
Raß, A 2020 High Precision Particle Swarm Optimization 
Algorithm (HiPPSO). Journal of Open Research Software, 
8: 4. DOI: https://doi.org/10.5334/jors.282

Journal of
open research software

SOFTWARE METAPAPER

High Precision Particle Swarm Optimization Algorithm 
(HiPPSO)
Alexander Raß
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), DE
alexander.rass@fau.de

Particle Swarm Optimization (PSO) is a nature-inspired meta-heuristic adaptable to continuous optimization 
problems. To avoid numerical instabilities or artifacts it is necessary to evaluate floating point calculations 
with high precision. Our High Precision Particle Swarm Optimization (HiPPSO) software realizes this 
demand. Additionally our software provides an automatic procedure to adjust precision if it is necessary 
for accurate evaluations. This enables a fast execution time because the software always evaluates the 
calculations with suitable precision and does not use too much precision if it is not necessary. HiPPSO is 
implemented in C++ and has a very flexible class hierarchy to replace subroutines on purpose or extend 
functionality by simply implementing abstract classes. The software is available on a GitHub repository 
at https://github.com/alexander-rass/HiPPSO.
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(1) Overview
Introduction
In real world situations we are often facing hard opti­
mization problems. A successful research field covering 
these problems is the application of meta-heuristics, 
which are highly flexible and can optimize functions 
without deep knowledge of the objective function (Black 
Box optimization). Particle Swarm Optimization (PSO) 
introduced by Kennedy and Eberhart [1, 2] is a nature-
inspired meta-heuristic covering optimization problems 
with a continuous domain, e.g., the ℝD or a constrained 
subset of ℝD. The algorithm manages a collection of 
particles, the swarm. Each particle p has its position xp, 
representing an admissible solution, and its velocity υp. 
Additionally each particle p knows its local attractor lp, the 
best position visited so far by p, and the swarm additionally 
knows the global attractor g, the best position visited so 
far by any particle. The classical movement is defined by 
the following two movement equations evaluated for each 
dimension d, each particle p and every iteration.
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In this movement equations χ, cl and cg are swarm 
parameters controlling the ability of exploitation, i.e., 
the swarm is looking for better solutions close to the 

attractor, and exploration of new territory in the search 
domain. Furthermore rl and rg are random values which 
are newly sampled on each evaluation and are uniformly 
distributed in the interval [0,1] supplying random 
perturbation. After the position update the attractors are 
updated if the current position is better. This update can 
be performed immediately or delayed at the end of the 
iteration depending on the selected configuration in the 
configuration file.

The HiPPSO was implemented to establish a highly 
flexible PSO library, which enables the researcher to analyze 
the behavior of the PSO with a new level of quality investing 
only a small effort. The implementation of HiPPSO already 
supplies a wide variety of features and extensions known 
for standard PSO algorithms and, furthermore, some 
introductory examples are supplied. Therefore even for 
people who are no researchers it would be very interesting 
to use HiPPSO, e.g., they can use it for optimizing their 
own functions. For a more detailed overview on how the 
HiPPSO can be used see the Section “Reuse potential”.

There are already results on convergence analysis 
for the PSO, but mostly they are either performed on 
slightly modified versions of the classical PSO or on very 
reduced problem instances. For an exemplary discussion 
on a modified version of the classical PSO see [3] which 
uses some random perturbation only in situations of 
premature/degenerate convergence – this version can 
(among other versions) be selected as an update strategy 
for HiPPSO. [3] is also a reference for reduced problem 
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instances as the authors show convergence of the 
particles of PSO to local optima for single dimensional 
problems. Other findings are restricted on measurements 
on average quality of the result after reaching a budget 
limit of function evaluations [5]. All this is possible with 
standard PSO implementations and also with HiPPSO. Our 
supplied implementation of High Precision Particle Swarm 
Optimization (HiPPSO) additionally enables researchers 
to measure completely novel characteristics of the PSO 
algorithm. With limited precision only a limited part of 
the process can be used until precision errors completely 
compromise the behavior. With arbitrary high precision 
or self-adjusting precision, which are both available in 
HiPPSO, researchers can observe much longer periods of 
convergence and therefore have much better and reliable 
data, which allows the researcher to quantify the speed 
of convergence and then also to determine the delay of 
convergence because in the beginning the behavior is 
most likely a bit different.

