
SOFTWARE

METAPAPER

ABSTRACT
Smurf is an open source modular system developed in Python for running and cycling
data assimilation (DA) systems. It is organised around three super classes for numerical
model management, assimilation schemes and observation instruments. Any new
item can be easily plugged in by defining a child class that will override as many
methods as necessary. Non intrusive, Smurf can be used in any applicative domain for
numerical models written in any language.

CORRESPONDING AUTHOR:
Isabelle Mirouze

CECI, CNRS UMR 5318

isabelle.mirouze31@gmail.com

KEYWORDS:
Data Assimilation; EnKF;
History Matching; Python;
Hydraulics; Toy Model

TO CITE THIS ARTICLE:
Mirouze, I and Ricci, S 2021
Smurf: System for Modelling
with Uncertainty Reduction,
and Forecasting. Journal of
Open Research Software, 9: 2.
DOI: https://doi.org/10.5334/
jors.312

ISABELLE MIROUZE

SOPHIE RICCI

*Author affiliations can be found in the back matter of this article

Smurf: System for Modelling
with Uncertainty Reduction,
and Forecasting

mailto:isabelle.mirouze31@gmail.com
https://doi.org/10.5334/jors.312
https://doi.org/10.5334/jors.312
https://orcid.org/0000-0002-5954-3056
https://orcid.org/0000-0002-4232-5626

2Mirouze and Ricci Journal of Open Research DOI: 10.5334/jors.312

INTRODUCTION

Data assimilation (DA) aims to reduce the uncertainties in
a modelled system by correcting the initial and boundary
conditions, the current state, and the parameters of this
system. Firstly developed in the sixties by meteorologists
[12, 2, 4], it has widely spread through different domains
within geosciences (ocean, hydrology, atmospheric
chemistry, …), and different schemes have been designed
(variational, filtering, …). DA is schematically presented
in Figure 1 and DA variables are represented along with
their uncertainty. A focus is made on filtering algorithm
hereafter for illustrative purposes only, but it should
be noted that any other scheme can nevertheless be
implemented in SMURF. The classical form of the Kalman
Filter (KF) [7] is illustrated in Figure 1a and the ensemble
Kalman filter (EnKF) [3] is illustrated in Figure 1b. KF
stands in two steps: the prediction and the analysis that
are sequenced over assimilation cycles indexed by k in
the following. The first step of DA consists of defining the
control vector x that gathers the control variables, i.e. the
quantities to correct. The control vector is propagated
from time tk to time tk+1 by the operator Mk,k+1, a numerical
model generally. At DA cycle k, the values firstly assigned
to these quantities are provided either by the user,
a previous simulation, or an estimate, and form the
background vector xb

k (represented by blue dots in Figure 1
along with its associated uncertainties whose covariance
matrix is noted Bk). When the quantities are of the
same nature as the available observations yo

k they can
easily be compared to these observations (represented
by green stars in Figure 1 along with their associated
uncertainties whose covariance matrix is noted Rk),
possibly by using interpolation. When the corrected
quantities and the observations are of a different nature,
an observation operator Hk (or tangent linear Hk) must be
used to define the model counterpart in the observation
space. Whether the observation operator is simple
(interpolation) or complex (a dedicated model or the
model itself), it is used to calculate the innovation vector

dk, i.e. the difference between the observations and the
model counterparts. The analysis step then provides
an analysis vector xa

k (represented by red squares in
Figure 1 along with its associated uncertainties whose
covariance matrix is noted A), i.e. the control vector
whose values are corrected by adding an increment to
the background vector as displayed in Eq. 1. Calculating
the increment is then done by defining a gain matrix Kk
(filtering DA) to weight the innovations as displayed in
Eq. 2. In the prediction step, the analysis is propagated
over time and provides the background vector xb

k+1 for
the next assimilation cycle k+1 (Eq. 3). The analysis can
be computed at each observation time, or over a time
window within which several observations are available:

 ,= +a b
k k k kx x K d (1)

 –1()= + ,T T
k k k k k k kK B H H B H R (2)

b

1 1, 1+ + ().= b
k k k kMx x (3)

The background and observation accuracy is accounted
for by involving the covariance matrices of their respective
errors. The background error covariance matrix Bk can
either be static by defining a unique matrix that is used
all along the simulation, or it can be recomputed using
the errors of the moment. For example, in the EnKF, an
ensemble of analysis vectors (red squares in Figure 1b)
is computed from an ensemble of background vectors
(blue dots in Figure 1b). The background (resp. analysis)
error covariance matrix is computed stochastically
using a Monte Carlo technique from the ensemble of N
background (resp. analysis) values represented in Figure

1b (Eq. 4):

b b b b .

