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1. Introduction
Motivated by the needs of the numerical relativity 
research community and stemming from earlier efforts 
at the National Center for Supercomputer Applications 
in the U.S., the design and development of the Cactus 
framework [1, 2] began at the Albert Einstein Institute, 
a Max Planck Institute for Gravitational Physics in 1996. 
The component-based architecture of Cactus was inspired 
by experiences of physicists and computer scientists who 
had previously worked together in the USA Binary Black 
Hole Alliance Grand Challenge. This NSF-funded collabo-
ration (1993–1999) involved over eleven groups, work-
ing with a variety of independent code bases on a set of 
different projects with the aim of modeling the inspiral 
collision of two black holes using then-state-of-the-art 
supercomputers1. Even within a single group, multiple 
codes were used, often with multiple versions of each 
code. Contrary to the spirit of collaboration, advances in 
research methods or computing technologies were re-
implemented, debugged, and verified in each code, thus 
duplicating effort, hampering communication, and slow-
ing scientific progress.

The vision of the Cactus team was to provide an organic, 
community-oriented framework that would allow 

researchers to easily work together with reusable and 
extensible software elements.

From the beginning, the Cactus framework followed 
a modular design. It features a comparably small core 
(named the “flesh”) which provides the compile-time 
and run-time interfaces between modules. The Cactus 
modules (called “thorns”) use these APIs to specify inter-
module dependencies and connections, e.g. whether 
to share or extend configuration information, to use 
common variables or run-time parameters. Modules 
compiled into an executable can remain dormant at run-
time. Based on user-specified parameters and simulation 
data itself, the flesh decides when and in which order 
to call functions in different modules, assembling them 
into a coherent simulation.

This usage of modules and a common interface between 
them enables researchers to 1) easily use modules written 
by others without the need to understand all details of 
their implementation; 2) write their own modules with-
out the need to change the source code of other parts of 
a simulation in the (supported) programming language 
of their choice; and 3) easily communicate the scientifi-
cally relevant ideas behind the module without involv-
ing the infrastructural details. The number of active 
modules within a typical Cactus simulation ranges from 
tens to hundreds and often has an extensive set of inter-
module dependencies.

2. An evolving framework community
The accelerating growth and diversity of the Cactus com-
munity reinforced the modular development of both the 
physics-based and computational infrastructure. Examples 
of modules include the evolution equations for General 
Relativity, radiation or reflective boundary conditions, MPI 
parallelization, parameter parsing, and output routines. 
The value of this modularization is hard to overstate.

This design was of tremendous help to the motivat-
ing science problem, namely numerical relativity. It also 
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became clear that with such a design, the modules could 
easily be purposed for other science problems. PDE prob-
lems are especially well-suited for use with the Cactus 
framework, however, since Cactus was initially written 
for numerical relativity, which solves a set of complex, 
partial differential equations (PDEs).

The straightforward reusability of existing compo-
nents spurred development in other areas of science-
usually numerically similar-in particular solving sets of 
PDEs, e.g., coastal simulations of storm surges. However, 
most users of the Cactus framework are interested in 
numerical relativity, or more generally, relativistic astro-
physics. Cactus development within this field is coor-
dinated within the Einstein Toolkit [3, 4]. This focus 
stems, at in least part, from the fact that during most 
of Cactus development, interaction between developers 
and users was tight. In fact, most users became develop-
ers to some degree relatively quickly, so that users and 
developers were never truly distinct categories. One of 
the main reasons for this is the modular plug-in nature 
of Cactus, allowing end users to add new thorns to their 
application.

The majority of developers are and have been motivated 
by the study of numerical relativity rather than the broad-
ening of the user base of the framework itself to other 
areas of science. However, owing to the modular nature 
of the framework, such a broadening was brought about 
as a result.

Today the Cactus and the Einstein Toolkit communities 
are still strongly interlinked through individuals who are 
active in both communities; but as different subdomains 
expand their usage of Cactus, these two groups have 
polarized into different roles. Currently, most users of the 
Einstein Toolkit are not active developers of the underly-
ing framework itself, but rather merely use it to create and 
extend modules within the Einstein Toolkit. While there 
are exceptions, most new infrastructure is carried out by 
a few core developers and is based on feedback from the 
user community.

2.1. Related Work
A multitude of simulation packages exist that offer similar 
capabilities. Even limiting this to parallel AMR codes pro-
duces a list too long to discuss here. Therefore, we select 
a couple of cases which we believe to be most relevant.

Paramesh [5, 6] is a package of Fortran 90 subroutines 
designed to provide an application developer with an 
easy way to extend an existing serial code. Other interest-
ing examples are Enzo [7, 8], BoxLib [9], Chombo [10], 
Uintah [11, 12], Jasmine [13] and SAMRAI [14, 15], but 
many more exist.

Likewise, DSL’s are not unusual here. For example, 
Flash uses a DSL for configuration, and Chombo has 
ChomboFortran, a special macro language extension to 
ease portability, maintainability, dimension independ-
ence, and parallelism [16].

Many of these tools employ some form of modulariza-
tion, but we believe that the way this is done in Cactus is 
unique, especially the use of self-describing modules.

