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We present bayesint, a Python package for calculating Bayesian credible intervals 
for ratios of two independent beta distributions such as are used when considering 
binomial data. Such data could be found in counts of events in medical diagnostic 
tests, case-control studies, and field epidemiological investigations, among other 
applications. The package contains general functions providing the expression of 
the density and distribution of the ratio and two functions for calculating the equal-
tailed and highest posterior density credible intervals. The package is intended for use 
with 2×2 contingency tables. We introduce bayesint by comparing two groups in a 
contingency table through calculating the relative risk of cholera, showcasing its use 
in a novel context.
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(1) OVERVIEW
INTRODUCTION
The bayesint package for Python [20] allows users 
to calculate credible intervals for ratios found in 2×2 
contingency tables. These include relative risks and 
odds ratios, frequently used in cohort and case control 
studies. The calculations behind bayesint are based on 
the cumulative distribution of two independent, beta-
distributed random variables Z = Y/X, where X∼B(α, β) and 
Y∼B(θ, φ). This work has previously been used to examine 
deaths during the second plague pandemic [see 1, for 
details].

STATISTICAL BACKGROUND
Deaths due to plague during the second plague 
pandemic were examined using a 2×2 contingency table 
framework. We considered those with counts given in 
notation of Table 1.

We outline the considerations we made for the relative 
risk briefly. The relative risk for a dichotomous variable is 
given by the proportion of the probability of an outcome 
of interest and the probability of the other outcome. The 
relative risk for Table 1 is
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which is our variable of interest.

Interval calculations
We consider the ratio of two independent beta distributed 
random variables Z = Y/X, where X ∼ B(α, β) and Y∼B(θ, φ). 
Z has density [17]
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and cumulative distribution function [see the appendix 
of 1, for full derivation]

	�  (3)

We add our data from Table 1 with priors for the observed 
values π1 and π2 for positive classification and π3 and 
π4 for negative classification by inserting α = C + π1, 
β = N – C + π2, θ = P + π3, and φ = M – P + π4 into Equation 3.

To obtain an equal-tailed, quantile interval (eqt_int_frac) 
we solve

( ) / 2, ( ) 1 / 2F u F l    � (4)

To obtain a highest posterior density (hpd_int_frac), we 
minimise [3]
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to obtain the lower and upper limit of the 100(1–δ)% 
interval, where δ denotes the desired significance level. 
These intervals fulfil
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Contents
bayesint contains the functions listed in Table 2. Our use of 
the word frac in naming these functions is to emphasise that 

INCIDENCE

CLASSIFICATION + – TOTAL AT RISK

+ P M – P M

– C N – C N

Total C + P N – C + M – P N + M

Table 1 Example of 2×2 contingency table.

FUNCTION GROUPING FUNCTION DESCRIPTION

table_measures rel_risk Relative risk, a comparative measure for 2×2 contingency table

odds_rat Odds ratio, a comparative measure for 2×2 contingency table seen in Equation 1

ratios A wrapper function returning both the relative risk and odds ratio

table_tests chi_sq_stat χ2 statistic for testing the hypothesis of no association between the two variables in a 2×2 
contingency table

chi_sq_test χ2 test for the statistic

random_variables densi_frac Prior density of a ratio of two independent beta distributions

distri_frac Posterior distribution of a ratio of two independent beta distributions

intervals eqt_int_frac The equal-tailed credible interval of a ratio of two independent beta distributions

hpd_int_frac The highest posterior density credible interval of a ratio of two independent beta 
distributions

frac_int A wrapper function returning the equal-tailed credible interval and the highest posterior 
density credible interval or both (chosen by the user)

Table 2 Functions in bayesint.
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the functions depend on fractions, be they used for relative 
risks or for odds ratios. The functions from the subgroupings 
listed in Table 2 are all loaded as part of bayesint. We have 
packaged the code to assist users in achieving immediate 
utility of the interval calculations as the underlying code is 
rather complicated. The package is released such that users 
can see the code as well as contribute to future versions 
of the package. To start using bayesint, all of the functions 
listed in Table 2 can be loaded simultaneously by

	 >>> from bayesint import *
or

	 >>> import bayesint

or individually by

	 >>> from bayesint import FUNCTION

EXAMPLE: CHOLERA
Cholera is a disease caused by the bacterium Vibrio 
cholerae, first identified by Filippo Pacini in 1854 [2], brought 
to world-wide attention in 1883 by Robert Koch [7] and 
the subject of John Snow’s famous epidemiological study 
in 1855 [18]. Inoculation is a process where a smaller 
infection is induced in order that acquired immunity be 
educed. It carries a lower risk of mortality than that for 
those experiencing the full infection [18].

