
Grömping, U 2020 DoE.MIParray: An R Package for Algorithmic 
Creation of Orthogonal Arrays. Journal of Open Research 
Software, 8: 24. DOI: https://doi.org/10.5334/jors.286

Journal of
open research software

SOFTWARE METAPAPER

DoE.MIParray: An R Package for Algorithmic Creation of 
Orthogonal Arrays
Ulrike Grömping
Department II, Beuth University of Applied Sciences, Berlin, DE
groemping@beuth-hochschule.de

The R package DoE.MIParray uses mixed integer optimization for creating well-balanced arrays for 
experimental designs. Its use requires availability of at least one of the commercial optimizers Gurobi 
or Mosek. Investing some effort into the creation of a suitable array is justified, because experimental 
runs are often very expensive, so that their information content should be maximized. DoE.MIParray is 
particularly useful for creating relatively small mixed level designs. Balance is optimized by applying the 
quality criterion “generalized minimum aberration” (GMA), which aims at minimizing confounding of low 
order effects in factorial models, without assuming a specific model. For relevant cases, DoE.MIParray 
exploits a lower bound on its objective function, which allows to drastically reduce the computational 
burden of mixed integer optimization.

Keywords: R; statistics; design of experiments; orthogonal arrays; mixed integer optimization; Mosek; 
Gurobi; well-balanced arrays; generalized minimum aberration
Funding statement: The work on this software is the outcome of research that was funded by Deutsche 
Forschungsgemeinschaft (grant GR 3843/2-1).

(1) Overview
Introduction
The R package DoE.MIParray creates well-balanced 
experimental designs for experimentation with a set of 
experimental factors, for which suitable off-the-shelf 
plans are not readily available. It is particularly useful 
for relatively small experimental situations for which the 
experimental factors have different numbers of levels 
(called “mixed level”). 

For a very basic example, consider an experiment on 
three brands of baking powder (B1, B2, B3), combined 
with two types of oven (electric versus gas) and two 
different recipes (old versus new). A combination of 
levels with which to conduct the experiment is called an 
“experimental run”. For this simple example, there are 
3⋅2⋅2 = 12 different level combinations (see Table 1). An 
experiment that runs all these once or replicates them 
in a balanced way is called a (replicated) full-factorial 
experiment; replication may be employed in order to 
draw stable conclusions in spite of random variation. (For 
experiments with many factors, explicit replication may 
be replaced by implicit replication, see e.g. [4]). The above 
small experiment only has the m = 3 factors bp (baking 
powder brand) with 3 levels, oven with 2 levels and recipe 
with 2 levels. For larger settings, a full factorial experiment 
will become infeasible fast; for example, Vasilev et al. 
([11]) reported results from an experiment in 72 runs for 
m = 7 factors with numbers of levels 2, 2, 2, 2, 3, 3 and 4. 

A full factorial experiment would have needed 576 runs, 
which was considered infeasible. The design plan used in 
[11] was obtained using column selection optimization 
based on a catalogued 72 run plan of R package DoE.base 
(see [4]). Suitable use of R package DoE.MIParray creates 
a more balanced plan; thus, had DoE.MIParray already 
been available when conducting the experiment reported 
in [11], a more balanced experiment could have been run. 
This and other useful designs that have been found by 
package DoE.MIParray have also been reported in [5].