To get a detailed impression on the differences 
between calculations with limited/fixed precision 
and self-adjusting precision we present examples 
of the PSO algorithm optimizing the well-known 
benchmark function Rosenbrock, which is defined as 
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function on a search space with D = 4 dimensions. For 
optimization with the PSO we use the parameters χ = 
0.72984 and cl = cg = 1.496172 which are well-established 
in the literature. The position of the particles will be 
initialized uniformly at random in the search space [–30, 
30]D and the initial velocities are set to zero. No bound 
handling strategy is used but the function evaluates to 
+∞ outside the search space bounds.

In Figure 1 the function value of the Rosenbrock func­
tion evaluated on the global attractor (the best position 
found so far) is displayed while optimizing with four 
particles with either self-adjusting precision or with fixed 
precision (64 bits for mantissa). In this figure one can see 
the most obvious drawback of fixed precision: The result is 

only correct up to a fixed precision. In contrast, with self-
adjusting precision the result gets the more precise the 
longer the optimization is executed.

In Figure 2 the same data is displayed while PSO is 
optimizing only with two particles. Here the evaluation 
with fixed precision and the evaluation with self-adjusting 
precision (using the same random values for initialization 
and update) produce almost equal results according to the 
best found solution. For the case with fixed precision we 
can not distinguish the situation appearing in Figure 1 
from the situation appearing in Figure 2. Consequently, 
we do not know whether we have a bad result or are close 
to some local or global optimum up to precision issues. 
The problem gets even worse if we look at further statistics 
obtained from the evaluations with two particles. In [4] a 
potential has been introduced to analyze bad convergence.

Definition 1 Let f be the objective function then we call
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potential, where x̃p,d := xp + ed ⊙ υp, ed is the d th Cartesian 
unit vector and ⊙ is element-wise multiplication and we 
call Ψ(d) : = ψ(d)/max0≤i<D ψ(i) relative potential.

The relative potential captures the importance of each 
dimension and in [4] it has been argued that if this relative 
potential is quite low for some dimensions then the PSO 
does not optimize them.

In Figure 3 the relative potential Ψ is presented. To be 
more precise in Figure 3a the development of the relative 
potential with fixed precision is displayed. The relative 
potential of the first dimension vanishes quite early as Ψ 
becomes exactly zero. The same happens for the second 
dimension after approximately 2 000 iterations and for the 
remaining dimensions after approximately 15 000 iterations. 
No actual tendency is noticeable until results get completely 
useless when differences are so small that they become 
zero. Also the data before is not necessarily trustworthy as 
precision issues could have compromised them.

Figure 1: Development of the global attractor value of the PSO algorithm with constant/fixed precision (64 bits for 
mantissa) and adjusting precision while optimizing the four dimensional Rosenbrock function with four particles.
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Figure 2: Development of the global attractor value of the PSO algorithm with constant/fixed precision (64 bits for 
mantissa) and adjusting precision while optimizing the four dimensional Rosenbrock function with two particles.
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Figure 3: Development of the relative potential Ψ of the PSO algorithm with constant/fixed precision (64 bits for 
mantissa) and adjusting precision while optimizing the four dimensional Rosenbrock function with two particles.
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(a) Evaluation with constant/fixed precision (64 bits for mantissa)
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With self-adjusting precision we can observe the relative 
potential for more iterations as visualized in Figure 3b. 
The last two dimensions stay quite close to 1 = 100, which 
signals high importance, and the first two dimensions 
are continuously decreasing to zero, which signals low 
importance. Therefore it is obvious that the PSO actually 
optimizes only the last two dimensions. In [4] it has been 
argued that the relative potential in dimensions which are 
not optimized any longer decreases (on average) linearly 
in logarithmic scale. If only fixed precision is used, this 
insight would not be possible at all.

All the data has been produced by HiPPSO as it is 
possible to use fixed as well as self-adjusting precision for 
evaluation. The authors of [4] also used an early version of 
this implementation for their experiments.

Implementation and architecture
The architecture is built to supply a highly flexible 
basis with easily exchangeable parts. Before starting the 
HiPPSO program, one has to generate a configuration 
file specifying all parameters, the objective function, the 
update strategies, bound handling strategies, evaluated 
statistics and much more. To simplify the usage some 
example configuration files are supplied. Also an online 
tool for configuration file generation can be used to 
describe the intended configuration. A link to that tool 
can be found in the main homepage for the HiPPSO 
on GitHub. The whole PSO algorithm is also extremely 
modularized, which enables researchers to just exchange 
a single module in their implementation and still use 
all remaining parts from the HiPPSO framework. In 
most cases writing source code is not necessary as most 
standard variants are already implemented and can be 
picked by the configuration file.

