
Raß, A 2020 High Precision Particle Swarm Optimization
Algorithm (HiPPSO). Journal of Open Research Software,
8: 4. DOI: https://doi.org/10.5334/jors.282

Journal of
open research software

SOFTWARE METAPAPER

High Precision Particle Swarm Optimization Algorithm
(HiPPSO)
Alexander Raß
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), DE
alexander.rass@fau.de

Particle Swarm Optimization (PSO) is a nature-inspired meta-heuristic adaptable to continuous optimization
problems. To avoid numerical instabilities or artifacts it is necessary to evaluate floating point calculations
with high precision. Our High Precision Particle Swarm Optimization (HiPPSO) software realizes this
demand. Additionally our software provides an automatic procedure to adjust precision if it is necessary
for accurate evaluations. This enables a fast execution time because the software always evaluates the
calculations with suitable precision and does not use too much precision if it is not necessary. HiPPSO is
implemented in C++ and has a very flexible class hierarchy to replace subroutines on purpose or extend
functionality by simply implementing abstract classes. The software is available on a GitHub repository
at https://github.com/alexander-rass/HiPPSO.

Keywords: particle swarm optimization; arbitrary precision; convergence analysis

(1) Overview
Introduction
In real world situations we are often facing hard opti­
mization problems. A successful research field covering
these problems is the application of meta-heuristics,
which are highly flexible and can optimize functions
without deep knowledge of the objective function (Black
Box optimization). Particle Swarm Optimization (PSO)
introduced by Kennedy and Eberhart [1, 2] is a nature-
inspired meta-heuristic covering optimization problems
with a continuous domain, e.g., the ℝD or a constrained
subset of ℝD. The algorithm manages a collection of
particles, the swarm. Each particle p has its position xp,
representing an admissible solution, and its velocity υp.
Additionally each particle p knows its local attractor lp, the
best position visited so far by p, and the swarm additionally
knows the global attractor g, the best position visited so
far by any particle. The classical movement is defined by
the following two movement equations evaluated for each
dimension d, each particle p and every iteration.

 
 

, , , , , , ,

, ,

, , , , , , .

p d new p d old l l p d p d old

g g d p d old

p d new p d old p d new

c r l x

c r g x

x x

  



     

   

 

In this movement equations χ, cl and cg are swarm
parameters controlling the ability of exploitation, i.e.,
the swarm is looking for better solutions close to the

attractor, and exploration of new territory in the search
domain. Furthermore rl and rg are random values which
are newly sampled on each evaluation and are uniformly
distributed in the interval [0,1] supplying random
perturbation. After the position update the attractors are
updated if the current position is better. This update can
be performed immediately or delayed at the end of the
iteration depending on the selected configuration in the
configuration file.

The HiPPSO was implemented to establish a highly
flexible PSO library, which enables the researcher to analyze
the behavior of the PSO with a new level of quality investing
only a small effort. The implementation of HiPPSO already
supplies a wide variety of features and extensions known
for standard PSO algorithms and, furthermore, some
introductory examples are supplied. Therefore even for
people who are no researchers it would be very interesting
to use HiPPSO, e.g., they can use it for optimizing their
own functions. For a more detailed overview on how the
HiPPSO can be used see the Section “Reuse potential”.

There are already results on convergence analysis
for the PSO, but mostly they are either performed on
slightly modified versions of the classical PSO or on very
reduced problem instances. For an exemplary discussion
on a modified version of the classical PSO see [3] which
uses some random perturbation only in situations of
premature/degenerate convergence – this version can
(among other versions) be selected as an update strategy
for HiPPSO. [3] is also a reference for reduced problem

https://doi.org/10.5334/jors.282
mailto:alexander.rass@fau.de
https://github.com/alexander-rass/HiPPSO