The benefit of balance
DoE.MIParray algorithmically creates a well-balanced 
array, using mixed integer optimization. The goal is 
to ensure that a factorial model with main effects and 
possibly low order interactions can be estimated with as 
little confounding as possible, without having to specify 
certain effects to be active or inactive or assuming a 
particular model. For discussing the benefit of balance, 
we have to formalize it a little. Imbalance is measured in 
terms of “generalized words”, as introduced by Xu and Wu 
([13]). For a design in m factors, the so-called generalized 
word length pattern (GWLP) is a tuple (A0, A1, …, Am) of 
non-negative entries. The entry A0 (for the overall mean) 
is always 1. In a full factorial design, all other entries are 
zeroes, i.e. A1, …, Am = 0 (with m the number of factors, i.e. 
m = 3 in our example). The zeroes indicate that there is 
no imbalance in any degree of factorial effects (degree 1 
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for main effects, 2 for 2-factor interactions, and so forth, 
up to m-factor interactions). The resolution R > 0 of an 
experimental plan is the integer R for which AR  > 0 and 
Aj  = 0 for all j with 0 < j < R (if any). Thus, requesting 
resolution III (resolution is usually given as a roman 
numeral), we would request that A1 = A2 = 0. This is also 
denoted as strength 2: the strength is one less than the 
resolution. For strength 2, all pairs (=2-tuples) of factors 
(when ignoring the presence of the other factors) are full 
factorials or balanced replications of full factorials. The 
entry Aj (j = 1,…,m) of the GWLP is the sum of the imbalance 
contributions from all j-tuples among the m factors.

As was mentioned above, the unreplicated full factorial 
design of Table 1 with its N = 12 runs has the GWLP (A0, A1, 
A2, A3) = (1, 0, 0, 0). The three fractional factorial designs of 
Table 2 with their n = 6 runs each have the GWLPs (1, 1/9, 
2/9, 2/3), (1, 0, 7/9, 2/9), and (1, 0, 1/9, 8/9), respectively. 
In all three cases, the sum of the entries is N/n = 12/6 = 2, 
because the designs have n = 6 distinct runs out of the 
N = 12 possible runs of the full factorial. According to the 
generalized minimum aberration criterion, Design 1 is 
worst, since it has only resolution I (strength 0), because 
A1 is already positive; this is caused by the imbalance in 
factor oven. Designs 2 and 3 have at least resolution II 
(strength 1), i.e. all factors are balanced (usually considered 

as the minimum requirement), while pairs of factors are 
not all balanced. Design 2 is worse than Design 3, because 
its A2 entry is larger; this is due to the imbalance between 
factors oven and bp, which is not present in Design 3. One 
would usually strive to achieve at least resolution III; with 
this very small design, this is not possible in less than a full 
factorial. Whether or not a certain strength is possible can 
be checked using function oa_feasible, which tells us 
that strength 2 is not possible here (oa_feasible(6, 
c(2,2,3), 2)).

Mosaic plots are a good way to demonstrate imbalance 
(see e.g. [1]). Figure 1 shows the worst case imbalance 
among triples of factors in the resolution III design 
from [11], compared to the worst case imbalance in the 
optimum design obtained using Mosek software via 
function mosek_MIParray of package DoE.MIParray; 
the latter has the smallest possible A3 for 72 runs. The 
reference plots in the top row show the worst case possible 
balance for a resolution III triple of three factors with 2, 2, 
and 4 levels, and the best possible balance achievable in a 
full factorial design (not achievable in 72 runs).

Why does balance matter? This is most easily explained 
when looking at the worst case picture: in the top left 
mosaic plot of Figure 1, the combinations A = 1 and B = 1 
or A = 2 and B = 2 imply that F can only take levels 1 
or 3, while A = 1 and B = 2 or A = 2 and B = 1 imply 
that F can only take levels 2 or 4. Thus, if there were 
an interaction effect of the factors A and B, this would 
directly (and heavily) impact estimation of the main effect 
of factor F. This is called confounding. If one would use 
this design for an experiment and would not include an 
interaction between A and B into the model even though 
an interaction effect exists, conclusions about the main 
effect of factor F would be seriously biased. The top right 
mosaic plot shows the perfect balance in the full factorial 
situation, where such bias can be completely avoided. 
Both experimental plans shown in the bottom row are 
at least much better than the worst case reference, with 
the plan obtained from DoE.MIParray being better than 
the one that was actually used in [11]. Their quality can 
be compared by calculating their GWLP’s with function 
GWLP from R package DoE.base; that function is also 
available within package DoE.MIParray directly, for 
convenience: The worse array has GWLP=(1, 0, 0, 73/162, 
263/81, 20/9, 82/81, 11/162), the better one GWLP=(1, 0, 
0, 2/27, 221/54, 113/54, 1/2, 13/54). In fact, the A3-value 

