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Rhodium is an open source Python library for robust decision making (RDM), many-objective robust 
decision making (MORDM), and exploratory modeling. These decision-support frameworks enable the 
identification of robust strategies for the management of complex environmental systems, by evaluating 
the tradeoffs among candidate strategies, and characterizing their vulnerabilities. Robust strategies refer 
to management options that perform sufficiently well or acceptably under a range of potential system 
conditions, rather than optimally in a single, nominal state of the world. Exploratory modeling allows for 
the simulation of the system under an ensemble of states of the world, so as to discover the ones with 
consequential effects on the system [1]. Rhodium facilitates rapid application of the RDM and MORDM 
frameworks by providing a suite of optimization, visualization, scenario discovery, and sensitivity analysis 
functions. Rhodium is written in Python and can interface with models written in Python, C and C++, 
Fortran, R, and Excel. The source code is freely available at https://github.com/Project-Platypus/Rhodium.
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(1) Overview
Introduction
Managing complex environmental systems necessitates 
identifying management strategies that are robust across 
many potential future states of the world (SOWs). This task 
is further complicated by the presence of deep uncertainty, 
the case where planners or experts cannot agree on prior 
probability density functions for the parameters of the 
system model, or even on the model representation 
itself [2, 3]. In such cases, it is often desirable to search 
for management strategies that perform sufficiently well 
under a range of possible system representations and 
conditions (or SOWs) [4]. This is in contrast to canonical 
decision making approaches that seek to find the ‘optimal’ 
solution for a nominal SOW or a set of SOWs with well-
described probabilities of occurrence [5, 6]. These issues 
have sparked the development of several “bottom-up” 
decision support frameworks (for recent reviews see [4, 
7]). Robust Decision Making (RDM) [8, 9] is one of the 
seminal bottom-up approaches, which seeks to support 
in the identification of robust solutions (out of a set 
of pre-specified candidates) that result in satisfactory 
performance across a broad ensemble of plausible future 

SOWs [10, 3]. RDM uses several “satisficing” or “regret” 
criteria to rank alternative strategies on their performance 
across candidate SOWs, rather than identifying those with 
optimal performance in a single system instantiation 
[3]. As a result, robust solutions often have to trade 
optimal performance for reduced sensitivity to incorrect 
assumptions [3]. RDM also seeks to determine which 
uncertain parameters are most likely to result in 
consequential failures for the candidate management 
strategies in a process termed “scenario discovery” [11].

Several authors have argued that analyzing a set of pre-
specified alternatives may potentially overlook innovative 
sets of candidate actions as well as their inherent 
performance trade-offs across conflicting stakeholder 
objectives [12, 13, 14]. The many-objective robust decision 
making (MORDM) framework overcomes this challenge 
by combining many-objective evolutionary optimization, 
RDM, and interactive visual analytics to discover 
performance tradeoffs, vulnerabilities, and dependencies 
[12]. The main steps of the MORDM framework are: (1) 
problem formulation, including the identification of 
uncertainties, possible actions to be taken by the decision 
maker, relationships mapping actions to outcomes, and 
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performance measures to gauge success; (2) generating 
alternative management actions using multi-objective 
evolutionary algoriths (MOEAs); (3) using exploratory 
modeling to broadly sample possible SOWs, perform 
uncertainty analysis and identify robust solutions; and (4) 
performing sensitivity analysis and/or scenario discovery 
to find the key factors that most strongly affect the 
robustness of candidate strategies. MORDM emphasizes 
the importance of treating the problem formulation as a 
learning process, with multiple feedbacks across the four 
stages of the framework application. This constructive 
decision aiding approach, allows decision makers to 
explore what is attainable with regards to performance, 
as well as how this is shaped by the choice of objectives, 
constraints and decision variables used in the optimization, 
and the choice of uncertainty representation [15].

