
Löffler, F et al 2014 Cactus: Issues for Sustainable Simulation Software.
Journal of Open Research Software, 2(1): e12, pp. 1-6, DOI: http://dx.doi.
org/10.5334/jors.au

1. Introduction
Motivated by the needs of the numerical relativity
research community and stemming from earlier efforts
at the National Center for Supercomputer Applications
in the U.S., the design and development of the Cactus
framework [1, 2] began at the Albert Einstein Institute,
a Max Planck Institute for Gravitational Physics in 1996.
The component-based architecture of Cactus was inspired
by experiences of physicists and computer scientists who
had previously worked together in the USA Binary Black
Hole Alliance Grand Challenge. This NSF-funded collabo-
ration (1993–1999) involved over eleven groups, work-
ing with a variety of independent code bases on a set of
different projects with the aim of modeling the inspiral
collision of two black holes using then-state-of-the-art
supercomputers1. Even within a single group, multiple
codes were used, often with multiple versions of each
code. Contrary to the spirit of collaboration, advances in
research methods or computing technologies were re-
implemented, debugged, and verified in each code, thus
duplicating effort, hampering communication, and slow-
ing scientific progress.

The vision of the Cactus team was to provide an organic,
community-oriented framework that would allow

researchers to easily work together with reusable and
extensible software elements.

From the beginning, the Cactus framework followed
a modular design. It features a comparably small core
(named the “flesh”) which provides the compile-time
and run-time interfaces between modules. The Cactus
modules (called “thorns”) use these APIs to specify inter-
module dependencies and connections, e.g. whether
to share or extend configuration information, to use
common variables or run-time parameters. Modules
compiled into an executable can remain dormant at run-
time. Based on user-specified parameters and simulation
data itself, the flesh decides when and in which order
to call functions in different modules, assembling them
into a coherent simulation.

This usage of modules and a common interface between
them enables researchers to 1) easily use modules written
by others without the need to understand all details of
their implementation; 2) write their own modules with-
out the need to change the source code of other parts of
a simulation in the (supported) programming language
of their choice; and 3) easily communicate the scientifi-
cally relevant ideas behind the module without involv-
ing the infrastructural details. The number of active
modules within a typical Cactus simulation ranges from
tens to hundreds and often has an extensive set of inter-
module dependencies.

2. An evolving framework community
The accelerating growth and diversity of the Cactus com-
munity reinforced the modular development of both the
physics-based and computational infrastructure. Examples
of modules include the evolution equations for General
Relativity, radiation or reflective boundary conditions, MPI
parallelization, parameter parsing, and output routines.
The value of this modularization is hard to overstate.

This design was of tremendous help to the motivat-
ing science problem, namely numerical relativity. It also

* Center for Computation and Technology, Louisiana State Uni-
versity, Baton Rouge, Louisiana, USA
knarf@cct.lsu.edu

† Center for Computation and Technology and Department of
Computer Science, Louisiana State University, Baton Rouge,
Louisiana, USA

‡ University of Illinois, Urbana-Champaign, Illinois, USA
§ Perimeter Institute for Theoretical Physics, Waterloo, Canada,
Department of Physics, University of Guelph, Guelph, Canada,
and Center for Computation and Technology, Louisiana State
University, Baton Rouge, Louisiana, USA

Corresponding author: Frank Löffler

ISSUES IN RESEARCH SOFTWARE

Cactus: Issues for Sustainable Simulation Software
Frank Löffler*, Steven R. Brandt†, Gabrielle Allen‡ and Erik Schnetter§

Keywords: frameworks; scientific computing; software sustainability

The Cactus Framework is an open-source, modular, portable programming environment for the collabora-
tive development and deployment of scientific applications using high-performance computing. Its roots
reach back to 1996 at the National Center for Supercomputer Applications and the Albert Einstein Insti-
tute in Germany, where its development started. Since then, the Cactus framework has witnessed major
changes in hardware infrastructure as well to its community. This paper describes its growth through
these changes and, drawing upon lessons from its past, also discusses future challenges for Cactus.

