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We introduce a graphical user interface for constructing arbitrary tensor networks and specifying common 
operations like contractions or splitting, denoted GuiTeNet. Tensors are represented as nodes with attached 
legs, corresponding to the ordered dimensions of the tensor. GuiTeNet visualizes the current network, 
and instantly generates Python/NumPy source code for the hitherto sequence of user actions. Support 
for additional programming languages is planned for the future. We discuss the elementary operations on 
tensor networks used by GuiTeNet, together with high-level optimization strategies. The software runs 
directly in web browsers and is available online at guitenet.org.
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(1) Overview
Introduction
Tensor networks have found a wide range of applications 
within mathematics [1, 2], physics and chemistry, in 
particular as matrix product states (MPS), projected 
entangled pair states (PEPS) or the multiscale entanglement 
renormalization ansatz (MERA) for strongly correlated 
quantum systems [3–5]. While tensor networks and 
associated operations are conveniently represented as 
graphical diagrams, a subsequent implementation of these 
operations is often tedious, especially if one has to keep 
track of arrangements of many indices. On the other hand, 
fundamental operations like finding the (quasi-)optimal 
contraction order and performing the partial contraction of 
a given tensor network are available as software packages 
[6–10] or via NumPy’s einsum command [11, 12]. To 
bridge the gap between graphical representation and 
implementation, we introduce a graphical user interface 
(GUI) for constructing arbitrary tensor networks and 
specifying common operations on them, like contractions 
or splitting via QR- or SVD-decompositions. Our software 
framework then instantly generates source code for these 
operations; currently Python/NumPy is supported, with 
additional programming languages planned for the future. 
We use JavaScript and the D3.js library to make the GUI 
conveniently available via web browsers.

The GUI represents each tensor as a node with an 
arbitrary number of legs, corresponding to the number 
of dimensions (rank) of the tensor. The ordering of the 
dimensions is indicated by labels. Figure 1 visualizes 

a single tensor as it appears in the GUI. Note that this 
abstract representation leaves the actual dimensions 
open, i.e., it does not differentiate between, say, a 2 × 3 × 4 
tensor and a 8 × 7 × 6 tensor, since both have rank 3.

The user interacts with the GUI mainly via drag-and-
drop gestures, to add tensors to the network or attach legs 
to a tensor, and to specify operations like contractions and 
tensor splitting; see below for more details. The GuiTeNet 
framework visualizes the current tensor network, and 
simultaneously generates source code which implements 
the hitherto sequence of user actions. For example, the 
generated Python code for a contraction of three tensors 
followed by QR splitting reads:

Figure 1: A single tensor with 4 legs (dimensions). The 
ordering of dimensions is indicated by the red labels.
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import numpy as np

def f(T0, T1, T2):
 T3 = np.einsum(T0, (0, 1, 2), T1, (3, 2), T2, (0, 4, 5), (1, 3, 4, 5))
 T4 = np.transpose(T3, (3, 0, 2, 1))
 T5, T6 = np.linalg.qr(T4.reshape((np.prod(T4.shape[:2]),
 np.prod(T4.shape[2:]))), mode=’reduced’)
 T5 = T5.reshape(T4.shape[:2] + (T5.shape[1],))
 T6 = T6.reshape((T6.shape[0],) + T4.shape[2:])
 return(T5, T6)

Creating tensors
A new tensor is added to the network by a drag-and-drop 
gesture. The user drags a special “create tensor” symbol (blue 
circle in Figure 2) to the desired location. When “dropping” 
the symbol, a new tensor (black circle) appears there. Initially 
it has zero legs. The tensors are automatically labeled 0, 1, 2, 
… to provide a unique identifier. The “create tensor” symbol 
reappears at its default location after this operation, and can 
then be used to add another tensor to the network.

Attaching tensor legs
Each leg represents one dimension of the tensor. The 
user creates a new leg by “pulling” it out of the tensor 
(i.e., drag-and-drop on the tensor), when simultaneously 
holding the Control key. Each tensor and its legs can still 
be freely moved around within the GUI window.

Tensor contractions
Tensor contractions are specified by connecting the tips of 
tensor legs. The tips snap to each other when brought into 
close contact. The actual contraction (possibly of several 

tensors) is executed when pressing the “Contract” button 
of the GUI, see Figure 3 for an example.