Raß: High Precision Particle Swarm Optimization Algorithm (HiPPSO)Art. 4, page 2 of 7

instances as the authors show convergence of the
particles of PSO to local optima for single dimensional
problems. Other findings are restricted on measurements
on average quality of the result after reaching a budget
limit of function evaluations [5]. All this is possible with
standard PSO implementations and also with HiPPSO. Our
supplied implementation of High Precision Particle Swarm
Optimization (HiPPSO) additionally enables researchers
to measure completely novel characteristics of the PSO
algorithm. With limited precision only a limited part of
the process can be used until precision errors completely
compromise the behavior. With arbitrary high precision
or self-adjusting precision, which are both available in
HiPPSO, researchers can observe much longer periods of
convergence and therefore have much better and reliable
data, which allows the researcher to quantify the speed
of convergence and then also to determine the delay of
convergence because in the beginning the behavior is
most likely a bit different.

To get a detailed impression on the differences
between calculations with limited/fixed precision
and self-adjusting precision we present examples
of the PSO algorithm optimizing the well-known
benchmark function Rosenbrock, which is defined as

2 2 2 2
10

() (100 () (1))
D

i i ii
f x x x x




     . We use the Rosenbrock
function on a search space with D = 4 dimensions. For
optimization with the PSO we use the parameters χ =
0.72984 and cl = cg = 1.496172 which are well-established
in the literature. The position of the particles will be
initialized uniformly at random in the search space [–30,
30]D and the initial velocities are set to zero. No bound
handling strategy is used but the function evaluates to
+∞ outside the search space bounds.

In Figure 1 the function value of the Rosenbrock func­
tion evaluated on the global attractor (the best position
found so far) is displayed while optimizing with four
particles with either self-adjusting precision or with fixed
precision (64 bits for mantissa). In this figure one can see
the most obvious drawback of fixed precision: The result is

only correct up to a fixed precision. In contrast, with self-
adjusting precision the result gets the more precise the
longer the optimization is executed.

In Figure 2 the same data is displayed while PSO is
optimizing only with two particles. Here the evaluation
with fixed precision and the evaluation with self-adjusting
precision (using the same random values for initialization
and update) produce almost equal results according to the
best found solution. For the case with fixed precision we
can not distinguish the situation appearing in Figure 1
from the situation appearing in Figure 2. Consequently,
we do not know whether we have a bad result or are close
to some local or global optimum up to precision issues.
The problem gets even worse if we look at further statistics
obtained from the evaluations with two particles. In [4] a
potential has been introduced to analyze bad convergence.

Definition 1 Let f be the objective function then we call

,
0

() : max | () ()|p p d
p P

d f x f x
 

 

potential, where x̃p,d := xp + ed ⊙ υp, ed is the d th Cartesian
unit vector and ⊙ is element-wise multiplication and we
call Ψ(d) : = ψ(d)/max0≤i<D ψ(i) relative potential.

The relative potential captures the importance of each
dimension and in [4] it has been argued that if this relative
potential is quite low for some dimensions then the PSO
does not optimize them.

In Figure 3 the relative potential Ψ is presented. To be
more precise in Figure 3a the development of the relative
potential with fixed precision is displayed. The relative
potential of the first dimension vanishes quite early as Ψ
becomes exactly zero. The same happens for the second
dimension after approximately 2 000 iterations and for the
remaining dimensions after approximately 15 000 iterations.
No actual tendency is noticeable until results get completely
useless when differences are so small that they become
zero. Also the data before is not necessarily trustworthy as
precision issues could have compromised them.

Figure 1: Development of the global attractor value of the PSO algorithm with constant/fixed precision (64 bits for
mantissa) and adjusting precision while optimizing the four dimensional Rosenbrock function with four particles.

10−100

10−80

10−60

10−40

10−20

100

0 50000 100000 150000 200000

gl
ob

al
a
tt
ra
ct
or

va
lu
e

iterations

adjusting precision
fixed precision

Raß: High Precision Particle Swarm Optimization Algorithm (HiPPSO) Art. 4, page 3 of 7

Figure 2: Development of the global attractor value of the PSO algorithm with constant/fixed precision (64 bits for
mantissa) and adjusting precision while optimizing the four dimensional Rosenbrock function with two particles.