As the aim of MORDM and other decision making 
under deep uncertainty frameworks is to provide decision 
support for complex problems, there has been a need for 
software tools guiding and facilitating the application 
of these frameworks. The most prominent examples of 
such tools already available are the EMA Workbench [16] 
(an open source Python library) and OpenMORDM [14] 
(an open source R library). The two toolkits facilitate the 
generation of alternative strategies, exploratory modeling, 
and the application of sensitivity analysis and scenario 
discovery methods for complex environmental systems. 
Both also provide interfaces to existing simulation models, 
with OpenMORDM able to evaluate R-based models, and 
EMA Workbench able to analyze simulation models in 
Python, Vensim, NetLogo, and Excel. This paper introduces 
Rhodium, an open source Python library, complementing 

these two software tools in supporting rapid and 
iterative application of MORDM for models written 
in Python, C and C++, Fortran, R, and Excel. Figure 1 
formally illustrates the four main steps of the MORDM 
framework and their application through the Rhodium 
library. Furthermore, Rhodium introduces a unified and 
extensible way to describe models across all the languages 
(C, C++, Fortran, R and Excel) and handles the invocation 
of the underlying model, with the use of several wrappers 
available in the library. All three toolkits allow for the 
exploration of alternatives by loading external datasets 
generated as multi-objective optimization outputs. 
The toolkits also support multi-objective optimization; 
as with the EMA Workbench, Rhodium employs the 
Platypus library (https://github.com/Project-Platypus/
Platypus), a framework for evolutionary computing in 
Python supporting multiple multi-objective evolutionary 
algorithms (MOEAs). OpenMORDM only supports multi-
objective optimization using the Borg MOEA [17]. As 
with the other two toolkits, Rhodium also allows for the 
application of scenario discovery methods, specifically 
the Patient Rule Induction Method (PRIM) [18] and 
Classification and Regression Trees (CART) [19]. Multiple 
sensitivity analysis techniques can also be applied on a 
Rhodium model through SALib [20]. Finally, Rhodium 
simplifies MORDM analysis by allowing the user to use 
expressive language. For example, when “brushing” (i.e., 
limiting the values of a certain parameter to a specific 
range to indicate potential preference), one can provide 
simply input an expression (e.g., “reliability > 0.95”). 
Rhodium interprets that expression and applies the 
brushing as well as shows the relevant expression in the 

Figure 1: The four steps of the many objective robust decision making (MORDM) framework, as applied using the 
Rhodium library. The process typically begins with problem formulation. Each step facilitates stakeholder collaboration 
using the generated visual analytics. Figure adapted from [12].
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legend. The parallel development and cross-fertilization 
between Rhodium and EMA Workbench enable seamless 
functionality between the two libraries for users that 
would like to use a mixture of the tools available in each.

Implementation and architecture
Rhodium has been developed as a Python library 
containing data structures and classes necessary to 
perform MORDM analysis. It is part of Project Platypus 
(https://github.com/Project-Platypus/), which is a 
collection of libraries for optimization, data analysis, and 
decision making, to be used with Python 3.5. The Platypus 
library (within Project Platypus) supports multi-objective 
optimization using a variety of MOEAs: NSGA-II, NSGA-III, 
MOEA/D, IBEA, Epsilon-MOEA, SPEA2, GDE3, OMOPSO, 
SMPSO, and Epsilon-NSGA-II. J3 is a desktop application 
written in JavaScript, for producing and sharing high-
dimensional, interactive scientific visualizations. It allows 
the user to visualize and explore thousands of data points 
by leveraging hardware accelerated graphics, while 
simultaneously supporting animations and interactivity. 
J3 is paired with J3Py, a Python module that allows the 
user to launch J3 from within the Python environment 
and use it to analyze data output from the other Project 
Platypus libraries. Finally, the PRIM library can be used 
to apply the Patient Rule Induction Method [18] for the 
purposes of scenario discovery, explained in more detail 
in the following sections.

Rhodium employs these and other scientific computing 
libraries to support a variety of MORDM tasks, as described 
in more detail below, and presented in Figure 2. The core 
classes used by Rhodium are:

•	 Model and filemodel: these two classes enable the 
definition of the simulation model to be analyzed 
using Rhodium. The former represents models writ-

ten as Python functions and can be used directly; the 
latter enables the import of an externally produced 
file containing the model description in various file 
formats.

•	 Parameter: This class can be used to define model 
parameters that can either be constant, controlled by 
a lever (see below), or subject to uncertainty. Uncer-
tain model parameters can be used to perform explor-
atory modeling and scenario discovery, during which 
the parameters are sampled to be then used for strat-
egy reevaluation.

•	 Response: Responses represent model outputs. They 
can be of type MINIMIZE, MAXIMIZE, or INFO. If 
the type is set to MINIMIZE or MAXIMIZE, then the 
response may be used during optimization. If the 
model response if of type INFO, the default, then 
the response is purely for informative purposes (e.g., 
exploring how alternative strategies affect the system 
beyond its objectives) and does not participate in 
optimization.