Journal of
open research software

http://dx.doi.org/10.5334/jors.au
http://dx.doi.org/10.5334/jors.au
mailto:knarf@cct.lsu.edu

Löffler et al: CactusArt. e12, page 2 of 6

became clear that with such a design, the modules could
easily be purposed for other science problems. PDE prob-
lems are especially well-suited for use with the Cactus
framework, however, since Cactus was initially written
for numerical relativity, which solves a set of complex,
partial differential equations (PDEs).

The straightforward reusability of existing compo-
nents spurred development in other areas of science-
usually numerically similar-in particular solving sets of
PDEs, e.g., coastal simulations of storm surges. However,
most users of the Cactus framework are interested in
numerical relativity, or more generally, relativistic astro-
physics. Cactus development within this field is coor-
dinated within the Einstein Toolkit [3, 4]. This focus
stems, at in least part, from the fact that during most
of Cactus development, interaction between developers
and users was tight. In fact, most users became develop-
ers to some degree relatively quickly, so that users and
developers were never truly distinct categories. One of
the main reasons for this is the modular plug-in nature
of Cactus, allowing end users to add new thorns to their
application.

The majority of developers are and have been motivated
by the study of numerical relativity rather than the broad-
ening of the user base of the framework itself to other
areas of science. However, owing to the modular nature
of the framework, such a broadening was brought about
as a result.

Today the Cactus and the Einstein Toolkit communities
are still strongly interlinked through individuals who are
active in both communities; but as different subdomains
expand their usage of Cactus, these two groups have
polarized into different roles. Currently, most users of the
Einstein Toolkit are not active developers of the underly-
ing framework itself, but rather merely use it to create and
extend modules within the Einstein Toolkit. While there
are exceptions, most new infrastructure is carried out by
a few core developers and is based on feedback from the
user community.

2.1. Related Work
A multitude of simulation packages exist that offer similar
capabilities. Even limiting this to parallel AMR codes pro-
duces a list too long to discuss here. Therefore, we select
a couple of cases which we believe to be most relevant.

Paramesh [5, 6] is a package of Fortran 90 subroutines
designed to provide an application developer with an
easy way to extend an existing serial code. Other interest-
ing examples are Enzo [7, 8], BoxLib [9], Chombo [10],
Uintah [11, 12], Jasmine [13] and SAMRAI [14, 15], but
many more exist.

Likewise, DSL’s are not unusual here. For example,
Flash uses a DSL for configuration, and Chombo has
ChomboFortran, a special macro language extension to
ease portability, maintainability, dimension independ-
ence, and parallelism [16].

Many of these tools employ some form of modulariza-
tion, but we believe that the way this is done in Cactus is
unique, especially the use of self-describing modules.

3. Software Sustainability Issues
There are many issues connected to the sustainability of
software. Some of these are important for almost all soft-
ware projects, but some aspects are especially relevant for
scientific projects. Out of the latter the authors picked
four of the most relevant to discuss in more detail.

3.1. Modular Design
One of the key properties of a long-term sustainable scien-
tific software project is a modular design. Cactus chose a
unique method of enabling modularity that went beyond
the usual notions of APIs, standard data structures, and
coding conventions. Cactus uses a small set of domain
specific languages (DSLs) to describe its distributed data
structures and scheduling [17]. These DSLs enable Cactus
modules to do run-time reflection, in both Fortran and C/
C++, on the grid variables being evolved.

This may not sound like a revolutionary idea, but its
consequences were far-reaching. Because of this simple
design decision, several things became possible. First,
Cactus was able to completely decouple I/O from science
code. Unlike many scientific codes that have calls to I/O
routines interspersed with the program logic, science
modules in Cactus are only concerned with what vari-
ables they read and write. The I/O module(s) can take field
variable names as a parameter, look them up with run-
time reflection, and write them out as text, HDF5, JPEG
and other formats. The DSL describing scheduling identi-
fies when this I/O will be performed, and can be set at
startup or steered at run-time by the user. Even the most
important form of I/O, checkpoint/restart, is enabled and
modularized by this design. Every variable known to the
framework, and not explicitly excluded, will automatically
be check-pointed and re-read when necessary.

