
Grömping, U 2020 DoE.MIParray: An R Package for Algorithmic
Creation of Orthogonal Arrays. Journal of Open Research
Software, 8: 24. DOI: https://doi.org/10.5334/jors.286

Journal of
open research software

SOFTWARE METAPAPER

DoE.MIParray: An R Package for Algorithmic Creation of
Orthogonal Arrays
Ulrike Grömping
Department II, Beuth University of Applied Sciences, Berlin, DE
groemping@beuth-hochschule.de

The R package DoE.MIParray uses mixed integer optimization for creating well-balanced arrays for
experimental designs. Its use requires availability of at least one of the commercial optimizers Gurobi
or Mosek. Investing some effort into the creation of a suitable array is justified, because experimental
runs are often very expensive, so that their information content should be maximized. DoE.MIParray is
particularly useful for creating relatively small mixed level designs. Balance is optimized by applying the
quality criterion “generalized minimum aberration” (GMA), which aims at minimizing confounding of low
order effects in factorial models, without assuming a specific model. For relevant cases, DoE.MIParray
exploits a lower bound on its objective function, which allows to drastically reduce the computational
burden of mixed integer optimization.

Keywords: R; statistics; design of experiments; orthogonal arrays; mixed integer optimization; Mosek;
Gurobi; well-balanced arrays; generalized minimum aberration
Funding statement: The work on this software is the outcome of research that was funded by Deutsche
Forschungsgemeinschaft (grant GR 3843/2-1).

(1) Overview
Introduction
The R package DoE.MIParray creates well-balanced
experimental designs for experimentation with a set of
experimental factors, for which suitable off-the-shelf
plans are not readily available. It is particularly useful
for relatively small experimental situations for which the
experimental factors have different numbers of levels
(called “mixed level”).

For a very basic example, consider an experiment on
three brands of baking powder (B1, B2, B3), combined
with two types of oven (electric versus gas) and two
different recipes (old versus new). A combination of
levels with which to conduct the experiment is called an
“experimental run”. For this simple example, there are
3⋅2⋅2 = 12 different level combinations (see Table 1). An
experiment that runs all these once or replicates them
in a balanced way is called a (replicated) full-factorial
experiment; replication may be employed in order to
draw stable conclusions in spite of random variation. (For
experiments with many factors, explicit replication may
be replaced by implicit replication, see e.g. [4]). The above
small experiment only has the m = 3 factors bp (baking
powder brand) with 3 levels, oven with 2 levels and recipe
with 2 levels. For larger settings, a full factorial experiment
will become infeasible fast; for example, Vasilev et al.
([11]) reported results from an experiment in 72 runs for
m = 7 factors with numbers of levels 2, 2, 2, 2, 3, 3 and 4.

A full factorial experiment would have needed 576 runs,
which was considered infeasible. The design plan used in
[11] was obtained using column selection optimization
based on a catalogued 72 run plan of R package DoE.base
(see [4]). Suitable use of R package DoE.MIParray creates
a more balanced plan; thus, had DoE.MIParray already
been available when conducting the experiment reported
in [11], a more balanced experiment could have been run.
This and other useful designs that have been found by
package DoE.MIParray have also been reported in [5].

The benefit of balance
DoE.MIParray algorithmically creates a well-balanced
array, using mixed integer optimization. The goal is
to ensure that a factorial model with main effects and
possibly low order interactions can be estimated with as
little confounding as possible, without having to specify
certain effects to be active or inactive or assuming a
particular model. For discussing the benefit of balance,
we have to formalize it a little. Imbalance is measured in
terms of “generalized words”, as introduced by Xu and Wu
([13]). For a design in m factors, the so-called generalized
word length pattern (GWLP) is a tuple (A0, A1, …, Am) of
non-negative entries. The entry A0 (for the overall mean)
is always 1. In a full factorial design, all other entries are
zeroes, i.e. A1, …, Am = 0 (with m the number of factors, i.e.
m = 3 in our example). The zeroes indicate that there is
no imbalance in any degree of factorial effects (degree 1