1
(–)(–)=

–1
T

k k k k kN B x x x x (4)

DA systems are often constructed around a specific
numerical model and for a particular scheme. Although
this structure allows the implementation of appropriate

Figure 1 Data assimilation scheme. (a) At each cycle k of the KF, an analysis (red squares) is calculated from the comparison of the
background (blue dots) with the observation (green stars). (b) At each cycle k of the EnKF, an ensemble of analyses (red squares) is
calculated from the comparison of each background (blue dots) with the observation (green stars).

https://doi.org/10.5334/jors.312

3Mirouze and Ricci Journal of Open Research DOI: 10.5334/jors.312

and ad hoc algorithms, it can make it difficult and
time consuming to implement new schemes, to take
into account new observation types, or to change the
numerical solver for the physics involved, especially for
huge systems such as Numerical Weather Prediction
(NWP) or Ocean Prediction. To address this issue, technical
infrastructures such as OOPS1 (Object Oriented Prediction
System) at ECMWF (European Center for Medium-range
Weather Forecasting) and JEDI2 (Joint Effort for Data
assimilation Integration) at NCAR (National Center for
Atmospheric Research) have been designed. These
infrastructures aim to couple different components of a
DA system.

A lot of different institutes have developed their own
DA codes for their own purposes. Some systems have
also been developed with a view to being shared, either
for research or training purposes. For example DART3
(Data Assimilation Research Testbed) [1] at NCAR, written
in Fortran 90 and distributed via a subversion repository
(SVN), has already been used with different geophysical
models (atmospheric chemistry, ocean, climate, …). It
provides different sequential assimilation algorithms and
particle filters, with Matlab post-processing scripts. For
small to medium systems, DAPPER4 (Data Assimilation
with Python: a Package for Experimental Research) [9]
at NERSC (Nansen Environmental and Remote Sensing
Center), written in Python and available under github,
provides a large choice of assimilation algorithms
(variational, sequential and particle filters) to be used
with some academic models (e.g Lorenz). It has been
used in research studies on assimilation methodology
and for training purposes. A list of alternative projects is
available on the DAPPER page.

The Smurf project comes from the requirement to
design a DA system in Python for different hydraulic
models with current and future observations, with as
little as possible intrusion in the solvers. It seemed to us
that designing a new architecture under this requirement
would be more appropriate than reshaping an existing
DA system. Even though the first desired method was
an EnKF, other assimilation schemes are planned.
Smurf answers the need for a modular system where
new models, new assimilation schemes and new
observation types can be plugged in easily. Smurf is thus
not restricted to hydraulics but can be used in any other
domain for small to medium systems. Non intrusive, it
does not constrain the language the model is written in,
it only requires to be able to launch a simulation with a
set of new values for the control vector and to retrieve
output quantities of interest. Smurf also manages
the cycling of the assimilation corrections during the
simulation, and the archiving of data. For flexibility
purposes, the experiments are set up easily using
external configuration files.

APPLICATIONS

Smurf is currently used in a hydraulic research project
to prepare for the SWOT (Surface Water and Ocean
Topography) mission5 that should be launched in 2021.
The altimetry instrument on board SWOT is expected to
provide water level observation maps at high-resolution
for rivers over 100 meters wide. The project aims to study
the merits of assimilating SWOT data to represent and
forecast river discharge for ungauged catchments. So
far, the one-dimensional solver Mascaret6 [5] has been
used with Smurf to show the benefit of using SWOT-like
observations in terms of mean and root mean square
error for the water elevation [8].