Second, Cactus was able to abstract the time-integra-
tion method (e.g. Runge-Kutta, Iterative Crank-Nicholson,
etc.) from the time evolution equations. The DSL describ-
ing scheduling, combined with the list of variables to
be evolved, was sufficient for this task. The value of this
module by itself is significant. The ability to avoid subtle
coding bugs or to try out diverse integrators, without clut-
tering the codebase, is of great value. This time integration
module can also easily be used to couple separate physics
modules, such as e.g. the Einstein and Hydrodynamics
equations.

Third, Cactus was able to create a web browser interface,
interrupting the schedule tree at key places and allowing
variables to be inspected and modified during an execu-
tion. This particular form of parameter steering was natu-
rally enabled by the key module design decisions.

Fourth, an adaptive mesh refinement module named
Carpet [18, 19] was added. Before Carpet was available,
only uniform, Cartesian grids could be used for spa-
tial decomposition within Cactus, and a lot of modules
expected to get such rectangular meshes as input. It was
possible to integrate Carpet into Cactus with little change
to the science modules. Later, a multi-block mesh capabil-
ity [20] was added with similarly little disruption to exist-
ing codes.

Löffler et al: Cactus Art. e12, page 3 of 6

There are many other capabilities enabled by the unique
modularization decisions of the Cactus Framework.
Other special modules include those for debugging, e.g.
NaNChecker, those enabling unusual IO, e.g. Twitter,
generic grid modules, generic boundary conditions, tim-
ers, interfaces to PAPI counters, analysis modules, etc.

The usage of modules within the Cactus framework can
be compared to the use of interfaces in modern object-ori-
ented languages. Cactus modules not only provide a new
“object” for the framework to work with, they also encap-
sulate a self-describing interface to that object within the
Cactus framework.

These unique types of interfaces allow different groups
to efficiently work on one common project, towards one
common goal, avoiding unnecessary conflicts or duplica-
tion of effort. Usually, this modularization does not cause
performance problems. Most of the time in our simula-
tions is spent in scientific kernels, and only a small per-
centage is required for the infrastructure.

3.2. Growing Collaborative Community
In contrast to commercial products, academic scientific
software like Cactus is usually developed in a university
setting. Most of the actual development work is performed
by graduate students and postdoctoral researchers who
are focused on science. This poses a threat for long-term
stability of any project, because these developers are typi-
cally not very interested in contributing to infrastructure,
and frequently leave their research groups after three to
four years, taking all their knowledge and experience with
them. New members of research groups first need to be
trained, and while this time can be shortened by creating
respective courses and documentation, e.g., [21–23], the
constant flux of developers continues to be a struggle.

The infrastructure development problem is handled
within the Cactus community by connecting its develop-
ment so closely to a specific science problem that publica-
tions that describe both are possible. This is the way many
of the publications using and extending the Einstein
Toolkit are written, containing a description of the new
infrastructure while mainly representing a publication
in physics. On the other hand there are examples of pure
computational science publications as well, e.g., [24–29].
These sorts of projects are enabled by the ability to pro-
vide immediate benefits for the substantial number of
physics problems described by the Einstein Toolkit.

The retention problem is handled by the Cactus commu-
nity automatically, by creating an enjoyable programming
and development experience. Many students continue to
be interested in and develop for Cactus after they move on
to new positions. They are attracted by the ability to lever-
age the work of other physicists and computer scientists
in the community, to see their code re-used, and to col-
laborate on new research. The ability of Cactus to enable
collaboration, based on its unique modular design and the
use of open-source licensing, make it an attractive tool for
students to use in their continuing research. Thus, rather
than really leaving, many serve to expand the collabora-
tion. Not all students continue to use Cactus, but enough

are inspired by it to create the kind of stable contributions
needed to maintain the health of the project.

3.3. Career paths
The third issue connects to the motivation of the work-
force as well, but also affects the group leaders, especially
if they are young faculty or trying to become faculty. In
contrast to commercial products, the principle motiva-
tion of developers in academia is credit. Credit is obtained
through publications and citations thereof, which are
then used to quantify the scientific impact of an individ-
ual’s work, forming the basis for future career plans as
well as promotion and tenure for faculty. The most severe
problem for developers in most computational sciences,
currently, is that while most of the work is done creating
well-written, sustainable software, the academic success
is often exclusively tied to the solution of the scientific
problem the software was designed for. Tasks that are
essential from a software engineering standpoint, e.g.,
high usability, clean code, updated documentation, or
porting infrastructure to new platforms, are not rewarded
within this system.