102

103

104

105

106

107

108

0 500 1000 1500 2000

g
lo
b
a
l
a
tt
ra
ct
or

va
lu
e

iterations

adjusting precision
fixed precision

Figure 3: Development of the relative potential Ψ of the PSO algorithm with constant/fixed precision (64 bits for
mantissa) and adjusting precision while optimizing the four dimensional Rosenbrock function with two particles.

10−18

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

0 500 1000 1500 2000 2500 3000 3500 4000

p
ot
en
ti
al

iterations

Ψ(0)
Ψ(1)
Ψ(2)
Ψ(3)

(a) Evaluation with constant/fixed precision (64 bits for mantissa)

10−250

10−200

10−150

10−100

10−50

100

0 5000 10000 15000 20000 25000

p
ot
en
ti
al

iterations

Ψ(0)
Ψ(1)
Ψ(2)
Ψ(3)

(b) Evaluation with self-adjusting precision

Raß: High Precision Particle Swarm Optimization Algorithm (HiPPSO)Art. 4, page 4 of 7

With self-adjusting precision we can observe the relative
potential for more iterations as visualized in Figure 3b.
The last two dimensions stay quite close to 1 = 100, which
signals high importance, and the first two dimensions
are continuously decreasing to zero, which signals low
importance. Therefore it is obvious that the PSO actually
optimizes only the last two dimensions. In [4] it has been
argued that the relative potential in dimensions which are
not optimized any longer decreases (on average) linearly
in logarithmic scale. If only fixed precision is used, this
insight would not be possible at all.

All the data has been produced by HiPPSO as it is
possible to use fixed as well as self-adjusting precision for
evaluation. The authors of [4] also used an early version of
this implementation for their experiments.

Implementation and architecture
The architecture is built to supply a highly flexible
basis with easily exchangeable parts. Before starting the
HiPPSO program, one has to generate a configuration
file specifying all parameters, the objective function, the
update strategies, bound handling strategies, evaluated
statistics and much more. To simplify the usage some
example configuration files are supplied. Also an online
tool for configuration file generation can be used to
describe the intended configuration. A link to that tool
can be found in the main homepage for the HiPPSO
on GitHub. The whole PSO algorithm is also extremely
modularized, which enables researchers to just exchange
a single module in their implementation and still use
all remaining parts from the HiPPSO framework. In
most cases writing source code is not necessary as most
standard variants are already implemented and can be
picked by the configuration file.

The main structure of the HiPPSO supplies all active
modules (classes) and configured properties for the PSO
by static variables within the configuration namespace
(contained in the base namespace highprecisionpso).
The most important statically available elements in the
namespace configuration are

+ g_function: Function*
	 the pointer to the objective function
+ g_statistics: Statistics*
	 the pointer to the current statistics – the statistics

include pointers to particles
+ g_dimensions: int
	 the number of dimensions of the search space
+ g_particles: int
	 the number of particles
+ g_chi: double
	 the parameter χ of the movement equation for the PSO
+ g_coefficient_local_attractor: double
	 the parameter cl of the movement equation for the PSO
+ g_coefficient_global_attractor: double
	 the parameter cg of the movement equation for the PSO
+ �g_position_and_velocity_updater: PositionAndVeloci-

tyUpdater*
	 the pointer to the position and velocity update proce­

dure

+ g_bound_handling: BoundHandling*
	 the pointer to the bound handling procedure
+ g_velocity_adjustment: VelocityAdjustment*
	 the pointer to the velocity adjustment strategy
+ �g_neighborhood: Neighborhood*
	 the pointer to the neighborhood topology.

As visualized in Figures 4 and 5 the active statistics
class, which is accessible by configuration::g_statistics,
stores (among other data) pointers to all particles and
the current iteration counter and the particles store an
index, the position, the velocity and the position of the
local attractor. For position, velocity and the position
of the local attractor also get and set functions are
available. Therefore all essential data can be accessed
and manipulated through variables in the configuration
namespace.

The main PSO loop is executed in the DoPso function
implemented in the file main.cpp. There for each itera­
tion (outer for loop) and for each particle (inner for loop)
the position update is executed. If the default position and
update procedure is picked then the standard movement
equations which are described in the introduction will be
applied.