The main structure of the HiPPSO supplies all active 
modules (classes) and configured properties for the PSO 
by static variables within the configuration namespace 
(contained in the base namespace highprecisionpso). 
The most important statically available elements in the 
namespace configuration are

+ g_function: Function*
	 the pointer to the objective function
+ g_statistics: Statistics*
	 the pointer to the current statistics – the statistics 

include pointers to particles
+ g_dimensions: int
	 the number of dimensions of the search space
+ g_particles: int
	 the number of particles
+ g_chi: double
	 the parameter χ of the movement equation for the PSO
+ g_coefficient_local_attractor: double
	 the parameter cl of the movement equation for the PSO
+ g_coefficient_global_attractor: double
	 the parameter cg of the movement equation for the PSO
+ �g_position_and_velocity_updater: PositionAndVeloci-

tyUpdater*
	 the pointer to the position and velocity update proce­

dure

+ g_bound_handling: BoundHandling*
	 the pointer to the bound handling procedure
+ g_velocity_adjustment: VelocityAdjustment*
	 the pointer to the velocity adjustment strategy
+ �g_neighborhood: Neighborhood*
	 the pointer to the neighborhood topology.

As visualized in Figures 4 and 5 the active statistics 
class, which is accessible by configuration::g_statistics, 
stores (among other data) pointers to all particles and 
the current iteration counter and the particles store an 
index, the position, the velocity and the position of the 
local attractor. For position, velocity and the position 
of the local attractor also get and set functions are 
available. Therefore all essential data can be accessed 
and manipulated through variables in the configuration 
namespace.

The main PSO loop is executed in the DoPso function 
implemented in the file main.cpp. There for each itera­
tion (outer for loop) and for each particle (inner for loop) 
the position update is executed. If the default position and 
update procedure is picked then the standard movement 
equations which are described in the introduction will be 
applied.

In the following we describe the intended workflow 
for updating the particles which clarifies the intended 
interaction between the selected modules.

The update procedure can be separated into three 
subroutines. For each particle p of type Particle, which 
should be updated, the subroutine Update of the chosen 
position and velocity updater configuration::g_position_
and_velocity_updater of type PositionAndVelocityUpdater 
is called by the UpdatePosition function of particle p. 
It is intended that this subroutine calculates the new 
velocity, e.g., by the standard movement equations and 
then delegates the remaining update to the bound 
handling strategy. Therefore the intended sequence of 
instructions is

•	 to calculate the new velocity and to call SetVelocity of 
particle p with the new velocity and

•	 to call SetParticleUpdate of chosen bound handling 
strategy configuration::g_bound_handling of type 
BoundHandling.

It is intended that the subroutine SetParticleUpdate mainly 
calculates the new position of the particle. The expected 
sequence of instructions is

Figure 4: Class diagram of Statistics class.

highprecisionpso::Statistics

+ swarm : vector<Particle*>*
+ current_iteration : long long
. . .

. . .
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•	 to calculate the new position,
•	 to call SetPosition of particle p with the new position 

and
•	 to call AdjustVelocity of chosen velocity adjustment 

strategy configuration::g_velocity_adjustment of type 
VelocityAdjustment.

The subroutine AdjustVelocity mainly adjusts the velocity 
according to the position update. It can be possible that 
two or all three parts have to be combined to achieve the 
needed behavior. This is also possible. The update of the 
local attractor is performed automatically by the particle 
class when SetPosition is called. The global attractor is 
updated either directly after updating the local attractor 
or may be applied at the end of a complete iteration 
(depending on the chosen variant by the configuration file).

The chosen neighborhood configuration::g_neighbor­
hood of type Neighborhood supplies the ability to query the 
global attractor, which might be the best of all positions 
or just the best positions of some neighboring particles. 
The function GetGlobalAttractorPosition will usually be 
called by the position and velocity updater.

The bound handling strategy might also change the 
distance to some position because the search space may 
wrap around. Therefore we also supplied the function 
GetDirectionVector to evaluate the difference between two 
positions.

All specified statistics will update after all positions and 
attractors are updated. During calculation of statistics 
the evaluation has access to all data including but not 
limited to particle position and velocity and current state 
of classes guiding the update process.

Quality control
The test suite of this implementation can be executed by 
make test in the base folder of the project. All tests are also 
checked by the continuous integration service provided 
by Travis CI. Additionally the test coverage is checked by 
the service of Coveralls which confirm a test coverage of at 
least 90%. The reason for not being closer to 100% is only 

that checks that should not happen (such lines can not be 
covered at all) or checks whether the supplied configuration 
files supply correct configuration instructions are not 
covered by supplied tests as this would mean to call 
the program with invalid configurations. Executing the 
program with invalid configuration files would cause 
exceptions and additionally some information on the 
incorrect configuration options would be displayed.