Table 1: Full factorial design in lexicographic order, with 
counting vector r for Design 3 of Table 2.

r recipe bp oven

1 new B1 elect

0 new B1 gas

1 new B2 elect

0 new B2 gas

0 new B3 elect

1 new B3 gas

0 old B1 elect

1 old B1 gas

0 old B2 elect

1 old B2 gas

1 old B3 elect

0 old B3 gas

Table 2: Three small fractional factorial designs.

Design 1 Design 2 Design 3

run recipe bp oven run recipe bp oven run recipe bp oven

1 new B1 elect 1 new B1 elect 1 new B1 elect

2 new B2 elect 2 new B2 gas 2 new B2 elect

3 new B3 gas 3 new B3 gas 3 new B3 gas

4 old B1 elect 4 old B1 elect 4 old B1 gas

5 old B2 gas 5 old B2 gas 5 old B2 gas

6 old B3 elect 6 old B3 elect 6 old B3 elect
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of the better array consists of six identical non-zero 
contributions from all six triples with 2, 2, and 4 levels 
that exhibit the balance shown in the bottom right plot 
of Figure 1. In the absence of any complete confounding 
(i.e. no R-tuples like those in the worst-case mosaic plot 
exist), all effects can in principle be estimated; the less 
severe the confounding, the less bias do we get from 
wrongly omitting a relevant effect.

Counting vector representation of a design
The counting vector r in Table 1 indicates that six of 
the level combinations occur once while six other level 
combinations do not occur at all. The fractional factorial 
Design 3 from Table 2 contains exactly those experimental 
runs, for which the vector r contains a “1” entry; thus, the 
vector r is the counting vector representation of Design 3. 
Using a counting vector representation requires an 
agreement on a natural order for the full factorial design; 
it is customary to use the lexicographic order that is also 
depicted in Table 1: the levels of the left-most factor 
change most slowly, the levels of the right-most factor 
change fastest.

The optimization problem
Grömping and Fontana ([5]) describe the specifics of the 
optimization problem that the R package DoE.MIParray 
solves for creating a design in n runs. An overview is given 
below:

•	 The design is expressed in terms of the counting 
vector r (see Table 1 for an example), constrained 
to non-negative integer elements with sum n, and 
possibly constrained to 0/1 entries for ensuring 
distinct experimental runs.

•	 The requested resolution R can be ascertained by a 
linear optimization step, using a suitably-normalized 
model matrix of a factorial model with up to 
R–1-factor interactions for the linear constraints.

•	 Subsequently, n2AR is minimized. The objective 
function n2AR = rTHr is a quadratic form (with 
suitably chosen matrix H based on the model matrix 
of R-factor interactions). This integer-constrained 
quadratic optimization problem with linear equality 
and inequality constraints is recast into a linear 
problem with conic quadratic constraints for treating 
it with Gurobi or Mosek.

•	 Potentially, subsequent optimization steps may take 
care of optimizing further elements of the GWLP, with 
additional conic quadratic constraints for preserving 
optimality of already optimized elements of the GWLP.

Dependence on external optimizers
DoE.MIParray itself is open source and freely available on 
the Comprehensive R Archive Network (CRAN). However, 
its functionality relies on the availability of at least one 
of Gurobi ([6]) or Mosek ([10]). The reason is that mixed 
integer optimization for conic quadratic optimization 
problems is at present far superior in the commercial 
tools. Both Gurobi and Mosek offer a free academic license 
and R packages that act as interfaces. Users of package 
DoE.MIParray do not need to work with the commercial 
solvers directly, except for going through the installation 
instructions and obtaining license files as appropriate.

Feasibility of the optimization
In principle, it is possible to apply function gurobi_
MIParray or mosek_MIParray for obtaining a GMA 
design: this requires to start from a specified resolution, 

Figure 1: Worst case balance for two plans, compared to worst and best case references.
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and to successively minimize AR,…,Am. However, this is only 
practically feasible for very small designs.