While computations of some form are required for
almost every aspect of academic research, the criteria for
tenure positions focus solely on scientific results and fail
to appreciate the infrastructural development that was
necessary to achieve these results. Developers of scien-
tific software are often experts across disciplines, and thus
valuable as team members, group leaders, and lecturers.
However, the scope of open tenure positions is often only
very limited to single specific traditional science, resulting
in a lack of career opportunities and thus a lack of student
motivation to fully participate in these cross-discipline
activities.

3.4. Credit
One way that credit is given to software developers is
through citation of a paper describing the code. Widely
used codes can lead to highly cited papers, which can
help the author’s academic career. Unfortunately, it is not
uncommon that relevant citations are missing despite the
usage of a specific software package. Enforcement of cita-
tion through licenses is possible to some degree, but such
requirements tend to limit the desired level of openness,
and because there are legitimate cases where such cita-
tions are not possible, e.g., because of space limitations.

Both the Cactus framework and its largest user group,
the Einstein Toolkit, have a few general publications that
are requested (but not required) to be cited whenever
the software is used, and especially the Einstein Toolkit
also requests additional citations when some of its mod-
ules are used. Examples of such modules are the Carpet
mesh-refinement infrastructure, or the black hole horizon
finder [30]. Handling citations on a module-level like this
enables individual developers to receive credit for their
work, especially if they entered the group only after the
main publications had already been written. A complete
list of these publications can be found on the Einstein
Toolkit web site [4].

Löffler et al: CactusArt. e12, page 4 of 6

4. Automated Code Generation
Computational science is always evolving, and at an ever
increasing pace. Changes in hardware and progress in
numerical methods have been important factors in the
quest to solve increasingly complex problems within a
relatively constant time. The Cactus group is looking for
ways to use modularization to attack these new types of
problems.

Prior to the discovery of a stable set of numerical
techniques for evolving black holes, it was necessary
to experiment with the form of the Einstein equations.
Unfortunately, these equations contain many hundreds
of terms and transforming them into code was daunting,
tedious and error-prone. Sascha Husa and Ian Hinder
developed a tool called Kranc [31, 32] to mitigate this
problem. Kranc takes a tensorial equation written in
Mathematica and generates a complete Cactus module
in C++ to evaluate it, enabling scientists to more eas-
ily experiment with the form of equations. Kranc turned
out to be a much more powerful and useful tool than
anticipated.

Modern architectures increasingly rely on vectorization
to achieve performance, many of them now perform eight
floating point instructions per clock cycle. Unfortunately,
few compilers can vectorize the Einstein equations
because of the sheer number of terms they contain, lead-
ing to a large performance penalty.

Recent work shows that Mathematica’s pattern match-
ing ability allows us to transform equations as Kranc gen-
erates them, inserting explicit vector instructions and
side-stepping compiler limitations, and thereby achieving
higher performance.

5. Newer Challenges
Until recent times, the modular structure of Cactus has
allowed developers to easily make use of new ideas, algo-
rithms, and technologies. To some extent, OpenMP style
parallelism disrupted that modularity by intermixing
parallel logic and code development, but the problems
caused by this change have been relatively minor.

More recent challenges posed by accelerators have
proved to be a more challenging disruption. Because
Kranc isolates the high-level representation of the equa-
tions from their implementation in code, it makes it pos-
sible to generate code for multiple languages (such as
CUDA, and OpenCL), it makes it possible to isolate the
high level equations from the low level code implementa-
tion details required for high performance.

6. Conclusion
The key to Cactus’ previous success on every level has
been a result of its unique choices for modularization. The
ability for the code to reflect on itself has enabled a num-
ber of valuable infrastructure features.

Recent challenges in hardware design have disrupted
that modular design, but equation generation appears
to provide a possible path forward, separating high level
equations from their low level representation in code.
This present direction of research is being studied by the
Chemora [28] project, and work in this area is ongoing.