In the following we describe the intended workflow
for updating the particles which clarifies the intended
interaction between the selected modules.

The update procedure can be separated into three
subroutines. For each particle p of type Particle, which
should be updated, the subroutine Update of the chosen
position and velocity updater configuration::g_position_
and_velocity_updater of type PositionAndVelocityUpdater
is called by the UpdatePosition function of particle p.
It is intended that this subroutine calculates the new
velocity, e.g., by the standard movement equations and
then delegates the remaining update to the bound
handling strategy. Therefore the intended sequence of
instructions is

•	 to calculate the new velocity and to call SetVelocity of
particle p with the new velocity and

•	 to call SetParticleUpdate of chosen bound handling
strategy configuration::g_bound_handling of type
BoundHandling.

It is intended that the subroutine SetParticleUpdate mainly
calculates the new position of the particle. The expected
sequence of instructions is

Figure 4: Class diagram of Statistics class.

highprecisionpso::Statistics

+ swarm : vector<Particle*>*
+ current_iteration : long long
. . .

. . .

Raß: High Precision Particle Swarm Optimization Algorithm (HiPPSO) Art. 4, page 5 of 7

•	 to calculate the new position,
•	 to call SetPosition of particle p with the new position

and
•	 to call AdjustVelocity of chosen velocity adjustment

strategy configuration::g_velocity_adjustment of type
VelocityAdjustment.

The subroutine AdjustVelocity mainly adjusts the velocity
according to the position update. It can be possible that
two or all three parts have to be combined to achieve the
needed behavior. This is also possible. The update of the
local attractor is performed automatically by the particle
class when SetPosition is called. The global attractor is
updated either directly after updating the local attractor
or may be applied at the end of a complete iteration
(depending on the chosen variant by the configuration file).

The chosen neighborhood configuration::g_neighbor­
hood of type Neighborhood supplies the ability to query the
global attractor, which might be the best of all positions
or just the best positions of some neighboring particles.
The function GetGlobalAttractorPosition will usually be
called by the position and velocity updater.

The bound handling strategy might also change the
distance to some position because the search space may
wrap around. Therefore we also supplied the function
GetDirectionVector to evaluate the difference between two
positions.

All specified statistics will update after all positions and
attractors are updated. During calculation of statistics
the evaluation has access to all data including but not
limited to particle position and velocity and current state
of classes guiding the update process.

Quality control
The test suite of this implementation can be executed by
make test in the base folder of the project. All tests are also
checked by the continuous integration service provided
by Travis CI. Additionally the test coverage is checked by
the service of Coveralls which confirm a test coverage of at
least 90%. The reason for not being closer to 100% is only

that checks that should not happen (such lines can not be
covered at all) or checks whether the supplied configuration
files supply correct configuration instructions are not
covered by supplied tests as this would mean to call
the program with invalid configurations. Executing the
program with invalid configuration files would cause
exceptions and additionally some information on the
incorrect configuration options would be displayed.

The tests cover verification of functionality as well as
the guarantee to generate reproducible results. This is
achieved by three types of tests.

•	 We are comparing results of evaluations with the dou-
ble data type with evaluations of the used mpf_t data
type, which is necessary for high precise calculations.
The results of evaluations with the double data type
are up to the precision of the double data type cor­
rect for functions of the standard C++ library and also
other reference implementations are much less error
prone. We check here that evaluations with high preci­
sion produce the same results as evaluations with dou-
ble data type up the precision of the double data type.
–	 We especially checked trigonometric functions (sin,

cos, tan, …),
–	 exponential functions (exp, log, ln, pow, …)
–	 and all implemented benchmark functions (Sphere,

Schwefel, Rosenbrock, Rastrigin, …).
•	 We are checking that the precision of evaluated

functions is closely related to the currently active
precision. For this purpose we evaluate functions
with different precisions and check that the result
produced with lower precision is equal to the result
with higher precision if it is truncated to the lower
precision.