https://doi.org/10.5334/jors.286
mailto:groemping@beuth-hochschule.de

Grömping: DoE.MIParrayArt. 24, page 2 of 7

for main effects, 2 for 2-factor interactions, and so forth,
up to m-factor interactions). The resolution R > 0 of an
experimental plan is the integer R for which AR > 0 and
Aj = 0 for all j with 0 < j < R (if any). Thus, requesting
resolution III (resolution is usually given as a roman
numeral), we would request that A1 = A2 = 0. This is also
denoted as strength 2: the strength is one less than the
resolution. For strength 2, all pairs (=2-tuples) of factors
(when ignoring the presence of the other factors) are full
factorials or balanced replications of full factorials. The
entry Aj (j = 1,…,m) of the GWLP is the sum of the imbalance
contributions from all j-tuples among the m factors.

As was mentioned above, the unreplicated full factorial
design of Table 1 with its N = 12 runs has the GWLP (A0, A1,
A2, A3) = (1, 0, 0, 0). The three fractional factorial designs of
Table 2 with their n = 6 runs each have the GWLPs (1, 1/9,
2/9, 2/3), (1, 0, 7/9, 2/9), and (1, 0, 1/9, 8/9), respectively.
In all three cases, the sum of the entries is N/n = 12/6 = 2,
because the designs have n = 6 distinct runs out of the
N = 12 possible runs of the full factorial. According to the
generalized minimum aberration criterion, Design 1 is
worst, since it has only resolution I (strength 0), because
A1 is already positive; this is caused by the imbalance in
factor oven. Designs 2 and 3 have at least resolution II
(strength 1), i.e. all factors are balanced (usually considered

as the minimum requirement), while pairs of factors are
not all balanced. Design 2 is worse than Design 3, because
its A2 entry is larger; this is due to the imbalance between
factors oven and bp, which is not present in Design 3. One
would usually strive to achieve at least resolution III; with
this very small design, this is not possible in less than a full
factorial. Whether or not a certain strength is possible can
be checked using function oa_feasible, which tells us
that strength 2 is not possible here (oa_feasible(6,
c(2,2,3), 2)).

Mosaic plots are a good way to demonstrate imbalance
(see e.g. [1]). Figure 1 shows the worst case imbalance
among triples of factors in the resolution III design
from [11], compared to the worst case imbalance in the
optimum design obtained using Mosek software via
function mosek_MIParray of package DoE.MIParray;
the latter has the smallest possible A3 for 72 runs. The
reference plots in the top row show the worst case possible
balance for a resolution III triple of three factors with 2, 2,
and 4 levels, and the best possible balance achievable in a
full factorial design (not achievable in 72 runs).

Why does balance matter? This is most easily explained
when looking at the worst case picture: in the top left
mosaic plot of Figure 1, the combinations A = 1 and B = 1
or A = 2 and B = 2 imply that F can only take levels 1
or 3, while A = 1 and B = 2 or A = 2 and B = 1 imply
that F can only take levels 2 or 4. Thus, if there were
an interaction effect of the factors A and B, this would
directly (and heavily) impact estimation of the main effect
of factor F. This is called confounding. If one would use
this design for an experiment and would not include an
interaction between A and B into the model even though
an interaction effect exists, conclusions about the main
effect of factor F would be seriously biased. The top right
mosaic plot shows the perfect balance in the full factorial
situation, where such bias can be completely avoided.
Both experimental plans shown in the bottom row are
at least much better than the worst case reference, with
the plan obtained from DoE.MIParray being better than
the one that was actually used in [11]. Their quality can
be compared by calculating their GWLP’s with function
GWLP from R package DoE.base; that function is also
available within package DoE.MIParray directly, for
convenience: The worse array has GWLP=(1, 0, 0, 73/162,
263/81, 20/9, 82/81, 11/162), the better one GWLP=(1, 0,
0, 2/27, 221/54, 113/54, 1/2, 13/54). In fact, the A3-value

Table 1: Full factorial design in lexicographic order, with
counting vector r for Design 3 of Table 2.

r recipe bp oven

1 new B1 elect

0 new B1 gas

1 new B2 elect

0 new B2 gas

0 new B3 elect

1 new B3 gas

0 old B1 elect

1 old B1 gas

0 old B2 elect

1 old B2 gas

1 old B3 elect

0 old B3 gas

Table 2: Three small fractional factorial designs.