On-going work in collaboration with CSIRO-Data61
(Commonwealth Scientific and Industrial Research
Organisation, Data61) aims to improve crowd evacuation
modelling with the PiXIE7 solver [13]. In this study, Smurf
is used to correct parameters related to social interaction
and forces that influence the behaviour of agents in a
room they must evacuate. The correction is calculated
by assimilating snapshots of the evacuation (cumulated
number of evacuated people) as well as the total time of
evacuation [10].

In the domain of geological reservoir modelling, OPM8
(Open Porous Media) has been plugged in to Smurf. The
aim is to study history matching, i.e. to try and recover
a geological configuration from oil/gas/water rates
measurements in a well.

DEMONSTRATION

For pedagogical purposes, the toy model Barbatruc9
developed at CERFACS has been plugged in to Smurf.
Barbatruc solves the two-dimensional Navier-Stokes
equations to study the expansion of a passive tracer
source, e.g. a pollutant. The tracer source is specified
as a simple scalar at a particular location within a
squared domain. The model parameters ρ (density) and
ν (kinematic viscosity) are set up, and a forcing term is
defined at the western domain boundary to mimic the
effect of a pressure-driven channel (u_west). The Navier-
Stokes equations are integrated over time and the solver
outputs the horizontal components of the velocity,
pressure and passive tracer fields.

Validation of a DA system, is conveniently achieved in
the framework of twin experiments. First, a deterministic
reference experiment is set up assuming “true” values
for the model parameters (MP), the initial (IC) and
the boundary conditions (BC). Observations are then
generated by extracting values of observed fields at
chosen locations and times. A random noise is added to
these values to simulate an observation error. Assuming

https://doi.org/10.5334/jors.312

4Mirouze and Ricci Journal of Open Research DOI: 10.5334/jors.312

now that the MP, the IC and the BC are unknown, a priori
values are set up for a deterministic control experiment.
The output fields of the control show errors compared
with the reference outputs. Assimilating observations
in a third experiment (assimilation experiment), aims
to correct the MP, the IC and the BC in order to reduce
these errors, and hence brings output fields closer to the
reference fields.

For the demonstration, twin experiments are carried
out for two different cases: 1) MP and BC correction; 2) IC
correction. The setup for each experiment is summarised
in Table 1. The Navier-Stokes equations are integrated
for 0.1 s, and the fields are recorded every 0.01 s.
Observations are generated from the reference tracer
field every 10 grid points at 0.05 s and 0.09 s, and an
unbiased random normal error with a standard deviation
of 10–5 is added. The assimilation experiments use an
EnKF DA algorithm with 12 members split on 4 processors.
The size of the ensemble is limited for the demonstration
to avoid any computation resource requisite. Each
member of the ensemble is generated using a control
vector whose values are drawn from a uniform law in the
range defined in Table 1.

The experiments are assessed using classical DA
diagnostics for both test cases. Firstly, the final tracer
field (at t = 0.1 s) is plotted for the reference (Figure 2)
experiment, using green cross symbols to show the
position of the observations assimilated in both test
cases. Histograms of the background and analysis values
are plotted for the different variables of the control
vector, showing the possible reduction of the ensemble
spread (uncertainty reduction) and recentering of the
ensemble towards the reference values (Figures 4 and
6). The root mean square (RMS) of the error between the
control or assimilation final tracer field and the reference
final tracer field is plotted (Figures 3 and 5).

In the first testing case, the MP ρ and ν, and the
BC u_west are included in the control vector while the
location and magnitude of the source (IC) are assumed
to be known. As expected, assimilating the observations
(Figure 3b) significantly reduces the RMS of the final tracer
field error with respect to the reference experiment,
compared to the control experiment (Figure 3a). As
shown in Figure 4b and 4c, the ensemble spread for ν and

u_west is smaller and centered closer to the reference
values after DA analysis. No significant correction is seen
for ρ (Figure 4a), suggesting that within the considered
range, it has little significant influence on the tracer field.

