (MP), the boundary conditions (BC) and the initial condition (IC).

Figure 2 Final tracer field (t = 0.1 s) of the reference 
experiment. The green cross symbols show the locations of 
the observations.
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background and analysis error covariance matrices. The 
correlations between the control vector variables are 
plotted, showing spurious off-diagonal correlations due 
to the small size of the ensemble. The RMS of the error 
between observations and background (innovations) or 
analysis model counterpart are plotted at the observation 

locations, showing a reduction of the error for the latter. 
Another diagnostics shows the rank diagram of the 
observations, i.e. the distribution of the observations 
compared to the distribution of the ensemble members. 
This diagnostics allows us to check if the ensemble is 
correctly generated.

Figure 3 Test case 1: root mean square of the final tracer field error (t = 0.1 s) with respect to the reference experiment. The green 
cross symbols show the locations of the observations.

Figure 4 Test case 1: histogram of the parameter values before (blue) and after (red) DA analysis.

https://doi.org/10.5334/jors.312
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IMPLEMENTATION AND 
ARCHITECTURE

The Smurf repository contains three main sub-directories: 
Smurf that contains the source code divided into several 

directories sheltering the python files depending on 
their nature (models, assim, observations, …); testing_
case that contains some examples (see section Quality 
Control); templates that contains skeletons to help 
plugging in other models or observation instruments to 
Smurf as well as configuration file templates.

Figure 5 Test case 2: root mean square of the final tracer field error (t = 0.1 s) with respect to the reference experiment. The green 
cross symbols show the locations of the observations.

Figure 6 Test case 2: histogram of the source position and magnitude before (blue) and after (red) DA analysis.

https://doi.org/10.5334/jors.312
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Smurf is driven by the class Experiment that 
manages the cycling of the experiment, the directories, 
the archiving, and the calls required to perform the 
simulation, as shown in Figure 7. The mother classes 
Model, Assim and Instrument define the attributes and 
methods required to plug in a model, an assimilation 
scheme and an observation instrument, respectively. A 
daughter class must be defined each time a new item 
is plugged in, inheriting methods from its mother class, 
but also overriding as many methods as required. A 
class Perturbation allows Monte Carlo methods such 
as the EnKF to generate the different members of 
the ensemble, using, for example uniform laws as in 
the section Demonstration. This class relies mainly 
on the Python package ot-batman [11] to sample the 
perturbations, although alternative methods could be 
added to read external perturbations. The common 
sub-directory contains basic functions and redefines 
classes such as Vector and Matrix. The background and 
observation error covariance matrices are daughter 
classes of Matrix, although sheltered by the sub-
directory covariances. The class ObsVector in the sub-
directory observations represents the observation 
vector and is a daughter class of Vector. Finally a 
class PostProcessing carries out the assessment of the  
experiments.

So far, four different numerical models have been 
plugged in Smurf: Barbatruc (toy model for fluid dynamics, 
Python), Mascaret (one-dimensional hydraulics, Fortran 
90 with python application programming interfaces), 
PiXIE (crowd dynamics and evacuation, C++) and OPM 
(porous media processes, C++). The numerical models 
themselves are not distributed within Smurf, except 
for Barbatruc, and must be installed before they can 
be used with Smurf. Associated with the numerical 
models, different observation instruments are available: 
Barbametre (tracer values; Barbatruc), Gauge (limnimetric 
stations; Mascaret), Chronos (final time of evacuation; 
PiXIE) and Clicker (cumulated number of people 
evacuated at a specific time; PiXIE), WellInstrument 
(well measurements; OPM). Whilst the Smurf daughter 
classes Barbatruc and Mascaret are available publicly 
along with their instruments, the model and instrument 
classes for PiXIE and OPM are available on demand, 
only on dedicated git branches. A Swot instrument and 
its three variants SwotPixelCloud, SwotRiverReach and 
SwotRiverNode are currently under development and 
will be available once the definitive format of the SWOT 
data is confirmed. In terms of assimilation schemes, the 
stochastic EnKF is the only algorithm available at the 
moment. Smurf is in constant evolution and other items 
will be added to the existing structure.

Figure 7 Smurf architecture. The different colors refer to the different classes: Experiment (blue), Model (purple), Assim (red), 
Instrument (green) and Perturbation (orange). Lines ending with an arrow indicate the next step in the chain, whereas lines ending 
with a dot indicate a call to another class method. Dashed lines are specific to ensemble systems such as the EnKF.

https://doi.org/10.5334/jors.312
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When running an ensemble method (EnKF), Smurf is 
able to launch several numerical simulations (Innovation, 
Propagation and Forecast steps of Figure 7) simultaneously 
in parallel, using the pathos package. Since some classes 
might not be serialisable (Fortran code, NetCDF4 data, 
…), the lists of model and instrument instantiations are 
kept out of the classes Experiment and Assim and used 
as global variables during the instantiation. A list of the 
object identifiers rather than the objects themselves 
is then defined as an attribute within the classes. The 
objects are recovered when needed using the package 
ctypes.

Smurf conforms to the PEP810 coding convention 
except for a few variable names that contain capital 
letters, because of their obvious meaning for data 
assimilators (B, R, Hxb, …) [6]. Smurf is developed 
using the JetBrains Community Edition IDE (Integrated 
Development Environment) PyCharm.11

QUALITY CONTROL

Smurf classes are tested on their own during their 
development. Moreover, in the main sub-directory 
testing_case, configuration files are provided to run 
and assess twin experiments for each plugged model 
(Pixie and Opm are available on demand only). A 
README.md file helps understanding and running the  
tests.