Splitting a tensor
The splitting of a tensor by QR or singular value 
decomposition (SVD) is a ubiquitous operation in 
tensor network algorithms, in particular for reducing 
“bond dimensions” by devising a singular value cut-off 
tolerance, and a prerequisite for working with left- and 
right-orthogonal tensors in the MPS framework [3]. The 
first step for decomposing a tensor A is its “matricization”: 
a subset of legs is grouped together into one “fat” leg 
and the remaining (complementary) legs into a second 
“fat” leg. The two fat legs are interpreted as the rows 
and columns of a matrix, which is then decomposed. 
Figure 4 illustrates this process (as it appears in the 
GUI) for the QR decomposition of a tensor with initially 
5 legs. (An analogous SVD decomposition is currently 
still under development.) The user first right-clicks on 
a tensor to initiate the splitting operation. An overlay 
window then asks for the ordering and partitioning of 

Figure 2: Creating a new tensor by a drag-and-drop gesture. The mouse pointer is enlarged for visual clarity.
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dimensions attributed to the rows and columns in the 
matricization process. In the example, the “row” consists 
of dimensions 0, 3, 2 (in this order) and the “column” of 
dimensions 1, 4 (in this order). After the decomposition, 
the resulting Q and R matrices are finally reshaped to 
restore the original dimensions, with an additional 
dimension for the shared bond (last dimension of Q, first 
dimension of R). Thus the dimensions 0, 1, 2 of Q match 
the original dimensions 0, 3, 2, and dimensions 1, 2 of R 
the original dimensions 1, 4.

The initial reordering of dimensions becomes a separate 
“elementary transposition operation”, as described below. 
The generated code uses a temporary tensor for this 
purpose. In Figure 4, this temporary tensor has index 1, 
and hence the Q and R tensors are consecutively labeled 
2 and 3.

After this reordering, the partitioning is simply a 
reinterpretation of the data stored in the tensor, since the 
“row” group now consists of the first ℓ leading dimensions, 
and the “column” group of the remaining r – ℓ trailing 
dimensions, where the rank r is the total number of 
dimensions.

Implementation and architecture
Somewhat analogous to an intermediate representation 
in source code compilation, we decompose the actions 
supported by the GUI into the following elementary 
operations on tensor networks:

(i) Elementary contraction of tensors
The GuiTeNet framework supports general contraction 
operations on a tensor network. An eℓementary 
contraction acts on a subset of tensors such that these 
tensors are joined (directly or indirectly) by shared legs, 
yielding a single tensor after the contraction. Note 
that “multi-bond” contractions, i.e., the simultaneous 
contraction of multiple legs as in Figure 3, is explicitly 
allowed. In principle, a contraction of several tensors 
could be decomposed into a sequence of pairwise 
contractions, e.g., computing the matrix product ABC 
by first “contracting” A with B to obtain T = AB and then 
multiplying T with C. However, in general the optimal 
order of these pairwise contractions poses a delicate 
optimization problem [7] and is not straightforwardly 
applicable to multi-bond contractions. Hence we regard 
the contraction of (possibly more than two) tensors 
as elementary operation, and leave the optimized 
implemen tation to backend software packages.

On the other hand, a sequence of tensor network opera-
tions can be optimized by merging subsequent elementary 
contractions into a single elementary contra ction. 
As simple (toy model) illustration why this might be 
useful, consider the contraction C = AB (matrix-matrix 
multiplication) followed by the contraction y = Cx(matrix-
vector product). Merging these two contractions leads to 
y = ABx, for which a backend algorithm would naturally 
choose the order y = A(Bx).

To uniquely specify a contraction operation, we follow 
NumPy’s einsum command convention in the form 
einsum (T0, s0, T1, s1, …, sout). Here the Ti refer to tensors, 
and si are lists of integer labels for the corresponding 
dimensions, with multiply occurring labels to be summed 
over. The last argument sout determines the ordering of 
dimensions in the output tensor after the contraction. For 
the example in Figure 3 with 4 tensors,

s0 = (0, 1, 2), s1 = (0, 1, 3), s2 = (0, 4), s3 = (4, 5) and 
sout = (2, 3, 5).