In the second testing case, the MP ρ and ν, and the BC
u_west are assumed to be known, while the location and
magnitude of the source (IC) are included in the control
vector. It should be noted that moving the source south
west of the reference position reduces the RMS error
north east of the true position (Figure 5a). As expected,
assimilating the observations (Figure 5b) significantly
reduces the RMS of the final tracer field error with respect
to the reference experiment, compared to the control
experiment (Figure 5a). We note, however, that there is
still an important RMS error west of the true position. This
is explained by the corrected position that is properly
centered around the reference value 10 (Figure 6a) on the
y-axis while en error remains for the correction on the
x-axis (Figure 6b) with analysed value lower (around 8.5)
than the reference value (10), i.e. west to the reference
value. Regarding the source magnitude (Figure 6c),
the correction allows for a significant reduction for all
members, bringing the analysis closer to the reference
value as expected.

Other DA diagnostics are used for both test cases
although not shown in the paper. The uncertainty
reduction is measured by comparing the norm of the

MP BC IC

ρ ν u_west y x magnitude

Reference 1.0 1.0 20.0 10 10 1.0

Control 1 5.0 0.5 10.0 10 10 1.0

Assim 1 и[0.5, 8.5] и[0.2, 1.2] и[0.0, 20.0] 10 10 1.0

Control 2 1.0 1.0 20.0 12 8 2.0

Assim 2 1.0 1.0 20.0 и[10, 14] и[6, 10] и[1.0, 3.0]

Table 1 Set up of the twin experiments for the model parameters (MP), the boundary conditions (BC) and the initial condition (IC).

Figure 2 Final tracer field (t = 0.1 s) of the reference
experiment. The green cross symbols show the locations of
the observations.

https://doi.org/10.5334/jors.312

5Mirouze and Ricci Journal of Open Research DOI: 10.5334/jors.312

background and analysis error covariance matrices. The
correlations between the control vector variables are
plotted, showing spurious off-diagonal correlations due
to the small size of the ensemble. The RMS of the error
between observations and background (innovations) or
analysis model counterpart are plotted at the observation

locations, showing a reduction of the error for the latter.
Another diagnostics shows the rank diagram of the
observations, i.e. the distribution of the observations
compared to the distribution of the ensemble members.
This diagnostics allows us to check if the ensemble is
correctly generated.

Figure 3 Test case 1: root mean square of the final tracer field error (t = 0.1 s) with respect to the reference experiment. The green
cross symbols show the locations of the observations.

Figure 4 Test case 1: histogram of the parameter values before (blue) and after (red) DA analysis.

https://doi.org/10.5334/jors.312

6Mirouze and Ricci Journal of Open Research DOI: 10.5334/jors.312

IMPLEMENTATION AND
ARCHITECTURE

The Smurf repository contains three main sub-directories:
Smurf that contains the source code divided into several

directories sheltering the python files depending on
their nature (models, assim, observations, …); testing_
case that contains some examples (see section Quality
Control); templates that contains skeletons to help
plugging in other models or observation instruments to
Smurf as well as configuration file templates.

Figure 5 Test case 2: root mean square of the final tracer field error (t = 0.1 s) with respect to the reference experiment. The green
cross symbols show the locations of the observations.

Figure 6 Test case 2: histogram of the source position and magnitude before (blue) and after (red) DA analysis.

https://doi.org/10.5334/jors.312

7Mirouze and Ricci Journal of Open Research DOI: 10.5334/jors.312

Smurf is driven by the class Experiment that
manages the cycling of the experiment, the directories,
the archiving, and the calls required to perform the
simulation, as shown in Figure 7. The mother classes
Model, Assim and Instrument define the attributes and
methods required to plug in a model, an assimilation
scheme and an observation instrument, respectively. A
daughter class must be defined each time a new item
is plugged in, inheriting methods from its mother class,
but also overriding as many methods as required. A
class Perturbation allows Monte Carlo methods such
as the EnKF to generate the different members of
the ensemble, using, for example uniform laws as in
the section Demonstration. This class relies mainly
on the Python package ot-batman [11] to sample the
perturbations, although alternative methods could be
added to read external perturbations. The common
sub-directory contains basic functions and redefines
classes such as Vector and Matrix. The background and
observation error covariance matrices are daughter
classes of Matrix, although sheltered by the sub-
directory covariances. The class ObsVector in the sub-
directory observations represents the observation
vector and is a daughter class of Vector. Finally a
class PostProcessing carries out the assessment of the
experiments.