Design 1 Design 2 Design 3

run recipe bp oven run recipe bp oven run recipe bp oven

1 new B1 elect 1 new B1 elect 1 new B1 elect

2 new B2 elect 2 new B2 gas 2 new B2 elect

3 new B3 gas 3 new B3 gas 3 new B3 gas

4 old B1 elect 4 old B1 elect 4 old B1 gas

5 old B2 gas 5 old B2 gas 5 old B2 gas

6 old B3 elect 6 old B3 elect 6 old B3 elect

Grömping: DoE.MIParray Art. 24, page 3 of 7

of the better array consists of six identical non-zero
contributions from all six triples with 2, 2, and 4 levels
that exhibit the balance shown in the bottom right plot
of Figure 1. In the absence of any complete confounding
(i.e. no R-tuples like those in the worst-case mosaic plot
exist), all effects can in principle be estimated; the less
severe the confounding, the less bias do we get from
wrongly omitting a relevant effect.

Counting vector representation of a design
The counting vector r in Table 1 indicates that six of
the level combinations occur once while six other level
combinations do not occur at all. The fractional factorial
Design 3 from Table 2 contains exactly those experimental
runs, for which the vector r contains a “1” entry; thus, the
vector r is the counting vector representation of Design 3.
Using a counting vector representation requires an
agreement on a natural order for the full factorial design;
it is customary to use the lexicographic order that is also
depicted in Table 1: the levels of the left-most factor
change most slowly, the levels of the right-most factor
change fastest.

The optimization problem
Grömping and Fontana ([5]) describe the specifics of the
optimization problem that the R package DoE.MIParray
solves for creating a design in n runs. An overview is given
below:

•	 The design is expressed in terms of the counting
vector r (see Table 1 for an example), constrained
to non-negative integer elements with sum n, and
possibly constrained to 0/1 entries for ensuring
distinct experimental runs.

•	 The requested resolution R can be ascertained by a
linear optimization step, using a suitably-normalized
model matrix of a factorial model with up to
R–1-factor interactions for the linear constraints.

•	 Subsequently, n2AR is minimized. The objective
function n2AR = rTHr is a quadratic form (with
suitably chosen matrix H based on the model matrix
of R-factor interactions). This integer-constrained
quadratic optimization problem with linear equality
and inequality constraints is recast into a linear
problem with conic quadratic constraints for treating
it with Gurobi or Mosek.

•	 Potentially, subsequent optimization steps may take
care of optimizing further elements of the GWLP, with
additional conic quadratic constraints for preserving
optimality of already optimized elements of the GWLP.

Dependence on external optimizers
DoE.MIParray itself is open source and freely available on
the Comprehensive R Archive Network (CRAN). However,
its functionality relies on the availability of at least one
of Gurobi ([6]) or Mosek ([10]). The reason is that mixed
integer optimization for conic quadratic optimization
problems is at present far superior in the commercial
tools. Both Gurobi and Mosek offer a free academic license
and R packages that act as interfaces. Users of package
DoE.MIParray do not need to work with the commercial
solvers directly, except for going through the installation
instructions and obtaining license files as appropriate.

Feasibility of the optimization
In principle, it is possible to apply function gurobi_
MIParray or mosek_MIParray for obtaining a GMA
design: this requires to start from a specified resolution,

Figure 1: Worst case balance for two plans, compared to worst and best case references.

Grömping: DoE.MIParrayArt. 24, page 4 of 7

and to successively minimize AR,…,Am. However, this is only
practically feasible for very small designs.

In many applications of practical relevance, one will have
to constrain optimization to the most important entry AR
of the GWLP, i.e., to the most severe type of imbalance.
This is the default behavior of functions gurobi_
MIParray and mosek_MIParray (requested through
the default setting kmax = resolution). As mixed
integer optimization is notoriously difficult, it will also
happen that the balance is improved (i.e. AR is reduced) but
optimality cannot be confirmed. According to [5], there
are lower bounds on AR; if these are attained, optimality
regarding the most severe type of imbalance is confirmed.
The 72 run design for the application in [11] is a case for
which the lower bound on A3 confirmed optimization
success.