Data
Waldemar Mordecai Haffkine studied the effects of 
inoculation against cholera in India in 1893–1896 [5]. 

Our data source for Haffkine’s cholera inoculation study 
[5] is Greenwood and Yule, who collated data on cholera 
[4]. From their manuscript, we obtain the data listed in 
Table 3. For each table from Greenwood and Yule we have 
data on whether subjects are inoculated against cholera 
(I) or not (NI), attacked by cholera (A) or not (NA), and 
the total counts (T). The numbers in Table 3 refer to the 
collated tables [see 4 for further details]. These numbers 
are used in Table 4 to identify the 2×2 contingency table 
for which the odds ratio and intervals are calculated.

Use of package
We illustrate how to use bayesint using the numbers 
from the top left Table 3, that is the 2×2 table with P = 3, 
C = 66, M = 279, and N = 539. To calculate the odds ratio 
of such a 2×2 contingency table, we use the rel_risk 
function and receive the RR value in Table 4. We assume 
the package has been loaded as listed at the end of 
the Contents section. An example of how to use the 
function rel_risk to calculate a relative risk can be 
seen below

>>>� rel_risk(p_val = 27, c_val = 198, m_val = 
5778, n_val = 6549)

2183/14124

In order to obtain the intervals (4, 5) for the RR above 
with prior beliefs π1 = π2 = π3 = π4= 2.5 we run

>>>� eqt_int_frac(p_val = 27, c_val = 198, m_val 
= 5778, n_val = 6549, pri_val = (2.5, 2.5, 

3 4 5 6

A NA T A NA T A NA T A NA T

I 3 276 279 18 115 133 0 75 75 0 193 193

NI 66 473 539 120 520 640 19 778 797 6 723 729

T 69 749 818 138 635 773 19 853 872 6 916 922

7 8 9 10

A NA T A NA T A NA T A NA T

I 8 200 208 5 105 110 4 192 196 27 5751 5778

NI 20 182 202 11 88 99 34 113 147 198 6351 6549

T 28 382 410 16 193 209 38 305 343 225 12102 12327

Table 3 Haffkine’s cholera data from Greenwood and Yule [4] with numbers denoting the original tables they are from.

HAFFKINE RR INTERVAL 

EQUAL-TAILED HIGHEST POSTERIOR DENSITY

3 0.0878 [0.0513, 0.3352] [0.0374, 0.3025] (HPD starting values: [0.1, 0.4])

4 0.7218 [0.5393, 1.0333] [0.5218, 1.4436]

7 0.3885 [0.2205, 0.7060] [0.1881, 0.7753]

8 0.4091 [0.2179, 0.7972] [0.1476, 0.9875] (HPD starting values: [0.2, 0.5])

9 0.0882 [0.0353, 0.3319] [0.0284, 0.3061]

10 0.1546 [0.0180, 0.3946] [0.0421, 0.4364]

Table 4 Relative risks and credible intervals for data from Table 3.

https://doi.org/10.5334/jors.283
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2.5, 2.5), frac_type = “risk”, signif = 
0.05, ans = “estim”)

(21�83/14124, 0.0180001733621202, 
0.39464791108754)

and

>>>� hpd_int_frac(p_val = 27, c_val = 198, m_val 
= 5778, n_val = 6549, pri_val = (2.5, 2.5, 
2.5, 2.5), frac_type = “risk”, signif = 
0.05, minimisation_start = None)

(2183/14124, 0.0421057055996, 0.436364556526)

for this example we could have also run frac_ints as this 
assumes an argument of “estim” for the ans parameter 
in eqt_int_frac and no provided starting values for the 
minimisation_start in hpd_int_frac.