Acknowledgments
The authors would like to thank Edward Seidel, for his
inspiration and vision, his support and guidance over
many years of development of the framework. We would
like to thank the early pioneers of Cactus, including Paul
Walker, Joan Massó, Tom Goodale, and Thomas Radke.
More recently, we have to especially thank developers like
Ian Hinder and Roland Haas, whose contributions have
been invaluable for the community. We are also grate-
ful to all the other people who contributed to Cactus via
ideas, code, documentation, and testing; without these
contributions, this framework would not exist today.

Cactus was and is developed with support from a number
of different sources, including support by the US National
Science Foundation under the grant numbers 0903973,
0903782, 0904015 (CIGR) and 1212401, 1212426,
1212433, 1212460 (Einstein Toolkit), 0905046, 0941653
(PetaCactus), 1265449 (Chemora/EAGER), 1047956
(Eclipse/PTP), a Deutsche Forschungsgemeinschaft grant
SFB/Transregio 7 (Gravitational Wave Astronomy), and a
Canada NSERC grant.

Notes
 1 The first accurate black hole inspiral was finally mod-

eled in 2007.

References
1. Cactus Computational Toolkit. Available at: http://

www.cactuscode.org/
2. Goodale, T, Allen, G, Lanfermann, G, Massó, J,

Radke, T, Seidel, E, et al 2003 The Cactus Framework
and Toolkit: Design and Applications. In: Vector and
Parallel Processing - VECPAR’2002, 5th International
Conference, Lecture Notes in Computer Science. Ber-
lin: Springer. Available at: http://edoc.mpg.de/3341

3. Löffler, F, Faber, J, Bentivegna, E, Bode, T,
Diener, P, Haas, R, et al 2012 The Einstein Toolkit:
A Community Computational Infrastructure for
Relativistic Astrophysics. Classical and Quantum
Gravity, 29(11): 115001. DOI: http://dx.doi.org/10.10
88/0264-9381/29/11/115001

4. Einstein Toolkit: Open software for relativistic astro-
physics. Available at: http://einsteintoolkit.org/

5. MacNeice, P, Olson, K M, Mobarry, C, de Fainchtein,
R and Packer, C 2000 PARAMESH: A parallel adaptive
mesh refinement community toolkit. Computer Phys-
ics Communications, 126(3): 330–354. DOI: http://
dx.doi.org/10.1016/S0010-4655(99)00501-9

6. Parallel Adaptive Mesh Refinement PARAMESH. Availa-
ble at: http://www.physics.drexel.edu/~olson/param
esh-doc/Users_manual/amr.html

7. The Enzo Collaboration, Bryan, G L, Norman, M
L, O’Shea, B W, Abel, T, Wise, J H, et al 2013 Enzo:
An Adaptive Mesh Refinement Code for Astrophysics.
ArXiv e-prints, July 2013.

8. Enzo astrophysical AMR code. 2013 Available at:
http://enzo-project.org/

9. BoxLib 2011. Available at: https://ccse.lbl.gov/BoxLib
10. Colella, P, Graves, D, Keen, N, Ligocki, T, Martin,

D, McCorquodale, P, et al 2009 Chombo Software

http://www.cactuscode.org/
http://www.cactuscode.org/
http://edoc.mpg.de/3341
http://dx.doi.org/10.1088/0264-9381/29/11/115001
http://dx.doi.org/10.1088/0264-9381/29/11/115001
http://einsteintoolkit.org/
http://dx.doi.org/10.1016/S0010-4655(99)00501-9
http://dx.doi.org/10.1016/S0010-4655(99)00501-9
http://www.physics.drexel.edu/~olson/paramesh-doc/Users_manual/amr.html
http://www.physics.drexel.edu/~olson/paramesh-doc/Users_manual/amr.html
http://enzo-project.org/
https://ccse.lbl.gov/BoxLib

Löffler et al: Cactus Art. e12, page 5 of 6

Package for AMR Applications Design Document.
In: Applied Numerical Algorithms Group. Computa-
tional Research Division: Lawrence Berkely National
Laboratory.