•	 Constraint: This class is used to set “hard constraints” 
that must be satisfied in order for a candidate solu-
tion to be considered feasible. Constraints can be set 
on any parameter or response. To define a constraint, 
one can use a valid Python expression that references 
said parameter or response, or a function using a dic-
tionary of parameters and responses.

•	 Lever: Defines an adjustable lever that controls 
a model parameter, to be used during optimiza-
tion. Five different types of lever are distinguished 
within the library: RealLever, IntegerLever, Categori-
calLever, PermutationLever, SubsetLever. When defin-
ing a model lever, the number of decision variables 
required to represent this lever need to be set by the 
user to be passed by Rhodium to Platypus for optimi-
zation.

Figure 2: Core classes of the Rhodium library.
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•	 Uncertainty: This class is used to set the uncertainty 
of a model parameter, for the purposes of exploratory 
modeling and scenario discovery. There are five dif-
ferent types of uncertainty defined in Rhodium: 
UniformUncertainty, NormalUncertainty, LogNor-
malUncertainty, IntegerUncertainty, and Categori-
calUncertainty. Depending on the type, minimum and 
maximum parameter values, distribution parameters, 
and other arguments might need to be provided.

By using these classes the user can formulate and define a 
Rhodium model for optimization, scenario discovery, and 
sensitivity analysis. The library is written in a declarative 
manner, so all these processes are hidden from the user 
and handled internally by the library itself. The user only 
needs to describe the operation to be performed, without 
needing to specify all the details of how that should be 
done. For externally built models, several helper classes 
(wrappers) have been defined, that allow Rhodium to 
connect to models written in other languages. To perform 
optimization and generate alternatives, the built-in 
optimize function employs the Platypus library within 
Project Platypus. To return the optimization results (i.e., 
the Pareto-approximate set) use is made of the Dataset 
class.

To explore candidate solutions and tradeoffs across 
objectives, several tools are available for visualization 
of performance in two- and three- dimensional space, 
pairwise plots, kernel density plots, and in parallel 
coordinates. The library uses model input to make 
educated guesses on how to generate figures and legends. 
The plotting functions also allow for user interaction as 
well as brushing.

The next stage of the MORDM framework is Uncertainty 
Analysis, where the performance of candidate solutions is 
explored under more relaxed best-estimate assumptions 
for the parameter values. To do so, each solution in the 
Pareto-approximate set is reevaluated in a large number 
of alternative SOWs. This step can guide the identification 
of solutions that have acceptable performance across a 
wide range of plausible future scenarios and alternative 
system states. There are two sampling functions available 
in Rhodium, one for Uniform Random Sampling 
(sample_uniform) and one for Latin Hypercube Sampling 
(sample_lhs) [21]. Several other sampling methods are 
available through SALib, which can be used to generate 
other kinds of samples to analyze using Rhodium, should 
the user be interested. The built-in evaluate function 
then allows the analyst to re-simulate any and all 
candidate solutions in all sampled SOWs, and output a 
Dataset containing the performance of each solution in 
each SOW.

Scenario discovery typically employs statistical cluster 
analysis on databases of simulation model outputs to 
identify simple descriptions of parameter combinations 
that best predict the SOWs where robust strategies 
perform poorly [22]. Rhodium provides two methods 
by which the user can perform scenario discovery: PRIM 
[18] and Cart [19]. For either method, the user first 
needs to set thresholds for each of the performance 

measures, defined so as to reflect stakeholder preferences. 
Sampled SOWs that violate these defined thresholds 
are considered “vulnerable” or “unreliable” [12]. Cart is 
defined in Rhodium as a class of functions that takes a 
set of independent variables and a dependent variable 
in a binary classification (e.g., “reliable” and “unreliable”), 
and produces a decision tree for classification. To apply 
PRIM, Rhodium employs the PRIM module included in 
Project Platypus, which is a standalone version of the 
PRIM algorithm as implemented in the EMA Workbench, 
and needs to be installed separately. This version of PRIM 
allows for user interaction within Matplotlib’s native 
viewer and can handle a variety of inputs, such as Pandas 
dataframes, Numpy matrices, or other list-like objects. 
The algorithm takes a set of independent variables and a 
dependent variable and produces a set of “PRIM boxes” in 
the parametric space. Each PRIM box represents different 
combinations of “coverage” and “density” of reliable SOWs 
(i.e., boxes containing varying numbers of false-positive 
and false-negative classifications according to stakeholder 
preference). Both classification methods (Cart and PRIM) 
can be used by the analyst to identify easy-to-interpret 
orthogonal parameter ranges that produce undesirable 
performance for the candidate policies. Compared to the 
PRIM functionality within the EMA Workbench, the EMA 
Workbench implementation also allows for the discovery 
of multiple “PRIM boxes” instead of a single orthogonal 
region.