3. Software Sustainability Issues
There are many issues connected to the sustainability of 
software. Some of these are important for almost all soft-
ware projects, but some aspects are especially relevant for 
scientific projects. Out of the latter the authors picked 
four of the most relevant to discuss in more detail.

3.1. Modular Design
One of the key properties of a long-term sustainable scien-
tific software project is a modular design. Cactus chose a 
unique method of enabling modularity that went beyond 
the usual notions of APIs, standard data structures, and 
coding conventions. Cactus uses a small set of domain 
specific languages (DSLs) to describe its distributed data 
structures and scheduling [17]. These DSLs enable Cactus 
modules to do run-time reflection, in both Fortran and C/
C++, on the grid variables being evolved.

This may not sound like a revolutionary idea, but its 
consequences were far-reaching. Because of this simple 
design decision, several things became possible. First, 
Cactus was able to completely decouple I/O from science 
code. Unlike many scientific codes that have calls to I/O 
routines interspersed with the program logic, science 
modules in Cactus are only concerned with what vari-
ables they read and write. The I/O module(s) can take field 
variable names as a parameter, look them up with run-
time reflection, and write them out as text, HDF5, JPEG 
and other formats. The DSL describing scheduling identi-
fies when this I/O will be performed, and can be set at 
startup or steered at run-time by the user. Even the most 
important form of I/O, checkpoint/restart, is enabled and 
modularized by this design. Every variable known to the 
framework, and not explicitly excluded, will automatically 
be check-pointed and re-read when necessary.

Second, Cactus was able to abstract the time-integra-
tion method (e.g. Runge-Kutta, Iterative Crank-Nicholson, 
etc.) from the time evolution equations. The DSL describ-
ing scheduling, combined with the list of variables to 
be evolved, was sufficient for this task. The value of this 
module by itself is significant. The ability to avoid subtle 
coding bugs or to try out diverse integrators, without clut-
tering the codebase, is of great value. This time integration 
module can also easily be used to couple separate physics 
modules, such as e.g. the Einstein and Hydrodynamics 
equations.

Third, Cactus was able to create a web browser interface, 
interrupting the schedule tree at key places and allowing 
variables to be inspected and modified during an execu-
tion. This particular form of parameter steering was natu-
rally enabled by the key module design decisions.

Fourth, an adaptive mesh refinement module named 
Carpet [18, 19] was added. Before Carpet was available, 
only uniform, Cartesian grids could be used for spa-
tial decomposition within Cactus, and a lot of modules 
expected to get such rectangular meshes as input. It was 
possible to integrate Carpet into Cactus with little change 
to the science modules. Later, a multi-block mesh capabil-
ity [20] was added with similarly little disruption to exist-
ing codes.
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There are many other capabilities enabled by the unique 
modularization decisions of the Cactus Framework. 
Other special modules include those for debugging, e.g. 
NaNChecker, those enabling unusual IO, e.g. Twitter, 
generic grid modules, generic boundary conditions, tim-
ers, interfaces to PAPI counters, analysis modules, etc.

The usage of modules within the Cactus framework can 
be compared to the use of interfaces in modern object-ori-
ented languages. Cactus modules not only provide a new 
“object” for the framework to work with, they also encap-
sulate a self-describing interface to that object within the 
Cactus framework.

These unique types of interfaces allow different groups 
to efficiently work on one common project, towards one 
common goal, avoiding unnecessary conflicts or duplica-
tion of effort. Usually, this modularization does not cause 
performance problems. Most of the time in our simula-
tions is spent in scientific kernels, and only a small per-
centage is required for the infrastructure.

3.2. Growing Collaborative Community
In contrast to commercial products, academic scientific 
software like Cactus is usually developed in a university 
setting. Most of the actual development work is performed 
by graduate students and postdoctoral researchers who 
are focused on science. This poses a threat for long-term 
stability of any project, because these developers are typi-
cally not very interested in contributing to infrastructure, 
and frequently leave their research groups after three to 
four years, taking all their knowledge and experience with 
them. New members of research groups first need to be 
trained, and while this time can be shortened by creating 
respective courses and documentation, e.g., [21–23], the 
constant flux of developers continues to be a struggle.

The infrastructure development problem is handled 
within the Cactus community by connecting its develop-
ment so closely to a specific science problem that publica-
tions that describe both are possible. This is the way many 
of the publications using and extending the Einstein 
Toolkit are written, containing a description of the new 
infrastructure while mainly representing a publication 
in physics. On the other hand there are examples of pure 
computational science publications as well, e.g., [24–29]. 
These sorts of projects are enabled by the ability to pro-
vide immediate benefits for the substantial number of 
physics problems described by the Einstein Toolkit.

The retention problem is handled by the Cactus commu-
nity automatically, by creating an enjoyable programming 
and development experience. Many students continue to 
be interested in and develop for Cactus after they move on 
to new positions. They are attracted by the ability to lever-
age the work of other physicists and computer scientists 
in the community, to see their code re-used, and to col-
laborate on new research. The ability of Cactus to enable 
collaboration, based on its unique modular design and the 
use of open-source licensing, make it an attractive tool for 
students to use in their continuing research. Thus, rather 
than really leaving, many serve to expand the collabora-
tion. Not all students continue to use Cactus, but enough 

are inspired by it to create the kind of stable contributions 
needed to maintain the health of the project.