In many applications of practical relevance, one will have 
to constrain optimization to the most important entry AR 
of the GWLP, i.e., to the most severe type of imbalance. 
This is the default behavior of functions gurobi_
MIParray and mosek_MIParray (requested through 
the default setting kmax = resolution). As mixed 
integer optimization is notoriously difficult, it will also 
happen that the balance is improved (i.e. AR is reduced) but 
optimality cannot be confirmed. According to [5], there 
are lower bounds on AR; if these are attained, optimality 
regarding the most severe type of imbalance is confirmed. 
The 72 run design for the application in [11] is a case for 
which the lower bound on A3 confirmed optimization 
success.

Note, that the properties of the space in which 
optimization is conducted may strongly depend on 
the ordering of the experimental factors (through the 
ordering of the numbers of factor levels). An optimum 
design can be found very fast for some level orderings, 
while it may take much longer to find the optimum for 
other cases. Therefore, package DoE.MIParray offers 
search functions gurobi_MIPsearch or mosek_
MIPsearch for screening through all relevant level 
orderings. Although searching through level orderings 
may seem like substantial effort, the search approach can 
sometimes yield an optimum or at least a good solution 
much faster than the application of optimization for a 
fixed level ordering. With version 9 (released in May 2019), 
Mosek has introduced a seed (with default 42) that can be 
modified by the user and whose effect it is to influence 
the path through the search space. Potentially, users of 
Mosek 9 can use the varying of seeds as an alternative or a 
supplement to using the search over level orderings.

Related R packages
The CRAN Task View “Design of Experiments (DoE) & 
Analysis of Experimental Data” discusses R packages that 
are on CRAN and support experimental design tasks. This 
brief section comments on a small selection of those 
packages that could be used for similar applications 
as DoE.MIParray: relatively small experiments with 
several factors, some or all of which are qualitative, and 
all of which have a relatively small number of levels, not 
necessarily the same for different factors. DoE.base (see 
[4]) handles such situations using catalogued orthogonal 
arrays, possibly optimizing balance by column selection 
from these. DoE.MIParray algorithmically creates well-
balanced arrays by mixed integer optimization; the author 
is not aware of any other software tool, in R or elsewhere, 
that implements the same approach. 

DoE.base and DoE.MIParray refrain from assuming a 
specific model. Rather, they provide designs for estimating 
a factorial model with main effects and possibly low order 
interactions with as little confounding as possible, without 
having to specify certain effects to be active or inactive. R 
package planor (see [8]) also supports this model-robust 
concept for mixed level applications, however without 
optimizing worst case balance and with a restriction to 

regular designs, due to a different algorithmic approach; 
the latter restriction implies limitations for screening 
designs, even if overall optimum balance is achieved (see 
also [4]). There is another strategy that is also often chosen 
for experimenting on some factors with a few specific 
levels: if a suitable model for the response of interest can 
be reasonably assumed, this model can be pre-specified, 
and the design can be chosen to optimize aspects of 
estimation or prediction within that pre-specified model. 
This will lead to different optimality decisions; see for 
example the R packages AlgDesign (see [12]), skpr (see 
[9]) or OptimalDesign (see [7]); planor also permits the 
specification of a model (but not with the typical focus 
assumed by packages on optimal design). Like DoE.
MIParray, package OptimalDesign uses mixed integer 
optimization with Gurobi (for providing exact designs), 
however with an entirely different optimization criterion. 

Implementation and architecture
The R package DoE.MIParray supplements an R package 
suite provided by the author. It is closely related to the 
R package DoE.base (see [4]). Arrays created with DoE.
MIParray can be used as input to function oa.design 
of that package. Most of the namespace from DoE.base 
is imported; a small selection of its functions is exported 
(see below).