An alternative analysis method available to the 
Rhodium user is global sensitivity analysis, which can 
be performed to prioritize the factors (parameters) most 
significantly affecting the output, and, if desired, fix the 
factors that appear not to affect the output. The SALib 
Python Library [20] contains implementations of some 
of the most commonly used sensitivity analysis methods, 
including Sobol, Method of Morris, Fourier Amplitude 
Sensitivity Test (FAST), and Delta Moment-Independent 
Measure, among others. Rhodium makes use of SALib to 
allow its user to apply SALib tools to a Rhodium model, by 
defining the specific output of interest, a candidate policy 
to study, and the sensitivity analysis method to apply. 
Internal Rhodium functions then handle the sampling 
necessary for each sensitivity analysis method and the 
model evaluations necessary to return sensitivity indices 
for the Rhodium model. SALib is installed automatically 
during the Rhodium installation. Rhodium also contains 
several plotting options for sensitivity analysis results.

Lastly, Rhodium supports parallelization which reduces 
runtime during analysis. Similar to other components 
within Rhodium, this is designed to be extensible. Rhodium 
itself provides support for single-threaded evaluation and 
multi-process evaluation on a single computer using 
the ProcessPoolEvaluator. This is powered by Python’s 
built-in multiprocessing module. It also integrates with 
other Python libraries, including MPIPool and JobLib, 
for scaling out to cloud or high-performance computing 
architectures. Since the optimization and re-evaluation 
tasks are typically embarrassingly parallel, substantial 
speedup can be achieved, significantly reducing the time 
to run experiments.
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Quality control
Rhodium has been successfully tested on Linux Ubuntu 
and CentOS, MacOS Maverics and El Capitan, and 
Windows 7 and 10, with Python versions 3.5 and higher. 
Before using Rhodium to one’s unique case study, users 
are advised to first execute the example Lake Problem 
application provided in the examples directory (under 
master/examples/Basic/example.py). The Lake Problem 
is a model of lake nutrient dynamics developed by [23], 
representing a pollution control problem in which a 
theoretical town needs to develop an emissions policy 
that balances its economic benefits and the quality of 
the lake. The system used in this example is presented 
and analyzed extensively by [24], and is included in the 
Rhodium repository for the purposes of framework 
illustration and verification. We present the dynamics of 
the system and how it can be analyzed using Rhodium 
below.

The lake water quality in this system can transition 
between an oligotrophic (healthy) equilibrium and a 
eutrophic (unhealthy) equilibrium, as determined by the 
following dimensionless equation:
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where X is the concentration of phosphorus in the lake, 
a are anthropogenic phosphorus inputs (controlled by 
emissions policy), Y~LN(μ,σ2) are natural phosphorus 
inputs (uncontrolled), q is the phosphorus recycling rate 
in the lake, and b is the rate of phosphorus loss in the 
lake. Finally, this discrete-time model is using t ∈ {0,1,2,…} 

as the time index. As detailed by [24], the term 
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represents phosphorus recycling by the lake sediment, as 
a function of the current phosphorus level and the term 
bX represents the losses of phosphorus due to sediment 
adsorption. As q increases, the change in recycling rate 
as a function of the phosphorus concentration is more 
precipitous, whereas as b increases, phosphorus losses 
become larger. The system dynamics without natural 
and anthropogenic inputs are presented in Figure 3, 
where the rates of phosphorus recycling (in orange) and 
leaving the lake (in black) are plotted as a function of 
the phosphorus concentration. Including the natural 
and anthropogenic inputs would move the curved line 
upwards. The points where the recycling rate equals 
the sinking rate (the intersections of the two lines) are 
considered equilibria (denoted in black and white points), 
two of which are stable and one is unstable. The stable 
equilibrium with low phosphorus concentration (bottom 
left) is an oligotrophic equilibrium, considered attractive. 
Therefore, even with higher phosphorus concentrations 
(moving rightward), as long as the sink flux is higher than 
the recycling flux, the lake concentration will return to 
the equilibrium. If anthropogenic emissions increase the 
phosphorus concentration enough to cross the unstable 
equilibrium (white point), then the lake concentration is 
irreversibly attracted to the eutrophic stable equilibrium 
(upper right). Management needs to therefore identify 
a policy that maximizes profits derived from emissions, 
while keeping phosphorus concentration low enough 
so as to not cross this tipping point to a permanently 
polluted lake.