Thus, the three dimensions of tensor T0 are labeled 0, 1, 
2, the three dimensions of tensor T1 are labeled 0, 1, 3 
etc. The dimensions labeled 0, 1 and 4 will be contracted 
since they appear multiple times, and the remaining 
dimensions are ordered as (2, 3, 5) in the output tensor. 
The generated Python source code follows exactly this 
scheme and reads explicitly
T4 = np.einsum(T0, (0, 1, 2), T1, (0, 1, 3),
 T2, (0, 4), T3, (4, 5), (2, 3, 5))

(ii) General transposition of a tensor
Formally, a tensor transposition is a permutation of 
dimensions, generalizing the usual transposition of matrices. 
For example, applying the permutation (1, 2, 0) to a 10 × 
11 × 12 tensor T yields a 11 × 12 × 10 tensor, such that the 
(i, j, k)-th entry of T is the (j, k, i)-th entry of the transposed 
tensor. Since the tensor elements are typically stored as a 
contiguous array in memory, a transposition implies a 
reshuffling of the array elements. Thus, while a transposition 
does not involve arithmetic calculations besides computing 
memory addresses, its cost can still be significant, in 
particular due to the inherent “cache-unfriendliness”.

Specifying a transposition only requires designating the 
permutation of dimensions. We follow the convention of 
NumPy’s transpose function.

Regarding transpositions as separate elementary opera-
tions — instead of first step for splitting a tensor for 

Figure 4: QR splitting of a tensor. In (b), the user specifies the ordered dimensions attributed to the Q and R tensors, 
respectively.
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example — facilitates additional optimizations. A plausible 
scenario is integrating the transposition into a preceding 
contraction operation [13], generalizing (ABT)T = BAT for 
matrices A and B.

(iii) QR decomposition of a tensor
The elementary QR decomposition considered here 
does not involve any reordering of dimensions. Thus, it 
is uniquely specified by the number ℓ of leading tensor 
dimensions to be interpreted as “row” dimension in the 
matricization process, and correspondingly the remaining 
dimensions as “column” dimension.

To illustrate, the generated Python code (up to renaming 
variables) for the elementary QR decomposition of a 
tensor T and ℓ = 3 leading dimensions reads as follows:

Q, R = np.linalg.qr(T.reshape((np.prod(T.shape[:3]),  
np.prod(T.shape[3:]))), mode=’reduced’)

Q = Q.reshape(T.shape[:3] + (Q.shape[1],))
R = R.reshape((R.shape[0],) + T.shape[3:])

The reshape functions implement the matricization 
before and “de-matricization” after the actual QR decom-
position, T.shape stores the tensor dimensions, 
np.prod computes the product of the leading and 
trailing dimensions, and np.linalg.qr implements 
the conventional QR decomposition of matrices.

(iv) Singular-value decomposition of a tensor
The (de-)matricization process for an elementary singular-
value decomposition (SVD) of a tensor is analogous to the 
elementary QR decomposition. The output now consists 
of three tensors, corresponding to the U, S and V matrices 
of the matrix-SVD, with the diagonal S matrix storing the 
singular values. Additional parameters (compared to the 
QR decomposition) are a cut-off tolerance for the singular 
values, and optionally the maximally allowed number of 
singular values (the maximal “bond” dimension).

Strategies for optimization
Based on the elementary tensor network operations, 
several high-level optimization strategies are conceivable, 
solely based on the rank of each tensor instead of the 
actual dimensions. The implementation of the following 
ideas is left for future work.

•	 A natural representation for the sequence of user 
actions is a directed acyclic graph (DAG), storing an ele-
mentary operation or input tensor at each node. Such 
a representation clarifies dependencies, and allows to 
determine which operations can be executed in parallel.

•	 A more subtle optimization strategy tailored to  tensor 
networks is the merging of subsequent contrac-
tions, i.e., if the tensor resulting from a contraction 
is immediately used in another contraction. A toy 
model example consists of merging C = AB followed 
by y = Cx into y = ABx, which can then be evaluated 
in the order y = A(Bx). Note that the optimized com-
putational cost for the merged contraction cannot 
be higher than performing the contractions sequen-
tially (since the latter restricts the allowed contraction 
order), but actually determining the optimal order 

for the merged contraction (by a backend software 
 package) is in general more difficult [7].