For Barbatruc, the test consists of running the 
twin experiments described previously in the section 
Demonstration. For Mascaret, the test proposes to run 
the model on a 50-kilometre reach of the Garonne (South 
of France) from Tonneins to La Réole, via Marmande. 
Hourly water height observations at Le Mas d’Agenais 
and Marmande are assimilated to correct the Strickler 
coefficients and the upstream discharge. This test 
requires the numerical code Mascaret.

For each model, the testing case contains different 
files to configure the experiment:

•	 configrun.yml: configuration of the experiment
•	 config_EnKF.yml: configuration of the EnKF
•	 parameter_Model.yml: description of the Model 

parameters
•	 test.py: script for running Smurf
•	 construct_obs.py: script for constructing observations 

from a reference experiment
•	 postproc.py: script for assessing the experiment

A directory Observations contains a default observation 
file. Depending on the model, some extra files or 
directories are available. For Barbatruc, config_case.yml 
file is provided to configure the model. For Mascaret, a 
directory Garonne contains the configuration and restart 
files required by the model.

The testing cases are also used as non-regressive tests 
and are hence performed after each new implementation 
or modification in Smurf on linux personal computers 
(fedora 26), MacBook laptops and HPC clusters, depending 
on the physical model. Results are then compared to 
previous results obtained before the changes.

(2) AVAILABILITY
PROGRAMMING LANGUAGE
Smurf is written in Python 3 and has been tested with 
Anaconda Python 3.6 and 3.7.

ADDITIONAL SYSTEM REQUIREMENTS
The requirement in terms of memory depends mainly on 
the physical model used.

DEPENDENCIES
The following packages are required for Smurf

•	 numpy >= 1.15
•	 pathos >= 0.2
•	 matplotlib >= 3.0
•	 pyyaml >= 3.12
•	 ot-batman >= 1.9
•	 barbatruc == 0.0.2

For the Swot instruments, the package netCDF4 >= 1.5 is 
also required.
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•	 Isabelle Mirouze (CECI, CNRS UMR5318): author
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•	 OPM:
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SOFTWARE LOCATION

The master branch, the development branch and the 
Opm and Pixie branches are archived on the CERFACS 
nitrox repository and are available under specific 
registration only.

CODE REPOSITORY
Name: nitrox.cerfacs
 Persistent identifier: https://nitrox.cerfacs.fr/globc/Smurf.

git

Licence: Cecill B
Publisher: Isabelle Mirouze
Version published: 1.0.1
Date published: 15/11/2019

The master branch is mirrored on gitlab repository and is 
publicly available without any registration.

MIRROR
Name: gitlab
 Persistent identifier: https://gitlab.com/cerfacs/Smurf. 

git

Licence: Cecill B
Date published: 15/11/2019

The master branch v1.0.1 has been released on 
the Python Package Index under the name Smurf-
CERFACS and is available for installation using pip.  
It is also available under the Zenodo reference http://

doi.org/10.5281/zenodo.4432513.

LANGUAGE
Smurf is integrally written in English.

(3) REUSE POTENTIAL

Using the models already plugged in but for a different 
configuration than the one defined in the testing_case 
sub-directory is straightforward. It is simply done 
by modifying the configuration files configrun.yml, 
config_EnKF.yml, and parameter_Model.yml (where 
Model is the name of the physical model), and possibly 
adapting the scripts construct_obs.py and postproc.py. 
The input files classically required by the physical model 
must also be provided. In the sub-directory templates, 
templates for the experiment configuration, the 
assimilation configuration and the model parameters 
are provided with an explanation of the items.

Assimilating observations from a new instrument can 
be done using the template template_new_instrument.
py. This template is a skeleton describing the different 
attributes and methods in order to guide the definition 
of the new instrument. The template must be copied in 
the Smurf/observations directory under the name of the 
new instrument.

Similarly, it is possible to plug in a new model using 
the template template_new_model.py. This template is a 
skeleton describing the different attributes and methods 
in order to guide the definition of the new model. The 
template must be copied in the Smurf/models directory 
under the name of the new model. Associated with 
the new model, a parameter file must be defined using 
the template template_parameter.yml. This file is the 
file pointed to by the item model: parameter of the 
experiment configuration file.

No template currently exists for plugging in a new DA 
scheme. This can however be done following the mother 
class assim and overriding methods for calculating the 
innovations, the increments, …

Thanks to its architecture detailed previously, Smurf 
can be reused in any applicative domain requiring 
DA. New projects are currently starting, in hydrology 
and two-dimensional hydraulics. Moreover, new 
collaborations are envisaged for flood extent and micro-
meteorology, as well as with the OpenTURNS12 initiative. 
Any other collaboration is welcome and can be initiated 
by contacting Sophie Ricci (ricci@cerfacs.fr). As previously 
mentioned, the master branch is available freely 
under the Cecill B license. It can therefore be used and 
developed outside any collaboration. However, due to 
limited human resources, the authors do not guarantee 
support for the use and development of Smurf, for 
instance through gitlab issues. In case help is needed, the 
users are welcome to contact the authors to investigate 
possible collaboration.

NOTES
1 https://www.ecmwf.int/en/newsletter/153/news/progress-

running-ifs-4d-var-under-oops.

2 https://jointcenterforsatellitedataassimilation-jedi-docs.
readthedocs-hosted.com/en/latest/index.html.

3 http://www.image.ucar.edu/DAReS/DART/index.html.

4 https://github.com/nansencenter/DAPPER.

5 https://swot.cnes.fr/en/mission-1 and https://swot.jpl.nasa.gov/
mission.htm.

6 www.opentelemac.org.

7 https://research.csiro.au/pixie/.

8 https://opm-project.org/.

9 https://cerfacs.fr/coop/barbatruc.

10 https://www.python.org/dev/peps/pep-0008/.

11 https://www.jetbrains.com/pycharm/.

12 http://www.openturns.org.
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