Note, that the properties of the space in which
optimization is conducted may strongly depend on
the ordering of the experimental factors (through the
ordering of the numbers of factor levels). An optimum
design can be found very fast for some level orderings,
while it may take much longer to find the optimum for
other cases. Therefore, package DoE.MIParray offers
search functions gurobi_MIPsearch or mosek_
MIPsearch for screening through all relevant level
orderings. Although searching through level orderings
may seem like substantial effort, the search approach can
sometimes yield an optimum or at least a good solution
much faster than the application of optimization for a
fixed level ordering. With version 9 (released in May 2019),
Mosek has introduced a seed (with default 42) that can be
modified by the user and whose effect it is to influence
the path through the search space. Potentially, users of
Mosek 9 can use the varying of seeds as an alternative or a
supplement to using the search over level orderings.

Related R packages
The CRAN Task View “Design of Experiments (DoE) &
Analysis of Experimental Data” discusses R packages that
are on CRAN and support experimental design tasks. This
brief section comments on a small selection of those
packages that could be used for similar applications
as DoE.MIParray: relatively small experiments with
several factors, some or all of which are qualitative, and
all of which have a relatively small number of levels, not
necessarily the same for different factors. DoE.base (see
[4]) handles such situations using catalogued orthogonal
arrays, possibly optimizing balance by column selection
from these. DoE.MIParray algorithmically creates well-
balanced arrays by mixed integer optimization; the author
is not aware of any other software tool, in R or elsewhere,
that implements the same approach.

DoE.base and DoE.MIParray refrain from assuming a
specific model. Rather, they provide designs for estimating
a factorial model with main effects and possibly low order
interactions with as little confounding as possible, without
having to specify certain effects to be active or inactive. R
package planor (see [8]) also supports this model-robust
concept for mixed level applications, however without
optimizing worst case balance and with a restriction to

regular designs, due to a different algorithmic approach;
the latter restriction implies limitations for screening
designs, even if overall optimum balance is achieved (see
also [4]). There is another strategy that is also often chosen
for experimenting on some factors with a few specific
levels: if a suitable model for the response of interest can
be reasonably assumed, this model can be pre-specified,
and the design can be chosen to optimize aspects of
estimation or prediction within that pre-specified model.
This will lead to different optimality decisions; see for
example the R packages AlgDesign (see [12]), skpr (see
[9]) or OptimalDesign (see [7]); planor also permits the
specification of a model (but not with the typical focus
assumed by packages on optimal design). Like DoE.
MIParray, package OptimalDesign uses mixed integer
optimization with Gurobi (for providing exact designs),
however with an entirely different optimization criterion.

Implementation and architecture
The R package DoE.MIParray supplements an R package
suite provided by the author. It is closely related to the
R package DoE.base (see [4]). Arrays created with DoE.
MIParray can be used as input to function oa.design
of that package. Most of the namespace from DoE.base
is imported; a small selection of its functions is exported
(see below).

DoE.MIParray offers three strategies:

•	 For a specific number of runs, a vector of numbers
of factor levels, and a resolution R (default: R = 3),
optimize AR, …, Akmax; if kmax = m, a GMA design is
requested, if kmax = R, only the most severe imbalance
is minimized (which is the default). This strategy is
implemented in functions gurobi_MIParray and
mosek_MIParray, respectively. These functions
allow to incorporate a starting array (argument
start), or to extend an existing array by forcing
a given array to be part of the returned design
(argument forced).

•	 Where the previous strategy is not successful, try
to optimize AR by searching over level orderings,
with a (relatively) low time limit for each level
ordering. This strategy is implemented in functions
gurobi_MIPsearch or mosek_MIPsearch,
respectively (see also the section on “Feasibility of the
optimization” in the introduction).