Figure 3: Non-linear dynamics of the irreversible lake model, with the phosphorus recycling in orange and phosphorus 
sink in black. The equilibria of this system are presented as points, with black denoting the stable equilibria and white 
denoting the unstable equilibrium, i.e., the tipping point of this system. Increasing the phosphorus concentration 
and crossing this tipping point puts the system at an irreversible eutrophic state.
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To analyze this system using Rhodium, the user needs 
to execute the file in a Python environment. The script 
performs multi-objective optimization on the simulation 
model, trying to identify emissions policies that maximize 
utility (profits), minimize the maximum phosphorus 
concentration over the time horizon, maximize policy 
inertia, and maximize reliability (time below tipping 
point). The formulation of this problem follows that 
of [24] (referred to therein as “Intertemporal”), which 
also elaborates on the objective equations chosen. The 
optimization is performed in the example using the 
NSGAII MOEA for 10,000 NFE (number of function 
evaluations). The generated alternatives (management 
policies) are stored and can be visualized using a suite of 
visualization options presented in Figure 4.

Figure 4 (a) and (b) present the generated alternatives 
in two-dimensional scatter plots; Figure 4 (a) shows each 
point (candidate strategy) colored by its performance 
on a third objective, whereas Figure 4 (b) displays 
the “brushing” functionality allowing users to indicate 
preference on one or more model responses. In this 
particular example, Figure 4 (b) presents solutions 
meeting preference criteria of reliability >=0.5 and utility 
>0.5, with solutions not meeting either criterion set to 
grey color. Figure 4 (a) and (b) show that with increasing 
profits (utility), the phosphorus concentration in the lake 
must also increase, indicating a strong tradeoff between 
the two. When the phosphorus concentration increases 

so as to cross the tipping point (left side of the figures), 
higher utility values are achieved by those solutions, albeit 
in a eutrophic lake. In Figure 4 (b), one can see that those 
solutions actually achieve very low values in the reliability 
objective (shown in grey on the right). The solutions in 
grey on the left side of the figure are those failing to meet 
the brushing criterion of utility >0.5. These results are in 
general agreement with those reported by [24].

Figure 4 (c) displays the performance of each alternative 
in a three-dimensional scatter plot and Figure 4 (d) 
shows the performance of the solutions in a parallel axis 
plot. This style of plot represents the performance on 
each objective by a vertical axis. The points where each 
line (candidate solution) crosses a vertical axis indicate 
the performance value for that objective. The figure 
is oriented so an upward shift in one of the vertical 
axes indicates increased preference in the equivalent 
objective performance. Brushing can also be applied here, 
indicating, in this case a stakeholder preference for the 
reliability objective to only have values above 0.2. All 
solutions not meeting that criterion are then set to grey. 
Even though there is a stochastic component to both the 
system equations and the optimization, if the installation 
was performed successfully, analysts testing the library 
using this example should be able to generate figures that 
look very similar without errors.

To test the library’s scenario discovery functionality, 
the example guides the user on how to perform a 

Figure 4: Four alternative visualization options available in the Rhodium library. Each panel presents the performance 
of each candidate solution in: (a) a two-dimensional scatter plot with the color of each point set by the performance 
of each solution on one of the objectives; (b) a two-dimensional scatter plot with the color of each point set by 
whether it meets user-set preference criteria; (c) a three-dimensional scatter plot with the size of each point set by 
the performance of each solution on one of the objectives; (d) a parallel axis plot, where each objective is represented 
by a vertical axis and the performance of each solution (each line) is indicated by the point where it crosses each axis.
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Latin Hypercube Sample on the uncertain parameters, 
generating 100 alternative SOWs. For the illustrative 
purposes of this example, one of the candidate policies is 
selected and re-evaluated in all sampled SOWs. The criterion 
used to evaluate success and failure in the sampled SOWs 
is whether the reliability of the policy (time below tipping 
point) is > = 0.9. Users can then perform scenario discovery 
through PRIM and Cart by executing the respective 
commands. Output figures from executing these two 
scenario discovery methods are presented in Figure 5. 
Figure 5 (a) presents one of the PRIM boxes identified, 
representing parameter ranges where the policy chosen 
is meets the stakeholder-set criteria (the SOWs indicated 
in red). The user can interact with this figure and navigate 
to different PRIM boxes representing parameter ranges 
that capture more of the reliable parameter combinations 