So far, four different numerical models have been
plugged in Smurf: Barbatruc (toy model for fluid dynamics,
Python), Mascaret (one-dimensional hydraulics, Fortran
90 with python application programming interfaces),
PiXIE (crowd dynamics and evacuation, C++) and OPM
(porous media processes, C++). The numerical models
themselves are not distributed within Smurf, except
for Barbatruc, and must be installed before they can
be used with Smurf. Associated with the numerical
models, different observation instruments are available:
Barbametre (tracer values; Barbatruc), Gauge (limnimetric
stations; Mascaret), Chronos (final time of evacuation;
PiXIE) and Clicker (cumulated number of people
evacuated at a specific time; PiXIE), WellInstrument
(well measurements; OPM). Whilst the Smurf daughter
classes Barbatruc and Mascaret are available publicly
along with their instruments, the model and instrument
classes for PiXIE and OPM are available on demand,
only on dedicated git branches. A Swot instrument and
its three variants SwotPixelCloud, SwotRiverReach and
SwotRiverNode are currently under development and
will be available once the definitive format of the SWOT
data is confirmed. In terms of assimilation schemes, the
stochastic EnKF is the only algorithm available at the
moment. Smurf is in constant evolution and other items
will be added to the existing structure.

Figure 7 Smurf architecture. The different colors refer to the different classes: Experiment (blue), Model (purple), Assim (red),
Instrument (green) and Perturbation (orange). Lines ending with an arrow indicate the next step in the chain, whereas lines ending
with a dot indicate a call to another class method. Dashed lines are specific to ensemble systems such as the EnKF.

https://doi.org/10.5334/jors.312

8Mirouze and Ricci Journal of Open Research DOI: 10.5334/jors.312

When running an ensemble method (EnKF), Smurf is
able to launch several numerical simulations (Innovation,
Propagation and Forecast steps of Figure 7) simultaneously
in parallel, using the pathos package. Since some classes
might not be serialisable (Fortran code, NetCDF4 data,
…), the lists of model and instrument instantiations are
kept out of the classes Experiment and Assim and used
as global variables during the instantiation. A list of the
object identifiers rather than the objects themselves
is then defined as an attribute within the classes. The
objects are recovered when needed using the package
ctypes.

Smurf conforms to the PEP810 coding convention
except for a few variable names that contain capital
letters, because of their obvious meaning for data
assimilators (B, R, Hxb, …) [6]. Smurf is developed
using the JetBrains Community Edition IDE (Integrated
Development Environment) PyCharm.11

QUALITY CONTROL

Smurf classes are tested on their own during their
development. Moreover, in the main sub-directory
testing_case, configuration files are provided to run
and assess twin experiments for each plugged model
(Pixie and Opm are available on demand only). A
README.md file helps understanding and running the
tests.

For Barbatruc, the test consists of running the
twin experiments described previously in the section
Demonstration. For Mascaret, the test proposes to run
the model on a 50-kilometre reach of the Garonne (South
of France) from Tonneins to La Réole, via Marmande.
Hourly water height observations at Le Mas d’Agenais
and Marmande are assimilated to correct the Strickler
coefficients and the upstream discharge. This test
requires the numerical code Mascaret.

For each model, the testing case contains different
files to configure the experiment:

•	 configrun.yml: configuration of the experiment
•	 config_EnKF.yml: configuration of the EnKF
•	 parameter_Model.yml: description of the Model

parameters
•	 test.py: script for running Smurf
•	 construct_obs.py: script for constructing observations

from a reference experiment
•	 postproc.py: script for assessing the experiment

A directory Observations contains a default observation
file. Depending on the model, some extra files or
directories are available. For Barbatruc, config_case.yml
file is provided to configure the model. For Mascaret, a
directory Garonne contains the configuration and restart
files required by the model.