DoE.MIParray offers three strategies:

•	 For a specific number of runs, a vector of numbers 
of factor levels, and a resolution R (default: R = 3), 
optimize AR, …, Akmax; if kmax = m, a GMA design is 
requested, if kmax = R, only the most severe imbalance 
is minimized (which is the default). This strategy is 
implemented in functions gurobi_MIParray and 
mosek_MIParray, respectively. These functions 
allow to incorporate a starting array (argument 
start), or to extend an existing array by forcing 
a given array to be part of the returned design 
(argument forced).

•	 Where the previous strategy is not successful, try 
to optimize AR by searching over level orderings, 
with a (relatively) low time limit for each level 
ordering. This strategy is implemented in functions 
gurobi_MIPsearch or mosek_MIPsearch, 
respectively (see also the section on “Feasibility of the 
optimization” in the introduction).

•	 Continue optimization efforts, starting from an 
earlier optimization result. One can try to further 
improve the previous attempt, e.g. further reduce 
AR (improve=TRUE) or to reduce the next (not 
quite as serious) level of imbalance, while preserving 
the balance results that were already optimized 
(improve=FALSE). This strategy is implemented 
in functions gurobi_MIPcontinue or mosek_
MIPcontinue, respectively. Note that it is possible to 
apply function gurobi_MIPcontinue to a result 
from a Mosek optimization, and vice versa; the internal 
functions mosek2gurobi and gurobi2mosek 
take care of translating the optimization problem 
between the two optimizers. Unfortunately, since 
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the optimization history cannot be stored, the 
improve=TRUE variant of continuation has to 
repeat a large portion of the optimization work.

The above-mentioned user-visible optimization 
functions implement the overall algorithm that is 
described in [5]. For individual optimization steps 
within the algorithm, the functions prepare inputs for 
functions gurobi from package gurobi or mosek 
from package Rmosek, respectively, and postprocess 
the resulting outputs (possibly modifying them to 
provide inputs to further optimization steps). These 
activities are supported by internal functions ..._
modelAddConeQobj, ..._modelAddLinear, 
and ..._modelLastQuadconToLinear (replace 
... with gurobi or mosek, respectively) that take care 
of casting certain aspects of the optimization problem 
into the form required by gurobi or mosek.

Apart from a few parameters that are explicitly accessed 
by specific arguments of the functions of package 
DoE.MIParray (maxtime for maximum search time, 
nthread for number of threads to use, plus a few more 
settings for Gurobi), users can specify all valid parameters 
for the respective optimizer through the function 
arguments gurobi.params or mosek.params, 
respectively. Furthermore, with Mosek there is also an 
argument mosek.opts that controls different types of 
settings (verbosity and solution detail). The parameter 
controlling the stopping bound for optimality is provided 
by package DoE.MIParray, if not overridden by the user.

The internal functions countToDmixed and dToCount 
switch back and forth between an array and its counting 
vector representation in lexicographic order, the 
internal function ff creates a full factorial design in the 
lexicographic order corresponding to the counting vector.

The optimization functions of package DoE.MIParray 
use functions from package DoE.base for pre-checking 
feasibility of a resolution/strength requirement (oa_
feasible), for checking optimization success from the 
theoretical lower bound provided in [5] (lowerbound_
AR), for calculating design properties (GWLP, length2, 
length3, length4, length5, contr.XuWu) and 
for printing designs (print.oa). These functions are 
also exported in order to make them accessible for users 
who do not want to load the large namespace of package 
DoE.base. Two additional functions for investigating 
design properties, SCFTs and ICFTs, are not used 
within DoE.MIParray but are likewise imported from 
DoE.base and exported for users’ convenience, so that  
the more detailed metrics from [2] and [3] can also be 
directly used for inspecting optimization results.