but also introduce some less reliable combinations. As 
explained above, this functionality allows stakeholders 
to explore how many false-positives and false-negatives 
they are willing to accept in their classification of reliable 
SOWs. Figure 5 (b) shows the classification tree produced 
by the application of Cart. This method produces similar 
orthogonal divisions of the parametric space, with easy-
to-interpret “larger than” and “smaller than” conditions 
on the parameters. Stakeholders can navigate the tree 
by moving downward, which represents additional splits 
on the parameter values. Users replicating this example 
should be able to easily generate these figures following 
the script provided. The results in Figure 5 show that the 
most important parameters controlling the success or 
failure of the selected policy are b and q, also in agreement 
with the findings by [24]. This is explained by the fact that 

Figure 5: Scenario discovery results as produced by PRIM and Cart, using the Rhodium library. (a) One of the identified 
PRIM boxes, representing parameter ranges where the policy chosen is always reliable. The “Prev” and “Next” 
buttons allow the user to navigate to other PRIM boxes with different coverage and density of reliable SOWs. (b) The 
classification tree produced by Cart. Each node in the tree represents an orthogonal split on the range of one of the 
parameters. Moving downward on the tree indicates additional divisions of the parametric space.
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the values of b and q determine the tipping point of this 
system, which is intrinsically related to the criterion set 
(time below tipping point).

To test the sensitivity analysis functionality, new users 
are guided to the sensitivity_analysis.py example script. 
This script uses the same model to demonstrate four 
sensitivity analysis methods available in the SALib library 
[20]. SALib is a Python library containing implementations 
of multiple global sensitivity analysis methods. This 
library can be used in simulation, optimization, and 
modeling applications to calculate the influence of model 
inputs or parameters on outputs of interest. This example 
applies the Fourier Amplitude Sensitivity Test (FAST) 
[25], the Delta Moment-Independent Method [26], Sobol 
Sensitivity Analysis [27], and the Method of Morris [28]. 
Executing the script correctly should produce sensitivity 
indices resulting from each method as well as their 
confidence intervals.

(2) Availability
Operating system
Rhodium can run on Linux Ubuntu and CentOS, MacOS 
Maverics and El Capitan, and Windows 7 and 10, with 
Python versions 3.5 and higher installed.

Programming language
Python 3.5+

Additional system requirements
None.

Dependencies
Platypus
PRIM
The following dependencies are handled during 
installation:
matplotlib
mpldatacursor
numpy
pandas
pydot
SALib
scipy
seaborn
six
sklearn

List of contributors
David Hadka

Software location
Archive

Name: GitHub
�Persistent� identifier: https://github.com/Project- 
Platypus/Rhodium/
Licence: GNU General Public License v3.0
Publisher: David Hadka
Version published: 1.0
Date published: 25/10/2015

Code repository
Name: GitHub
�Persistent� identifier: https://github.com/Project- 
Platypus/Rhodium/
Licence: GNU General Public License v3.0
Date published: 25/10/2015

Language
English.

(3) Reuse potential
Rhodium is a flexible library of functions that can be 
applied in any RDM, MORDM, and exploratory modeling 
application, where robust management strategies need 
to be identified. The library can be used as an interface 
with existing simulation models, define computational 
experiments to be performed with such models 
through optimization, and visualize and analyze the 
optimization outputs. The functionality also supports 
exploratory modeling, as well as scenario discovery and 
sensitivity analysis methods. Users interested only in 
the investigation of externally obtained multi-objective 
optimization results can simply import the data and make 
use of functionality provided for analysis. Even though its 
presentation in this paper and the illustrative example 
were focused on complex environmental systems, 
Rhodium (as with the MORDM framework) is applicable 
to any decision-making problem with many objectives 
in the presence of deep uncertainties. The library has 
been applied and tested on multiple examples that can 
be found in the examples directory of the repository, 
including the lake problem example, as elaborated in the 
Quality control section.
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