The tests cover verification of functionality as well as 
the guarantee to generate reproducible results. This is 
achieved by three types of tests.

•	 We are comparing results of evaluations with the dou-
ble data type with evaluations of the used mpf_t data 
type, which is necessary for high precise calculations. 
The results of evaluations with the double data type 
are up to the precision of the double data type cor­
rect for functions of the standard C++ library and also 
other reference implementations are much less error 
prone. We check here that evaluations with high preci­
sion produce the same results as evaluations with dou-
ble data type up the precision of the double data type.
–	 We especially checked trigonometric functions (sin, 

cos, tan, …),
–	 exponential functions (exp, log, ln, pow, …)
–	 and all implemented benchmark functions (Sphere, 

Schwefel, Rosenbrock, Rastrigin, …).
•	 We are checking that the precision of evaluated 

functions is closely related to the currently active 
precision. For this purpose we evaluate functions 
with different precisions and check that the result 
produced with lower precision is equal to the result 
with higher precision if it is truncated to the lower 
precision.

•	 Finally we are checking that the current executable 
produces absolutely identical results compared to 
a reference evaluation of this software. Here any 
available module or configuration option (objective 
function, bound handling strategy, neighborhood 
topology, …) is tested at least once.

Figure 5: Class diagram of Particle class.

highprecisionpso::Particle

+ id : int
+ position : vector<mpf_t*>
+ velocity : vector<mpf_t*>
+ local_attractor_position : vector<mpf_t*>

+ GetPosition() : vector<mpf_t*>
+ GetVelocity() : vector<mpf_t*>
+ GetLocalAttractorPosition() : vector<mpf_t*>
+ SetPosition(vector<mpf_t*>) : void
+ SetVelocity(vector<mpf_t*>) : void
+ SetLocalAttractorPosition(vector<mpf_t*>) : void
+ UpdatePosition() : void
. . .
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These criteria enable researchers to use this software for 
scientific works as it is guaranteed that anyone can use 
this software to independently confirm results of others if 
the configuration of the software is published.

(2) Availability
Operating system
HiPPSO has been tested successfully on Ubuntu 16.04 
(also by Travis CI), Ubuntu 18.04 and Windows 10. 
Additionally HiPPSO is successfully tested by Travis CI on 
OS-X but functionality is not guaranteed.

Programming language
C++ with gcc version ≥ 5.5.

Additional system requirements
There are no additional system requirements exceeding 
the limits of a basic desktop PC.

Dependencies
When running HiPPSO from source code, the GNU 
Multiple Precision Arithmetic Library (GMP library) 
version ≥ 6 is needed.

On Windows operating system we suggest using Cygwin 
with components

•	 gcc,
•	 m4 and
•	 make.

The GMP library has to be installed additionally from the 
homepage of the project (https://gmplib.org/).

On Ubuntu one can simply install all components by 
sudo apt-get install of the components

•	 g++,
•	 make and
•	 libgmp-dev (GMP library).

After preparation one can install HiPPSO by the command 
make in the base folder of the project with Cygwin on 
Windows or with Terminal on Ubuntu.

List of contributors
Authored and maintained by Alexander Raß with minor 
contributions from Manuel Schmitt.

Software location
Archive

Name: HiPPSO
Persistent identifier: DOI: 10.5281/zenodo.3518175
Licence: MIT License (MIT)
Publisher: Alexander Raß
Version published: 1.0.2
Date published: 24/10/19

Code repository GitHub
Name: HiPPSO
�Persistent identifier: https://github.com/alexander-
rass/​HiPPSO

DOI: 10.5281/zenodo.3518175
Licence: MIT License (MIT)
Date published: 24/10/19

Language
English

(3) Reuse potential
This Software can be reused by scientists in multiple 
ways. It can be used for optimization/minimization of an 
objective function specified by the user without knowledge 
of the PSO algorithm itself, for quality measurements of 
the PSO algorithm to extend the understanding of the 
mechanisms of the PSO and for integration and testing of 
new modules of the PSO.