•	 Another optimization strategy is avoiding explicit 
transpositions (i.e., permutations of tensor dimen-
sions), and aiming for advantageous dimension 
ordering. As mentioned, the transposition of a ten-
sor resulting from a contraction can be integrated 
into the contraction (see also [13]), generalizing 
(ABT)T = BAT for matrices. Transpositions may also be 
pushed through the computational graph; for exam-
ple, instead of permuting the leading dimensions 
of the Q-tensor resulting from a QR decomposition, 
one could already permute these dimensions in the 
input tensor, or vice versa. Conversely, in case a trans-
position has to be performed, optimized software 
 packages are available [9, 14].

Quality control
The software has been extensively tested by comparing the 
tensor contraction and splitting indices computed by the 
software with the expected output, and by running the 
generated Python code (tested with Python 2.7.15 and 3.6.5, 
NumPy 1.13). The software should run on any modern web 
browser with JavaScript enabled (tested with Firefox 78.0, 
Chrome 84.0, Microsoft Edge 44.19041.1, Apple Safari 13.1.2).

(2) Availability
Operating system
Any, runs directly in a web browser.

Programming language
HTML and JavaScript combined with the D3.js library (v5).

Dependencies
D3.js library (v5) (no installation necessary).
The generated Python code requires NumPy (version 1.6.0. 
or higher).

List of contributors
Lisa Sahlmann and Christian B. Mendl both designed and 
documented the software, and tested its functionality. 
Christian B. Mendl implemented the software and 
maintains the GitHub repository and associated web page.

Software location
Code repository GitHub

Name: guitenet
�Persistent� identifier: https://github.com/GuiTeNet/
guitenet
Licence: MIT License
Date published: 01/08/2018

Language
English

(3) Reuse potential
The canonical use case of the GuiTeNet software is code 
generation for tensor network operations. In its present 
form, the software framework is well suited to handle 
a relatively small number of tensors, but manually 
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constructing a network with hundreds of tensors is 
cumbersome. Instead, generating code for subroutines or 
blocks inside loops is a plausible scenario for employing 
GuiTeNet in larger software projects. As specific example, 
rather than instantiating all tensors of a matrix product 
state, the GuiTeNet framework could be used to generate 
a local contraction operation required during a left-right 
sweep over the chain.

We also want to point out the pedagogical value which 
GuiTeNet might offer, including the seamless transition 
from vectors and matrices to general tensors.

Still, there are many desirable features left for future 
work, including code generation for other programming 
languages and software libraries, the implementation 
of high-level optimization strategies as described above, 
or a timeline of previous network states (e.g., before a 
contraction) with associated Undo functionality. Tensors 
with special properties (like orthogonal tensors resulting 
from a SVD or QR decomposition) should be marked, 
e.g., using a different symbol, and ideally such properties 
should be exploited in the generated code. Furthermore, 
one could take U(1)-symmetries into account by endowing 
the legs with additive quantum numbers (like particle or 
spin) and a directional arrow. Conceptually, the sum of 
quantum numbers flowing into a tensor must be equal 
to the sum of quantum numbers leaving the tensor, 
enforcing a block sparsity structure of the tensor. Another 
worthwhile goal is incorporating more exotic tensor 
network operations, like “loop skeletonization” [15]. 
Contributions of such or similar features to GuiTeNet are 
very welcome; in practice, these should be realized by 
opening a pull request at https://github.com/GuiTeNet/
guitenet/pulls.

Technical support is available via the “issues” page of 
the GitHub repository, or by contacting one of the authors 
by email.

An interesting open question is how GuiTeNet could 
inspire or profit from software and hardware architectures 
tailored to tensor operations, like contractions beyond 
conventional BLAS routines [13] or Google’s Tensor 
Processing Units (TPUs) [16] employed in the TensorFlow 
machine learning framework.

During revision of this work we became aware of 
TensorTrace [17], a software package with a similar focus 
and approach as GuiTeNet.
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