>>>� frac_ints(p_val = 27, c_val = 198, m_val = 
5778, n_val = 6549, pri_val = (2.5, 2.5, 2.5, 
2.5), frac_type = “risk”, signif = 0.05)

((2183/14124, 0.0180001733621202, 
0.39464791108754), (2183/14124, 
0.0421057055996, 0.436364556526))

If the user does not want those defaults, we recommend 
that they run the two interval functions separately. As we 
use SymPy, we have the option to get the exact equal-
tailed interval. This is retrieved by

>>>� eqt_int_frac(p_val = 27, c_val = 198, m_val 
= 5778, n_val = 6549, pri_val = (2.5, 2.5, 
2.5, 2.5), frac_type = “risk”, signif = 
0.05, ans = “exact”)

We can engage pretty printing using the init_printing 
function from SymPy, which allows us to obtain the result 
in symbolic mathematic notation, i.e.
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which is the expression we evaluated to obtain numerical 
values when the “estim” option was used. We can also 
print the density and distribution functions, 2 and 3), e.g.

>>>� distri_frac(p_val = 27, c_val = 198, m_val 
= 5778, n_val = 6549, pri_val = (2.5, 2.5, 
2.5, 2.5), frac_type = “risk”)
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SymPy also allows for outputs in LaTeX format. By default 
bayesint does not pretty print.

Intervals for odds ratios
We use the eqt_int_frac and hpd_int_frac commands 
from the previous section to calculate the 95% credible 
intervals for the data from Table 3. In the cases where 
RR=0 due to zero counts, we are not able to calculate 
credible intervals due to the assumption that P > π3 
which arises from (3). This means we cannot calculate 
intervals for Haffkine Tables 5 and 6 in Table 3. We use the 
priors πi = 2.5, i = 1,⋯,4.

As with all numerical optimisation problems, different 
starting values can lead to disparate solutions, and as 
there may not be a closed-form expression of the solution 
to the highest posterior density minimisation, users are 
encouraged to investigate their own starting parameters.

COMPARISONS
We compare our bayesint Python solution with the 
two following calculation options for calculating the 
uncertainty of a ratio of beta distributions. Matsen IV et 
al. [13] uses the same Pham-Gia [17] density that we 
consider, but does not explicitly calculate the distribution 
on the basis of this density and Sverdlov et al. [19] 
consider Nurminen and Mutanen [15] which is subsumed 
in Bekker-Nielsen Dunbar et al. [1]. As such, we expect 
them to contain at least an implementation of the equal-
tailed credible interval, as it is the easier of the two to 
program. At the time of writing, we are unaware of other 
options besides those listed in Table 5.

The strength of our approach compared with these 
implementations is that we have considered use of priors 
for the proportions p1 and p2 that need not be the same. 
Sverdlov et al. [19] mention the use of informative priors 

NAME LANGUAGE AUTHOR(S)

betarat version 1.0.0 Python Matsen IV et al. [13]

bayesian2beta R supplement to Sverdlov 
et al. [19]

Table 5 Available options for calculating uncertainty of ratios 
using credible intervals.

https://doi.org/10.5334/jors.283
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in their conclusion but do not seem to have used them 
in their paper. Furthermore their code allows the user 
to provide different priors for the equal-tailed interval, 
whereby the symmetry assumption behind the equal-
tailed interval might be violated. The implementation 
from Matsen IV et al. [13] considers the situation where 
both Beta distributions have the same priors, i.e. α = θ 
and β = φ. They also note issues with hypergeometrics 
in R, which we also found, which was our motivation for 
using Python. Finally, our implementation is the only one 
of the three that can provide the symbolic functions, as 
showcased in the Use of package section. We are not 
aware of other software which allows for calculation of 
both the HPD and the equal-tailed interval.