•	 Continue optimization efforts, starting from an
earlier optimization result. One can try to further
improve the previous attempt, e.g. further reduce
AR (improve=TRUE) or to reduce the next (not
quite as serious) level of imbalance, while preserving
the balance results that were already optimized
(improve=FALSE). This strategy is implemented
in functions gurobi_MIPcontinue or mosek_
MIPcontinue, respectively. Note that it is possible to
apply function gurobi_MIPcontinue to a result
from a Mosek optimization, and vice versa; the internal
functions mosek2gurobi and gurobi2mosek
take care of translating the optimization problem
between the two optimizers. Unfortunately, since

Grömping: DoE.MIParray Art. 24, page 5 of 7

the optimization history cannot be stored, the
improve=TRUE variant of continuation has to
repeat a large portion of the optimization work.

The above-mentioned user-visible optimization
functions implement the overall algorithm that is
described in [5]. For individual optimization steps
within the algorithm, the functions prepare inputs for
functions gurobi from package gurobi or mosek
from package Rmosek, respectively, and postprocess
the resulting outputs (possibly modifying them to
provide inputs to further optimization steps). These
activities are supported by internal functions ..._
modelAddConeQobj, ..._modelAddLinear,
and ..._modelLastQuadconToLinear (replace
... with gurobi or mosek, respectively) that take care
of casting certain aspects of the optimization problem
into the form required by gurobi or mosek.

Apart from a few parameters that are explicitly accessed
by specific arguments of the functions of package
DoE.MIParray (maxtime for maximum search time,
nthread for number of threads to use, plus a few more
settings for Gurobi), users can specify all valid parameters
for the respective optimizer through the function
arguments gurobi.params or mosek.params,
respectively. Furthermore, with Mosek there is also an
argument mosek.opts that controls different types of
settings (verbosity and solution detail). The parameter
controlling the stopping bound for optimality is provided
by package DoE.MIParray, if not overridden by the user.

The internal functions countToDmixed and dToCount
switch back and forth between an array and its counting
vector representation in lexicographic order, the
internal function ff creates a full factorial design in the
lexicographic order corresponding to the counting vector.

The optimization functions of package DoE.MIParray
use functions from package DoE.base for pre-checking
feasibility of a resolution/strength requirement (oa_
feasible), for checking optimization success from the
theoretical lower bound provided in [5] (lowerbound_
AR), for calculating design properties (GWLP, length2,
length3, length4, length5, contr.XuWu) and
for printing designs (print.oa). These functions are
also exported in order to make them accessible for users
who do not want to load the large namespace of package
DoE.base. Two additional functions for investigating
design properties, SCFTs and ICFTs, are not used
within DoE.MIParray but are likewise imported from
DoE.base and exported for users’ convenience, so that
the more detailed metrics from [2] and [3] can also be
directly used for inspecting optimization results.

Quality control
DoE.MIParray is on CRAN and has thus been checked with
the usual CRAN checks. Due to the dependence on Mosek
and/or Gurobi, functionality checks of the optimization
functions are not possible as part of the CRAN checks, but
only offline. Specific test cases with reference results are
collected in a test directory (within directory INSTALL),
which contains functional checks for various different

parameter combinations for small instances of arrays.
Users who are equipped to use R CMD check can use
the test files for automatic checks whether the package
works as intended, by running R CMD check DoE.
MIParray_0.13.tar.gz --test-dir=inst/
testsWithGurobiAndMosek on the package tarball;
this will provide the differences between current and
saved test outputs; the saved results cannot be expected
to be reproduced under all circumstances (see below), but
differences for the small test case examples should only
refer to interim results. (Users who are not equipped to
use R CMD check can run the R scripts from the test
directory and compare their output to the saved reference
output (ASCII format) by hand.) Furthermore, example
code in the documentation provides functionality checks;
the example optimizations are commented out (by
\dontrun) for CRAN tests, but can be run using function
run_examples from package devtools (running them
takes a long while). All offline testing has been done
on Windows 7 and Windows 10 machines only, using R
versions 3.3 and higher.

DoE.MIParray has been used for creating a larger
number of arrays for publication in [5], using Mosek 8.1
under Windows operating systems with two threads.
The results are valid and reasonable and have been
documented with successful level orderings and run
times in the paper. Generally, within a software version,
the results themselves are deterministic (i.e. repeating the
same call will in principle yield the same result), but may
be influenced by computational power of the machine,
number of threads used, amount of simultaneous activity
on the machine, operating system and so forth; this is
especially true, if code is run with a time limit, which is
usually recommended.