The testing cases are also used as non-regressive tests
and are hence performed after each new implementation
or modification in Smurf on linux personal computers
(fedora 26), MacBook laptops and HPC clusters, depending
on the physical model. Results are then compared to
previous results obtained before the changes.

(2) AVAILABILITY
PROGRAMMING LANGUAGE
Smurf is written in Python 3 and has been tested with
Anaconda Python 3.6 and 3.7.

ADDITIONAL SYSTEM REQUIREMENTS
The requirement in terms of memory depends mainly on
the physical model used.

DEPENDENCIES
The following packages are required for Smurf

•	 numpy >= 1.15
•	 pathos >= 0.2
•	 matplotlib >= 3.0
•	 pyyaml >= 3.12
•	 ot-batman >= 1.9
•	 barbatruc == 0.0.2

For the Swot instruments, the package netCDF4 >= 1.5 is
also required.

LIST OF CONTRIBUTORS
Authors:

•	 Isabelle Mirouze (CECI, CNRS UMR5318): author
•	 Sophie Ricci (CECI, CERFACS/CNRS UMR5318):

co-author

Collaborators:

•	 Barbatruc:
 – Antoine Dauptain (CERFACS)

•	 Mascaret:
 – Andrea Piacentini (CERFACS)
 – Nicole Goutal (LNHE-EDF/LHSV)
 – Vanessya Laborie (CEREMA/LHSV)
 – Anne-Laure Tiberi (CEREMA)

•	 OPM:
 – Camille Besombes (CERFACS)
 – Corentin Lapeyre (CERFACS)
 – Rabeb Selmi (TOTAL)

•	 PiXIE:
 – Matt Bolger (CSIRO-Data61)
 – Vincent Lemiale (CSIRO-Data61)

•	 General purposes:
 – Antoine Dauptain (CERFACS)
 – Corentin Lapeyre (CERFACS)

https://doi.org/10.5334/jors.312

9Mirouze and Ricci Journal of Open Research DOI: 10.5334/jors.312

SOFTWARE LOCATION

The master branch, the development branch and the
Opm and Pixie branches are archived on the CERFACS
nitrox repository and are available under specific
registration only.

CODE REPOSITORY
Name: nitrox.cerfacs
 Persistent identifier: https://nitrox.cerfacs.fr/globc/Smurf.

git

Licence: Cecill B
Publisher: Isabelle Mirouze
Version published: 1.0.1
Date published: 15/11/2019

The master branch is mirrored on gitlab repository and is
publicly available without any registration.

MIRROR
Name: gitlab
 Persistent identifier: https://gitlab.com/cerfacs/Smurf.

git

Licence: Cecill B
Date published: 15/11/2019

The master branch v1.0.1 has been released on
the Python Package Index under the name Smurf-
CERFACS and is available for installation using pip.
It is also available under the Zenodo reference http://

doi.org/10.5281/zenodo.4432513.

LANGUAGE
Smurf is integrally written in English.

(3) REUSE POTENTIAL

Using the models already plugged in but for a different
configuration than the one defined in the testing_case
sub-directory is straightforward. It is simply done
by modifying the configuration files configrun.yml,
config_EnKF.yml, and parameter_Model.yml (where
Model is the name of the physical model), and possibly
adapting the scripts construct_obs.py and postproc.py.
The input files classically required by the physical model
must also be provided. In the sub-directory templates,
templates for the experiment configuration, the
assimilation configuration and the model parameters
are provided with an explanation of the items.

Assimilating observations from a new instrument can
be done using the template template_new_instrument.
py. This template is a skeleton describing the different
attributes and methods in order to guide the definition
of the new instrument. The template must be copied in
the Smurf/observations directory under the name of the
new instrument.

Similarly, it is possible to plug in a new model using
the template template_new_model.py. This template is a
skeleton describing the different attributes and methods
in order to guide the definition of the new model. The
template must be copied in the Smurf/models directory
under the name of the new model. Associated with
the new model, a parameter file must be defined using
the template template_parameter.yml. This file is the
file pointed to by the item model: parameter of the
experiment configuration file.