Other researchers looking for a tool to optimize/minimize 
some function in the continuous domain can use this tool for 
optimization. It is only necessary to describe the function and 
the software can immediately start to optimize and present 
optimized solutions to the user. A wide range of objective 
functions are already implemented (Sphere, Rosenbrock, 
Rastrigin, …). Maybe the objective of the researcher is 
very specific and somehow new (and not present in any 
benchmark set) but it still can be specified to the software as 
it is possible to specify objective functions by some grammar 
which is described inside the guideline configuration files. 
Alternatively an online tool for configuration file generation 
can be used to describe the intended objective function. A 
link to that tool can be found in the main homepage for the 
HiPPSO on GitHub. Even complicated functions like Ackley 
can be described by that grammar and can be minimized 
without programming a single line of code. If it is still 
not possible to specify the needed objective function it is 
possible to write a piece of source code implementing the 
needed objective function and integrate it to HiPPSO by 
implementing the abstract class Function. Usually this should 
not be necessary but in case it is a link to some guidelines 
how your function can be implemented and activated can 
be found on the main GitHub page of HiPPSO in the section 
“Extensibility”.

Also any quality measurement which is needed for 
analysis of the PSO algorithm can be produced by this 
software. The statistics which should be extracted by the 
PSO can be specified similarly to the objective function by 
a grammar (see also the online tool for configuration file 
generation). Examples of predefined options are positions, 
velocities, attractor positions, function values of those and 
many functions dependent on those characteristics. It can 
also be specified at which iterations the statistics should 
be produced. All evaluations can be made with arbitrary, 
self-adjusting precision and are therefore highly reliable 
and can be displayed for very large number of iterations.

A future work using HiPPSO is measuring precisely what 
the speed of convergence is, i.e., it answers the question 
how long it takes to improve the result of an objective 
function by some specified value of additional digits.

Last but not least researchers developing PSO modules 
can use this software. They can use the complete base 
structure of the PSO and just replace some part of the PSO 
algorithm by their version. Explicit options for replacement 
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are for example bound handling strategies, neighborhood 
topologies, calculation of new position and many more. 
Links to some guidelines how your new modules can be 
implemented and activated can be found on the main 
GitHub page of HiPPSO in the section “Extensibility”.

If there appear any issues or complications while using 
HiPPSO one can use either GitHub issues or send a mail 
to Alexander Raß (Alexander.Rass@fau.de) to receive 
support.

Competing Interests
The author has no competing interests to declare.

References
1.	 Eberhart, R C and Kennedy, J 1995 A new optimizer 

using particle swarm theory. In: Proc. 6th International 
Symposium on Micro Machine and Human Science, 39–
43. DOI: https://doi.org/10.1109/MHS.1995.494215

2.	 Kennedy, J and Eberhart, R C 1995 Particle swarm 
optimization. In: Proc. IEEE International Conference 
on Neural Networks, 4: 1942–1948. DOI: https://doi.
org/10.1109/ICNN.1995.488968

3.	 Schmitt, M and Wanka, R 2015 Particle Swarm 
Optimization Almost Surely Finds Local Optima. In: 
Theoretical Computer Science, 561A: 57–72. DOI: 
https://doi.org/10.1016/j.tcs.2014.05.017

4.	 Raß, A, Schmitt, M and Wanka, R 2015 Explanation 
of Stagnation at Points that are not Local Optima in 
Particle Swarm Optimization by Potential Analysis. 
In: Proc. 17th Genetic and Evolutionary Computation 
Conference (GECCO), 1463–1464. DOI: https://doi.
org/10.1145/2739482.2764654

5.	 Trelea, I 2003 The particle swarm optimization 
algorithm: Convergence analysis and parameter 
selection. In: Information Processing Letters, 317–325. 
DOI: https://doi.org/10.1016/S0020-0190(02)00447-7

How to cite this article: Raß, A 2020 High Precision Particle Swarm Optimization Algorithm (HiPPSO). Journal of Open Research 
Software, 8: 4. DOI: https://doi.org/10.5334/jors.282

Submitted: 12 June 2019        Accepted: 18 February 2020        Published: 09 March 2020

Copyright: © 2020 The Author(s). This is an open-access article distributed under the terms of the Creative Commons 
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

OPEN ACCESSJournal of Open Research Software is a peer-reviewed open access journal published by 
Ubiquity Press.

mailto:Alexander.Rass@fau.de
https://doi.org/10.1109/MHS.1995.494215
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1016/j.tcs.2014.05.017
https://doi.org/10.1145/2739482.2764654
https://doi.org/10.1145/2739482.2764654
https://doi.org/10.1016/S0020-0190(02)00447-7
https://doi.org/10.5334/jors.282
http://creativecommons.org/licenses/by/4.0/

	(1) Overview 
	Introduction 
	Implementation and architecture 
	Quality control 

	(2) Availability 
	Operating system 
	Programming language 
	Additional system requirements 
	Dependencies 
	List of contributors 
	Software location 
	Archive 
	Code repository GitHub 

	Language 

	(3) Reuse potential 
	Competing Interests 
	References 
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5