•	 Finally we are checking that the current executable
produces absolutely identical results compared to
a reference evaluation of this software. Here any
available module or configuration option (objective
function, bound handling strategy, neighborhood
topology, …) is tested at least once.

Figure 5: Class diagram of Particle class.

highprecisionpso::Particle

+ id : int
+ position : vector<mpf_t*>
+ velocity : vector<mpf_t*>
+ local_attractor_position : vector<mpf_t*>

+ GetPosition() : vector<mpf_t*>
+ GetVelocity() : vector<mpf_t*>
+ GetLocalAttractorPosition() : vector<mpf_t*>
+ SetPosition(vector<mpf_t*>) : void
+ SetVelocity(vector<mpf_t*>) : void
+ SetLocalAttractorPosition(vector<mpf_t*>) : void
+ UpdatePosition() : void
. . .

Raß: High Precision Particle Swarm Optimization Algorithm (HiPPSO)Art. 4, page 6 of 7

These criteria enable researchers to use this software for
scientific works as it is guaranteed that anyone can use
this software to independently confirm results of others if
the configuration of the software is published.

(2) Availability
Operating system
HiPPSO has been tested successfully on Ubuntu 16.04
(also by Travis CI), Ubuntu 18.04 and Windows 10.
Additionally HiPPSO is successfully tested by Travis CI on
OS-X but functionality is not guaranteed.

Programming language
C++ with gcc version ≥ 5.5.

Additional system requirements
There are no additional system requirements exceeding
the limits of a basic desktop PC.

Dependencies
When running HiPPSO from source code, the GNU
Multiple Precision Arithmetic Library (GMP library)
version ≥ 6 is needed.

On Windows operating system we suggest using Cygwin
with components

•	 gcc,
•	 m4 and
•	 make.

The GMP library has to be installed additionally from the
homepage of the project (https://gmplib.org/).

On Ubuntu one can simply install all components by
sudo apt-get install of the components

•	 g++,
•	 make and
•	 libgmp-dev (GMP library).

After preparation one can install HiPPSO by the command
make in the base folder of the project with Cygwin on
Windows or with Terminal on Ubuntu.

List of contributors
Authored and maintained by Alexander Raß with minor
contributions from Manuel Schmitt.

Software location
Archive

Name: HiPPSO
Persistent identifier: DOI: 10.5281/zenodo.3518175
Licence: MIT License (MIT)
Publisher: Alexander Raß
Version published: 1.0.2
Date published: 24/10/19

Code repository GitHub
Name: HiPPSO
�Persistent identifier: https://github.com/alexander-
rass/​HiPPSO

DOI: 10.5281/zenodo.3518175
Licence: MIT License (MIT)
Date published: 24/10/19

Language
English

(3) Reuse potential
This Software can be reused by scientists in multiple
ways. It can be used for optimization/minimization of an
objective function specified by the user without knowledge
of the PSO algorithm itself, for quality measurements of
the PSO algorithm to extend the understanding of the
mechanisms of the PSO and for integration and testing of
new modules of the PSO.

Other researchers looking for a tool to optimize/minimize
some function in the continuous domain can use this tool for
optimization. It is only necessary to describe the function and
the software can immediately start to optimize and present
optimized solutions to the user. A wide range of objective
functions are already implemented (Sphere, Rosenbrock,
Rastrigin, …). Maybe the objective of the researcher is
very specific and somehow new (and not present in any
benchmark set) but it still can be specified to the software as
it is possible to specify objective functions by some grammar
which is described inside the guideline configuration files.
Alternatively an online tool for configuration file generation
can be used to describe the intended objective function. A
link to that tool can be found in the main homepage for the
HiPPSO on GitHub. Even complicated functions like Ackley
can be described by that grammar and can be minimized
without programming a single line of code. If it is still
not possible to specify the needed objective function it is
possible to write a piece of source code implementing the
needed objective function and integrate it to HiPPSO by
implementing the abstract class Function. Usually this should
not be necessary but in case it is a link to some guidelines
how your function can be implemented and activated can
be found on the main GitHub page of HiPPSO in the section
“Extensibility”.