Quality control 
DoE.MIParray is on CRAN and has thus been checked with 
the usual CRAN checks. Due to the dependence on Mosek 
and/or Gurobi, functionality checks of the optimization 
functions are not possible as part of the CRAN checks, but 
only offline. Specific test cases with reference results are 
collected in a test directory (within directory INSTALL), 
which contains functional checks for various different 

parameter combinations for small instances of arrays. 
Users who are equipped to use R CMD check can use 
the test files for automatic checks whether the package 
works as intended, by running R CMD check DoE.
MIParray_0.13.tar.gz --test-dir=inst/
testsWithGurobiAndMosek on the package tarball; 
this will provide the differences between current and 
saved test outputs; the saved results cannot be expected 
to be reproduced under all circumstances (see below), but 
differences for the small test case examples should only 
refer to interim results. (Users who are not equipped to 
use R CMD check can run the R scripts from the test 
directory and compare their output to the saved reference 
output (ASCII format) by hand.) Furthermore, example 
code in the documentation provides functionality checks; 
the example optimizations are commented out (by 
\dontrun) for CRAN tests, but can be run using function 
run_examples from package devtools (running them 
takes a long while). All offline testing has been done 
on Windows 7 and Windows 10 machines only, using R 
versions 3.3 and higher.

DoE.MIParray has been used for creating a larger 
number of arrays for publication in [5], using Mosek 8.1 
under Windows operating systems with two threads. 
The results are valid and reasonable and have been 
documented with successful level orderings and run 
times in the paper. Generally, within a software version, 
the results themselves are deterministic (i.e. repeating the 
same call will in principle yield the same result), but may 
be influenced by computational power of the machine, 
number of threads used, amount of simultaneous activity 
on the machine, operating system and so forth; this is 
especially true, if code is run with a time limit, which is 
usually recommended.

Changes in results have occurred with version updates 
of Gurobi and particularly Mosek; this is due to changed 
algorithmic decisions within the softwares and can for 
specific examples be both beneficial or detrimental: for 
example, the code that produced the optimum design that 
could have replaced the design used in [4] with version 8 
of Mosek (under Windows systems using two threads) no 
longer yields a design with globally optimal A3 in Mosek 
version 9. Different results than those reported in [5] 
for Mosek 8 have also been observed for other examples 
(sometimes better, sometimes worse). It is therefore not 
reasonable to implement more extensive automated 
testing; in case of software modifications, the test cases 
from the package should be run, and results inspected 
with care by a human.

(2) Availability
Operating system
All systems that run R 3.3 or higher

Programming language
R 3.3 or higher

Additional system requirements
Availability of several cores is beneficial.
Availability of large RAM is beneficial.
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Dependencies
Availability of Mosek 8 or higher and/or Gurobi 7.5. or 
higher.

R packages: combinat, DoE.base, gurobi (from vendor) 
and/or Rmosek (from vendor), slam (>= 0.1–9), Matrix (>= 
1.1.0).

List of contributors
Hongquan Xu (UCLA) contributed code for function GWLP 
which is imported from package DoE.base.

Software location
Archive

Name: Comprehensive R Archive Network (CRAN).
�Persistent� identifier: https://cran.r-project.org/
package=DoE.MIParray
Licence: GPL (>= 2)
Publisher: Ulrike Grömping
Version published: 0.13
Date published: 13/07/19

Code repository
Name: Github
Identifier: https://github.com/cran/DoE.MIParray
Licence: GPL (>= 2)
Date published: 14/07/19

Language
English

(3) Reuse potential
DoE.MIParray can be used by everybody who wants 
to create an array for experimentation. It is particularly 
suitable for creating relatively small mixed level arrays. 
The arrays can be used in any context, inside and outside  
of R.

Extensions to other optimizers (e.g. CPLEX [www.
cplex.com] or suitable open source ones) would be very 
welcome; if there is an R API for an optimizer, functions 
gurobi2mosek and mosek2gurobi could serve 
as role models for switching inputs between API’s. If 
someone volunteers to contribute such functions, I would 
be more than willing to include them into the package.

Likewise, Gurobi and Mosek have APIs for other 
softwares, e.g. Python or Matlab. Software developers are 
welcome to adapt DoE.MIParray to other APIs.

There is no official support for this software, but 
interested users can contact the author by e-mail. 
Bug reports are of course welcome and will be acted  
upon.
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