11. Parker, S G 2006 A component-based architecture for
parallel multi-physics PDE simulation. Future Genera-
tion Computer Systems, 22(1-2): 204–216. DOI: http://
dx.doi.org/10.1016/j.future.2005.04.001

12. Parker, S G, Guilkey, J and Harman, T 2006 A com-
ponent-based parallel infrastructure for the simulation
of fluid-structure interaction. Engineering with Com-
puters, 22: 277–292. DOI: http://dx.doi.org/10.1007/
s00366-006-0047-5

13. Mo, Z, Zhang, A, Cao, X, Liu, Q, Xu, X, An, H, et al
2010 JASMIN: a parallel software infrastructure for
scientific computing. Frontiers of Computer Science in
China, 4(4): 480–488. DOI: http://dx.doi.org/10.1007/
s11704-010-0120-5

14. CASC 2007 SAMRAI Structured Adaptive Mesh Refine-
ment Application Infrastructure. Center for Applied
Scientific Computing, Lawrence Livermore National
Laboratory. Available at: https://computation.llnl.gov/
casc/SAMRAI/

15. Hornung, R D and Kohn, S R 2002 Managing appli-
cation complexity in the SAMRAI object-oriented
framework. Concurrency and Computation: Practice
and Experience, 14(5): 347–368. DOI: http://dx.doi.
org/10.1002/cpe.652

16. Christen, M 2012 Automatic thread-level paralleliza-
tion in the chombo amr library. Available at: http://
escholarship.org/uc/item/6xm611zp

17. Allen, G, Goodale, T, Löffler, F, Rideout, D, Schnet-
ter, E and Seidel, E L 2010 Component Specification in
the Cactus Framework: The Cactus Configuration Lan-
guage. In: Grid2010: Proceedings of the 11th IEEE/ACM
International Conference on Grid Computing.

18. Schnetter, E, Hawley, S H and Hawke, I 2004
Evolutions in 3-D numerical relativity using fixed
mesh refinement. Classical and Quantum Grav-
ity, 21: 1465–1488. DOI: http://dx.doi.org/10.1088
/0264-9381/21/6/014

19. Carpet: Adaptive Mesh Refinement for the Cactus
Framework. Available at: http://www.carpetcode.org/

20. Schnetter, E, Diener, P, Dorband, E N and Tiglio,
M 2006 A multi-block infrastructure for three-dimen-
sional time-dependent numerical relativity. Classical
and Quantum Gravity, 23: S553–S578. DOI: http://
dx.doi.org/10.1088/0264-9381/23/16/S14

21. Allen, G, Benger, W, Hutanu, A, Jha, S, Löffler, F
and Schnetter, E 2011 A practical and comprehensive
graduate course preparing students for research involv-
ing scientific computing. In: Proceedings of the Inter-
national Conference on Computational Science, ICCS
2011. Procedia Computer Science, pp. 1927–1936.

22. Löffler, F, Allen, G, Benger, W, Hutanu, A, Jha, S and
Schnetter, E 2011 Using the Ter-aGrid to teach scien-
tific computing. In: Proceedings of the 2011 TeraGrid
Conference: Extreme Digital Discovery, TG‘11. New

York, NY, USA: ACM, pp. 55:1–55:7. DOI: http://doi.
acm.org/10.1145/2016741.2016800

23. Zilhão, M and Löffler, F 2013 An Introduction to
the Einstein Toolkit. arXiv, 1305.5299 [accepted to
IJMPA].

24. Hutanu, A, Schnetter, E, Benger, W, Bentivegna,
E, Clary, A, Diener, P, et al 2010 Large-scale Prob-
lem Solving Using Automatic Code Generation and
Distributed Visualization. Scalable Computing, Prac-
tice and Experience Scientific International Journal for
Parallel and Distributed Computing, 11(2): 205–220.
Available at: http://www.scpe.org/vols/vol11/no2/
SCPE_11_2_10.pdf

25. Seidel, E L, Allen, G, Brandt, S, Löffler, F and Schnet-
ter, E 2010 Simplifying complex software assembly:
the component retrieval language and implemen-
tation. In: Proceedings of the 2010 TeraGrid Con-
ference. TG‘10. New York, NY, USA: ACM, pp. 18:
1–18:8. arXiv, 1009.1342. DOI: http://doi.acm.org/
10.1145/1838574.1838592.

26. Allen, G, Goodale, T, Löffler, F, Rideout, D, Schnet-
ter, E and Seidel, E L 2010 Component Specification in
the Cactus Framework: The Cactus Configuration Lan-
guage. In: Grid2010: Proceedings of the 11th IEEE/ACM
International Conference on Grid Computing. arXiv,
1009.1341.