Also any quality measurement which is needed for
analysis of the PSO algorithm can be produced by this
software. The statistics which should be extracted by the
PSO can be specified similarly to the objective function by
a grammar (see also the online tool for configuration file
generation). Examples of predefined options are positions,
velocities, attractor positions, function values of those and
many functions dependent on those characteristics. It can
also be specified at which iterations the statistics should
be produced. All evaluations can be made with arbitrary,
self-adjusting precision and are therefore highly reliable
and can be displayed for very large number of iterations.

A future work using HiPPSO is measuring precisely what
the speed of convergence is, i.e., it answers the question
how long it takes to improve the result of an objective
function by some specified value of additional digits.

Last but not least researchers developing PSO modules
can use this software. They can use the complete base
structure of the PSO and just replace some part of the PSO
algorithm by their version. Explicit options for replacement

https://gmplib.org/
https://doi.org/10.5281/zenodo.3518175
https://github.com/alexander-rass/HiPPSO
https://github.com/alexander-rass/HiPPSO
https://doi.org/10.5281/zenodo.3518175

Raß: High Precision Particle Swarm Optimization Algorithm (HiPPSO) Art. 4, page 7 of 7

are for example bound handling strategies, neighborhood
topologies, calculation of new position and many more.
Links to some guidelines how your new modules can be
implemented and activated can be found on the main
GitHub page of HiPPSO in the section “Extensibility”.

If there appear any issues or complications while using
HiPPSO one can use either GitHub issues or send a mail
to Alexander Raß (Alexander.Rass@fau.de) to receive
support.

Competing Interests
The author has no competing interests to declare.

References
1.	 Eberhart, R C and Kennedy, J 1995 A new optimizer

using particle swarm theory. In: Proc. 6th International
Symposium on Micro Machine and Human Science, 39–
43. DOI: https://doi.org/10.1109/MHS.1995.494215

2.	 Kennedy, J and Eberhart, R C 1995 Particle swarm
optimization. In: Proc. IEEE International Conference
on Neural Networks, 4: 1942–1948. DOI: https://doi.
org/10.1109/ICNN.1995.488968

3.	 Schmitt, M and Wanka, R 2015 Particle Swarm
Optimization Almost Surely Finds Local Optima. In:
Theoretical Computer Science, 561A: 57–72. DOI:
https://doi.org/10.1016/j.tcs.2014.05.017

4.	 Raß, A, Schmitt, M and Wanka, R 2015 Explanation
of Stagnation at Points that are not Local Optima in
Particle Swarm Optimization by Potential Analysis.
In: Proc. 17th Genetic and Evolutionary Computation
Conference (GECCO), 1463–1464. DOI: https://doi.
org/10.1145/2739482.2764654

5.	 Trelea, I 2003 The particle swarm optimization
algorithm: Convergence analysis and parameter
selection. In: Information Processing Letters, 317–325.
DOI: https://doi.org/10.1016/S0020-0190(02)00447-7

How to cite this article: Raß, A 2020 High Precision Particle Swarm Optimization Algorithm (HiPPSO). Journal of Open Research
Software, 8: 4. DOI: https://doi.org/10.5334/jors.282

Submitted: 12 June 2019 Accepted: 18 February 2020 Published: 09 March 2020

Copyright: © 2020 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

OPEN ACCESSJournal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press.

mailto:Alexander.Rass@fau.de
https://doi.org/10.1109/MHS.1995.494215
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1016/j.tcs.2014.05.017
https://doi.org/10.1145/2739482.2764654
https://doi.org/10.1145/2739482.2764654
https://doi.org/10.1016/S0020-0190(02)00447-7
https://doi.org/10.5334/jors.282
http://creativecommons.org/licenses/by/4.0/

	(1) Overview
	Introduction
	Implementation and architecture
	Quality control

	(2) Availability
	Operating system
	Programming language
	Additional system requirements
	Dependencies
	List of contributors
	Software location
	Archive
	Code repository GitHub

	Language

	(3) Reuse potential
	Competing Interests
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5