No template currently exists for plugging in a new DA
scheme. This can however be done following the mother
class assim and overriding methods for calculating the
innovations, the increments, …

Thanks to its architecture detailed previously, Smurf
can be reused in any applicative domain requiring
DA. New projects are currently starting, in hydrology
and two-dimensional hydraulics. Moreover, new
collaborations are envisaged for flood extent and micro-
meteorology, as well as with the OpenTURNS12 initiative.
Any other collaboration is welcome and can be initiated
by contacting Sophie Ricci (ricci@cerfacs.fr). As previously
mentioned, the master branch is available freely
under the Cecill B license. It can therefore be used and
developed outside any collaboration. However, due to
limited human resources, the authors do not guarantee
support for the use and development of Smurf, for
instance through gitlab issues. In case help is needed, the
users are welcome to contact the authors to investigate
possible collaboration.

NOTES
1 https://www.ecmwf.int/en/newsletter/153/news/progress-

running-ifs-4d-var-under-oops.

2 https://jointcenterforsatellitedataassimilation-jedi-docs.
readthedocs-hosted.com/en/latest/index.html.

3 http://www.image.ucar.edu/DAReS/DART/index.html.

4 https://github.com/nansencenter/DAPPER.

5 https://swot.cnes.fr/en/mission-1 and https://swot.jpl.nasa.gov/
mission.htm.

6 www.opentelemac.org.

7 https://research.csiro.au/pixie/.

8 https://opm-project.org/.

9 https://cerfacs.fr/coop/barbatruc.

10 https://www.python.org/dev/peps/pep-0008/.

11 https://www.jetbrains.com/pycharm/.

12 http://www.openturns.org.

ACKNOWLEDGEMENTS

The authors acknowledge the CSG team at CERFACS
for their suport with software and computational
environment management. They are also grateful
to Pamphile Roy who helped using the ot-batman
package.

https://doi.org/10.5334/jors.312
https://nitrox.cerfacs.fr/globc/Smurf.git
https://nitrox.cerfacs.fr/globc/Smurf.git
https://gitlab.com/cerfacs/Smurf.git
https://gitlab.com/cerfacs/Smurf.git
http://doi.org/10.5281/zenodo.4432513
http://doi.org/10.5281/zenodo.4432513
mailto:ricci@cerfacs.fr
https://www.ecmwf.int/en/newsletter/153/news/progress-running-ifs-4d-var-under-oops
https://www.ecmwf.int/en/newsletter/153/news/progress-running-ifs-4d-var-under-oops
https://jointcenterforsatellitedataassimilation-jedi-docs.readthedocs-hosted.com/en/latest/index.html
https://jointcenterforsatellitedataassimilation-jedi-docs.readthedocs-hosted.com/en/latest/index.html
http://www.image.ucar.edu/DAReS/DART/index.html
https://github.com/nansencenter/DAPPER
https://swot.cnes.fr/en/mission-1
https://swot.jpl.nasa.gov/mission.htm
https://swot.jpl.nasa.gov/mission.htm
http://www.opentelemac.org
https://research.csiro.au/pixie/
https://opm-project.org/
https://cerfacs.fr/coop/barbatruc
https://www.python.org/dev/peps/pep-0008/
https://www.jetbrains.com/pycharm/
http://www.openturns.org

10Mirouze and Ricci Journal of Open Research DOI: 10.5334/jors.312

TO CITE THIS ARTICLE:
Mirouze, I and Ricci, S 2021 Smurf: System for Modelling with Uncertainty Reduction, and Forecasting. Journal of Open Research
Software, 9: 2. DOI: https://doi.org/10.5334/jors.312

Submitted: 05 December 2019 Accepted: 18 November 2020 Published: 05 February 2021

COPYRIGHT:
© 2021 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0
International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original
author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by Ubiquity Press.

FUNDING STATEMENT

The development of Smurf has been funded by CERFACS
and by the TOSCA program from CNES, with great
contribution from CNES and EDF collaborators.

COMPETING INTERESTS

The authors have no competing interests to declare.