Changes in results have occurred with version updates
of Gurobi and particularly Mosek; this is due to changed
algorithmic decisions within the softwares and can for
specific examples be both beneficial or detrimental: for
example, the code that produced the optimum design that
could have replaced the design used in [4] with version 8
of Mosek (under Windows systems using two threads) no
longer yields a design with globally optimal A3 in Mosek
version 9. Different results than those reported in [5]
for Mosek 8 have also been observed for other examples
(sometimes better, sometimes worse). It is therefore not
reasonable to implement more extensive automated
testing; in case of software modifications, the test cases
from the package should be run, and results inspected
with care by a human.

(2) Availability
Operating system
All systems that run R 3.3 or higher

Programming language
R 3.3 or higher

Additional system requirements
Availability of several cores is beneficial.
Availability of large RAM is beneficial.

Grömping: DoE.MIParrayArt. 24, page 6 of 7

Dependencies
Availability of Mosek 8 or higher and/or Gurobi 7.5. or
higher.

R packages: combinat, DoE.base, gurobi (from vendor)
and/or Rmosek (from vendor), slam (>= 0.1–9), Matrix (>=
1.1.0).

List of contributors
Hongquan Xu (UCLA) contributed code for function GWLP
which is imported from package DoE.base.

Software location
Archive

Name: Comprehensive R Archive Network (CRAN).
�Persistent identifier: https://cran.r-project.org/
package=DoE.MIParray
Licence: GPL (>= 2)
Publisher: Ulrike Grömping
Version published: 0.13
Date published: 13/07/19

Code repository
Name: Github
Identifier: https://github.com/cran/DoE.MIParray
Licence: GPL (>= 2)
Date published: 14/07/19

Language
English

(3) Reuse potential
DoE.MIParray can be used by everybody who wants
to create an array for experimentation. It is particularly
suitable for creating relatively small mixed level arrays.
The arrays can be used in any context, inside and outside
of R.

Extensions to other optimizers (e.g. CPLEX [www.
cplex.com] or suitable open source ones) would be very
welcome; if there is an R API for an optimizer, functions
gurobi2mosek and mosek2gurobi could serve
as role models for switching inputs between API’s. If
someone volunteers to contribute such functions, I would
be more than willing to include them into the package.

Likewise, Gurobi and Mosek have APIs for other
softwares, e.g. Python or Matlab. Software developers are
welcome to adapt DoE.MIParray to other APIs.

There is no official support for this software, but
interested users can contact the author by e-mail.
Bug reports are of course welcome and will be acted
upon.

Acknowledgements
The collaboration with Roberto Fontana triggered the
creation of the software.

Competing Interests
The author has no competing interests to declare.

References
1.	 Grömping, U 2014 Mosaic Plots Are Useful for

Visualizing Low-Order Projections of Factorial Designs.
The American Statistician. 68(2): 108–16. Taylor &
Francis. DOI: https://doi.org/10.1080/00031305.201
4.896829

2.	 Grömping, U 2017 Frequency Tables for the Coding
Invariant Quality Assessment of Factorial Designs. IISE
Transactions. 49: 505–17. DOI: https://doi.org/10.108
0/0740817X.2016.1241458

3.	 Grömping, U 2018a Coding Invariance in Factorial
Linear Models and a New Tool for Assessing
Combinatorial Equivalence of Factorial Designs.
Journal of Statistical Planning and Inference. 193: 1–14.
DOI: https://doi.org/10.1016/j.jspi.2017.07.004

4.	 Grömping, U 2018b R Package DoE.Base for Factorial
Experiments. Journal of Statistical Software. 85(5).
Foundation for Open Access Statistic. DOI: https://doi.
org/10.18637/jss.v085.i05

5.	 Grömping, U and Fontana, R 2019 An Algorithm
for Generating Good Mixed Level Factorial Designs.
Computational Statistics & Data Analysis. 137
(September): 101–14. Elsevier BV. DOI: https://doi.
org/10.1016/j.csda.2019.01.020

6.	 Gurobi Optimization LLC 2018 Gurobi Optimizer
Reference Manual. http://www.gurobi.com.

7.	 Harman, R and Filova, L 2019 OptimalDesign: A
Toolbox for Computing Efficient Designs of Experiments.
https://CRAN.R-project.org/package=OptimalDesign.