DISCUSSION
Our implementation has been demostrated with examples 
from epidemiology but can be used in any science where 
2×2 contingency table-like data arise. For example, within 
the field of ecology, the response ratio is an index used in 
meta-analysis of ecological experiments. It is implied in 
Hedges et al. [6] and Lajeunesse [11] that only confidence 
intervals are considered for these, thus our method will 
allow the calculation of credible intervals for this measure. 
Another metric mentioned in Lajeunesse [12] is the odds 
ratio, which is similar to the relative risk in certain situations. 
Hedges et al. [6] and Lajeunesse [12] consider the 
distribution of this ratio to which our method is applicable. 
Another biological ratio we could consider examining is 
mutation frequencies. Significance tests in this area rely on 
ratios of mutation rates [10]. Indeed, Matsen IV et al. [13]’s 
work seems to have arisen from work on hypermutations. 
We have named bayesint with the intention that it will be 
expanded to contain other intervals with Bayesian origins.

CONCLUSION
We have created a Python package bayesint which 
calculates two types of credible interval for the ratio of 
beta distributions. We used the package to calculate 
the credible intervals of the relative risk of subjects 
innoculated or not being attacked by cholera and 
highlighted the strengths of our package compared with 
other available options. We believe our implementation 
to be a useful tool for analysis of 2×2 contingency tables.

Implementation and architecture
The bayesint package is freely available at GitHub (https://

github.com/PublicHealthEngland/bayesint) and through the 
PyPI index of Python packages (pypi.org/project/bayesint). 
This manuscript concerns bayesint version 1.0.3, the 
package’s documentation will be updated if future 
versions have different requirements.

Quality control
bayesint is extensively tested in Python 2.7.14 and also 
functions in Python 3.5.5 and Python 3.6.6.

(2) AVAILABILITY
OPERATING SYSTEM
Any operating system where Python 2.7.14 or better or 
3.5.5 or better with the dependencies enumerated below 
are installed. In practice this includes all three major 
operating systems (Linux/Unix, Windows 7 or better and 
Mac OS/OS X 10.6 or newer) together with a number of 
smaller platforms.

PROGRAMMING LANGUAGE
Python 2.7.14, 3.5.5 and 3.6.6.

ADDITIONAL SYSTEM REQUIREMENTS
This software has no particularly unusual system 
requirements and should operate on any typical 
desktop machine produced in the last five years. The 
calculations are CPU bound so the greater the single 
thread performance of the machine the more swiftly the 
computations will complete.

DEPENDENCIES
bayesint uses the following Python packages which are 
installed when bayesint is installed:

•	 SymPy ≥ 1.1.1 [14] A library for symbolic 
mathematics used to calculate the densities and 
distributions used in our credible intervals.

•	 SciPy ≥ 0.19.1 [9]. A library used for scientific 
computing used to obtain a χ2 distribution for testing 
and to minimise the functions considered in the 
credible intervals.

•	 NumPy ≥ 1.13.3 [16]. A library with high-level 
mathematical functions used for vectorising our 
SymPy function prior to minimisation.

•	 mpmath ≥ 0.19 [8]. A library for arbitrary floating 
point arithmetic used in the minimisation. It is loaded 
through SymPy.

SOFTWARE LOCATION
Archive

Name: PyPI
Persistent identifier: pypi.org/project/bayesint

Licence: Open Government Licence 3.0
Publisher: Public Health England
Version published: 1.0.3
Date published: 11/04/2019

Code repository
Name: GitHub
Persistent identifier: �github.com/PublicHealthEngland/

bayesint

Licence: Open Government Licence 3.0
Date published: 11/04/2019

LANGUAGE
English

https://doi.org/10.5334/jors.283
https://github.com/PublicHealthEngland/bayesint
https://github.com/PublicHealthEngland/bayesint
https://pypi.org/project/bayesint/
https://pypi.org/project/bayesint/
https://github.com/PublicHealthEngland/bayesint
https://github.com/PublicHealthEngland/bayesint
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(3) REUSE POTENTIAL

We broadly outline the reuse potential of this software in 
the discussion section of this work but as a recapitulation 
this package permits the calculation of credible intervals 
wherever 2×2 type contingency table data appear in 
science. With the additional benefit that prior knowledge 
may be incorporated into this estimate in a truly Bayesian 
manner. Issues and feedback about the software can be 
provided by users through the GitHub issue logging system.
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