3.3. Career paths
The third issue connects to the motivation of the work-
force as well, but also affects the group leaders, especially 
if they are young faculty or trying to become faculty. In 
contrast to commercial products, the principle motiva-
tion of developers in academia is credit. Credit is obtained 
through publications and citations thereof, which are 
then used to quantify the scientific impact of an individ-
ual’s work, forming the basis for future career plans as 
well as promotion and tenure for faculty. The most severe 
problem for developers in most computational sciences, 
currently, is that while most of the work is done creating 
well-written, sustainable software, the academic success 
is often exclusively tied to the solution of the scientific 
problem the software was designed for. Tasks that are 
essential from a software engineering standpoint, e.g., 
high usability, clean code, updated documentation, or 
porting infrastructure to new platforms, are not rewarded 
within this system.

While computations of some form are required for 
almost every aspect of academic research, the criteria for 
tenure positions focus solely on scientific results and fail 
to appreciate the infrastructural development that was 
necessary to achieve these results. Developers of scien-
tific software are often experts across disciplines, and thus 
valuable as team members, group leaders, and lecturers. 
However, the scope of open tenure positions is often only 
very limited to single specific traditional science, resulting 
in a lack of career opportunities and thus a lack of student 
motivation to fully participate in these cross-discipline 
activities.

3.4. Credit
One way that credit is given to software developers is 
through citation of a paper describing the code. Widely 
used codes can lead to highly cited papers, which can 
help the author’s academic career. Unfortunately, it is not 
uncommon that relevant citations are missing despite the 
usage of a specific software package. Enforcement of cita-
tion through licenses is possible to some degree, but such 
requirements tend to limit the desired level of openness, 
and because there are legitimate cases where such cita-
tions are not possible, e.g., because of space limitations.

Both the Cactus framework and its largest user group, 
the Einstein Toolkit, have a few general publications that 
are requested (but not required) to be cited whenever 
the software is used, and especially the Einstein Toolkit 
also requests additional citations when some of its mod-
ules are used. Examples of such modules are the Carpet 
mesh-refinement infrastructure, or the black hole horizon 
finder [30]. Handling citations on a module-level like this 
enables individual developers to receive credit for their 
work, especially if they entered the group only after the 
main publications had already been written. A complete 
list of these publications can be found on the Einstein 
Toolkit web site [4].
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4. Automated Code Generation
Computational science is always evolving, and at an ever 
increasing pace. Changes in hardware and progress in 
numerical methods have been important factors in the 
quest to solve increasingly complex problems within a 
relatively constant time. The Cactus group is looking for 
ways to use modularization to attack these new types of 
problems.

Prior to the discovery of a stable set of numerical 
techniques for evolving black holes, it was necessary 
to experiment with the form of the Einstein equations. 
Unfortunately, these equations contain many hundreds 
of terms and transforming them into code was daunting, 
tedious and error-prone. Sascha Husa and Ian Hinder 
developed a tool called Kranc [31, 32] to mitigate this 
problem. Kranc takes a tensorial equation written in 
Mathematica and generates a complete Cactus module 
in C++ to evaluate it, enabling scientists to more eas-
ily experiment with the form of equations. Kranc turned 
out to be a much more powerful and useful tool than 
anticipated.

Modern architectures increasingly rely on vectorization 
to achieve performance, many of them now perform eight 
floating point instructions per clock cycle. Unfortunately, 
few compilers can vectorize the Einstein equations 
because of the sheer number of terms they contain, lead-
ing to a large performance penalty.

Recent work shows that Mathematica’s pattern match-
ing ability allows us to transform equations as Kranc gen-
erates them, inserting explicit vector instructions and 
side-stepping compiler limitations, and thereby achieving 
higher performance.

5. Newer Challenges
Until recent times, the modular structure of Cactus has 
allowed developers to easily make use of new ideas, algo-
rithms, and technologies. To some extent, OpenMP style 
parallelism disrupted that modularity by intermixing 
parallel logic and code development, but the problems 
caused by this change have been relatively minor.

More recent challenges posed by accelerators have 
proved to be a more challenging disruption. Because 
Kranc isolates the high-level representation of the equa-
tions from their implementation in code, it makes it pos-
sible to generate code for multiple languages (such as 
CUDA, and OpenCL), it makes it possible to isolate the 
high level equations from the low level code implementa-
tion details required for high performance.

6. Conclusion
The key to Cactus’ previous success on every level has 
been a result of its unique choices for modularization. The 
ability for the code to reflect on itself has enabled a num-
ber of valuable infrastructure features.

Recent challenges in hardware design have disrupted 
that modular design, but equation generation appears 
to provide a possible path forward, separating high level 
equations from their low level representation in code. 
This present direction of research is being studied by the 
Chemora [28] project, and work in this area is ongoing.
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Notes
 1 The first accurate black hole inspiral was finally mod-

eled in 2007.
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