8.	 Kobilinsky, A, Bouvier, A and Monod, H 2018 planor:
An R Package for the Automatic Generation of Regular
Fractional Factorial Designs. https://CRAN.R-project.
org/package=planor. DOI: https://doi.org/10.1016/j.
csda.2016.09.003

9.	 Morgan-Wall, T and Khoury, G 2018 skpr: Design
of Experiments Suite: Generate and Evaluate Optimal
Designs. https://CRAN.R-project.org/package=skpr.

10.	Mosek ApS 2018 MOSEK Modeling Cookbook. https://
docs.mosek.com/modeling-cookbook/index.html.

11.	Vasilev, N, Schmitz, C, Grömping, U, Fischer, R and
Schillberg, S 2014 Assessment of Cultivation Factors That
Affect Biomass and Geraniol Production in Transgenic
Tobacco Cell Suspension Cultures. PLoS ONE. 9(8). DOI:
https://doi.org/10.1371/journal.pone.0104620

12.	Wheeler, B 2014 AlgDesign: Algorithmic Experi­
mental Design. https://CRAN.R-project.org/package=​
AlgDesign.

13.	Xu, H and Wu, CFJ 2001 Generalized Minimum
Aberration for Asymmetrical Fractional Factorial
Designs. The Annals of Statistics. 29(4): 1066–77. DOI:
https://doi.org/10.1214/aos/1013699993

https://cran.r-project.org/package=DoE.MIParray
https://cran.r-project.org/package=DoE.MIParray
https://github.com/cran/DoE.MIParray
http://www.cplex.com
http://www.cplex.com
https://doi.org/10.1080/00031305.2014.896829
https://doi.org/10.1080/00031305.2014.896829
https://doi.org/10.1080/0740817X.2016.1241458
https://doi.org/10.1080/0740817X.2016.1241458
https://doi.org/10.1016/j.jspi.2017.07.004
https://doi.org/10.18637/jss.v085.i05
https://doi.org/10.18637/jss.v085.i05
https://doi.org/10.1016/j.csda.2019.01.020
https://doi.org/10.1016/j.csda.2019.01.020
http://www.gurobi.com
https://CRAN.R-project.org/package=OptimalDesign
https://CRAN.R-project.org/package=planor
https://CRAN.R-project.org/package=planor
https://doi.org/10.1016/j.csda.2016.09.003
https://doi.org/10.1016/j.csda.2016.09.003
https://CRAN.R-project.org/package=skpr
https://docs.mosek.com/modeling-cookbook/index.html
https://docs.mosek.com/modeling-cookbook/index.html
https://doi.org/10.1371/journal.pone.0104620
https://CRAN.R-project.org/package=AlgDesign
https://CRAN.R-project.org/package=AlgDesign
https://doi.org/10.1214/aos/1013699993

Grömping: DoE.MIParray Art. 24, page 7 of 7

How to cite this article: Grömping, U 2020 DoE.MIParray: An R Package for Algorithmic Creation of Orthogonal Arrays.
Journal of Open Research Software, 8: 24. DOI: https://doi.org/10.5334/jors.286

Submitted: 17 July 2019 Accepted: 17 September 2020 Published: 07 October 2020

Copyright: © 2020 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

OPEN ACCESSJournal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press.

https://doi.org/10.5334/jors.286
http://creativecommons.org/licenses/by/4.0/

	(1) Overview
	Introduction
	The benefit of balance
	Counting vector representation of a design
	The optimization problem
	Dependence on external optimizers
	Feasibility of the optimization
	Related R packages

	Implementation and architecture
	Quality control

	(2) Availability
	Operating system
	Programming language
	Additional system requirements
	Dependencies
	List of contributors
	Software location
	Archive
	Code repository

	Language

	(3) Reuse potential
	Acknowledgements
	Competing Interests
	References
	Table 1
	Table 2
	Figure 1