27. Zebrowski, A, Löffler, F and Schnetter, E 2011
The BL-Octree: An Efficient Data Structure for Dis-
cretized Block-Based Adaptive Mesh Refinement. In:
ParCo2011: Proceedings of the 2011 International
Conference on Parallel Computing. Prof. Dr Frans J.
Peters, Poolsterlaan 6, 5632 AN Eindhoven, The Neth-
erlands: ParCo Conferences.

28. Blazewicz, M, Brandt, S R, Diener, P, Koppelman,
D M, Kurowski, K, Löffler, F, et al 2011 A Massive
Data Parallel Computational Framework for Petascale/
Exascale Hybrid Computer Systems. In: ParCo2011:
Proceedings of the 2011 International Conference on
Parallel Computing. Prof. Dr Frans J. Peters, Poolster-
laan 6, 5632 AN Eindhoven, The Netherlands: ParCo
Conferences.

29. Blazewicz, M, Hinder, I, Koppelman, D M, Brandt, S
R, Ciznicki, M, Kierzynka, M, et al 2013 From physics
model to results: An optimizing framework for cross-
architecture code generation. Scientific Programming,
21(1–2): 1–16. arXiv, 1307.6488. DOI: http://dx.doi.
org/10.3233/SPR-130360.

30. Thornburg, J 2004 A Fast Apparent-Horizon Finder for
3-Dimensional Cartesian Grids in Numerical Relativ-
ity. Classical and Quantum Gravity, 21: 743–766. DOI:
http://dx.doi.org/10.1088/0264-9381/21/2/026

31. Husa, S, Hinder, I and Lechner, C 2006 Kranc: a
Mathematica application to generate numerical codes
for tensorial evolution equations. Computer Physics
Communications, 174(12): 983–1004. DOI: http://
dx.doi.org/10.1016/j.cpc.2006.02.002

32. Kranc: Kranc Assembles Numerical Code. Available at:
http://kranccode.org/

http://dx.doi.org/10.1016/j.future.2005.04.001
http://dx.doi.org/10.1016/j.future.2005.04.001
http://dx.doi.org/10.1007/s00366-006-0047-5
http://dx.doi.org/10.1007/s00366-006-0047-5
http://dx.doi.org/10.1007/s11704-010-0120-5
http://dx.doi.org/10.1007/s11704-010-0120-5
https://computation.llnl.gov/casc/SAMRAI/
https://computation.llnl.gov/casc/SAMRAI/
http://dx.doi.org/10.1002/cpe.652
http://dx.doi.org/10.1002/cpe.652
http://escholarship.org/uc/item/6xm611zp
http://escholarship.org/uc/item/6xm611zp
http://dx.doi.org/10.1088/0264-9381/21/6/014
http://dx.doi.org/10.1088/0264-9381/21/6/014
http://www.carpetcode.org/
http://dx.doi.org/10.1088/0264-9381/23/16/S14
http://dx.doi.org/10.1088/0264-9381/23/16/S14
http://doi.acm.org/10.1145/2016741.2016800
http://doi.acm.org/10.1145/2016741.2016800
http://www.scpe.org/vols/vol11/no2/SCPE_11_2_10.pdf
http://www.scpe.org/vols/vol11/no2/SCPE_11_2_10.pdf
http://doi.acm.org/10.1145/1838574.1838592
http://doi.acm.org/10.1145/1838574.1838592
http://dx.doi.org/10.3233/SPR-130360
http://dx.doi.org/10.3233/SPR-130360
http://kranccode.org/

Löffler et al: CactusArt. e12, page 6 of 6

How to cite this article: Löffler, F, Brandt, S R, Allen, G and Schnetter, E 2014 Cactus: Issues for Sustainable Simulation Software.
Journal of Open Research Software, 2(1): e12, pp. 1-6, DOI: http://dx.doi.org/10.5334/jors.au

Published: 9 July 2014

Copyright: © 2014 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 3.0 Unported License (CC-BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/3.0/.

 OPEN ACCESS Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press.

http://dx.doi.org/10.5334/jors.au
http://creativecommons.org/licenses/by/3.0/