AUTHOR AFFILIATIONS
Isabelle Mirouze orcid.org/0000-0002-5954-3056
CECI, CNRS UMR 5318, FR

Sophie Ricci orcid.org/0000-0002-4232-5626
CECI, CERFACS/CNRS UMR 5318, FR

REFERENCES

1. Anderson JL, Hoar T, Raeder K, Liu H, Collins N, Torn

R, Arellano A. The Data Assimilation Research Testbed:

A community facility. Bull. Amer. Meteor. Soc. 2009; 90:

1283–1296. DOI: https://doi.org/10.1175/2009BAMS2618.1

2. Cressman GP. An operational objective analysis system.

Mon. Weather Rev. 1959; 87: 367–374. DOI https://doi.

org/10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2

3. Evensen G. Sequential data assimilation with a nonlinear

quasigeostrophic model using Monte Carlo methods to

forecast error statistics. J. Geophys. Res. 1994; 99: 10143–

10162. DOI: https://doi.org/10.1029/94JC00572

4. Gandin L. Objective Analysis of Meteorological Fields.

English translation by israel program for scientific

translation, jerusalem, 1965 éd. Gridromet, Leningrad;

1963.

5. Goutal N, Maurel F. A finite volume solver for 1D

shallow-water equations applied to an actual river. Int. J.

Numer. Methods Fluids. 2001; 38: 1–19. DOI: https://doi.

org/10.1002/fld.201

6. Ide K, Courtier P, Ghil M, Lorenc A. Unified notation for

data assimilation: operational, sequential and variational.

J. Meteorol. Soc. Japan. 1997; 75: 181–189. DOI: https://doi.

org/10.2151/jmsj1965.75.1B_181

7. Kalman RE. A new approach to linear filtering and

prediction problems. Trans. ASME, J. Basic Eng. 1960; 82:

35–45. DOI: https://doi.org/10.1115/1.3662552

8. Mirouze I, Ricci S and Goutal N. The impact of observation

densification in an ensemble Kalman Filter. Telemac

User Conference, Toulouse, France; 2019. DOI: https://doi.

org/10.5281/zenodo.3549572

9. Raanes PN, et al. nansencenter/dapper: Version 0.8. 2018.

DOI: https://doi.org/10.5281/zenodo.2029296

10. Ricci S, Lemiale V, Mirouze I, Bolger M, Thio NA. Sensitivity

analysis for flood evacuation model. 9th International

Conference on Sensitivity Analysis of Model Output,

Barcelona, Spain. 2019.

11. Roy TP, Ricci S, Dupuis R, Campet R, Jouhaud JC, Cyril F.

BATMAN: Statistical analysis for expensive computer

codes made easy. JOOS. 2018; 3(21): 493. https://doi.

org/10.21105/joss.00493

12. Sasaki Y. An objective analysis based on the variational

method. J. Meteorol. Soc. Japan. 1958; II-36, 77–88. DOI:

https://doi.org/10.2151/jmsj1923.36.3_77

13. Andrés-Thio N, Ras C, Bolger M, Lemial V. A study of the

role of forceful behaviour in evacuations via microscopic

modelling of evacuation drills. Safety Science. 2021; 134:

105018. DOI: https://doi.org/10.1016/j.ssci.2020.105018

https://doi.org/10.5334/jors.312
https://doi.org/10.5334/jors.312
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-5954-3056
https://orcid.org/0000-0002-5954-3056
https://orcid.org/0000-0002-4232-5626
https://orcid.org/0000-0002-4232-5626
https://doi.org/10.1175/2009BAMS2618.1
https://doi.org/10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2
https://doi.org/10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2
https://doi.org/10.1029/94JC00572
https://doi.org/10.1002/fld.201
https://doi.org/10.1002/fld.201
https://doi.org/10.2151/jmsj1965.75.1B_181
https://doi.org/10.2151/jmsj1965.75.1B_181
https://doi.org/10.1115/1.3662552
https://doi.org/10.5281/zenodo.3549572
https://doi.org/10.5281/zenodo.3549572
https://doi.org/10.5281/zenodo.2029296
https://doi.org/10.21105/joss.00493
https://doi.org/10.21105/joss.00493
https://doi.org/10.2151/jmsj1923.36.3_77
https://doi.org/10.1016/j.ssci.2020.105018

