
Gonzalez-Perez, V, et al. 2020 A Python Package to Preprocess the Data
Produced by Novonix High-Precision Battery-Testers. Journal of Open
Research Software, 8: 3. DOI: https://doi.org/10.5334/jors.281

Journal of
open research software

SOFTWARE METAPAPER

A Python Package to Preprocess the Data Produced by
Novonix High-Precision Battery-Testers
V. Gonzalez-Perez, P. Keil, Y. Li, A. Zülke, R. Burrel, D. Csala and H. Hoster
Energy Lancaster, Lancaster University, Lancaster, UK
Corresponding author: V. Gonzalez-Perez (violetagp@protonmail.com)

We present preparenovonix, a Python package that handles common issues encountered in data files
generated with a range of software versions from the Novonix battery-testers.1 This package can also add
extra information that makes easier coulombic counting and relating a measurement to the experimental
protocol. The package provides a master function that can run at once the cleaning and adding derived
information, with flexibility to choose only some features. There is a separate function to simply read a
column by its given name. The usage of all the functions is documented in the code including examples.
The code presented here can be installed either as a python package2 or from a GitHub repository.3

Keywords: Batteries; Battery-testers; Novonix; Data; Clean data; Python
Funding statement: This work has been conducted within the Multi Scale Modelling collaboration from
the Faraday Institution: ALC7052 and ALC 7082.

(1) Overview
Introduction
The growth exploiting renewable energies is only possible
thanks to the development of adequate energy storage
systems [2]. Li-ion batteries have become one of the fastest
growing electric energy storage systems in the automotive
market [4]. Cycling these batteries through charging
and discharging is one of the cornerstone experiments
to understand their working performance and ageing
behaviour, which are essential to help improving their
design [5] and the lifespan prediction [3]. This cycling
can be done in different types of testers, using a range
of batteries not limited to the Li-ion ones. Novonix is a
relatively new company in the market of battery-testing
systems, catering to high-precision coulometry [1]. An
accurate coulombic efficiency tracking can provide insights
for battery ageing mechanism and lifetime prediction
at early experimental stages. The preparenovonix
package prepares the raw data exported from Novonix
battery-testers so it can be later analysed with ease.
Traditionally, this type of code is not widely shared among
different groups working on battery research. However,
opening this code to the community has the potential
to benefit all users of the Novonix battery-testers and to
promote further collaboration developing code relevant
for the battery research field.

The preparenovonix package prepares exported
data files produced by Novonix battery-testers4 by (i)
cleaning them and (ii) adding derived information to the
file. The package also allows reading an individual column
given its name. The derived information includes:

1. A State column with explicit information of the start
and end of a given type of measurement. Novonix
provides a Step number with a different value for
each type of measurement, for example, 0 corre-
sponds to an open circuit. However, it is possible
to have two consecutive measurements of the same
type but with different experimental conditions, for
example charging at different currents. These can
now be set appart using the State value.

2. A reduced protocol summarising the experimen-
tal protocol into having each command and corre-
sponding experimental conditions in a single line.
This is needed to directly relate a measurement with
the experimental protocol. The reduced protocol is
output as a string of arrays and it is stored as part
of the header when using the prepare_novonix
function (see Figure 2 and the text below).

3. A Protocol line column with values that assign a
measurement to a particular line of the reduced pro-
tocol.

4. A Loop number column with a counter of the repeti-
tions of a given measurement within a loop in the
experimental protocol.

Combining the state and step number values makes it
possible to select the capacities from a charge or discharge
experimental step. These are needed for estimating the
coulombic efficiency. This combination of state with step
number also allows the computation of resistances based
on current experimental steps or pulses. Specific cycles
or individual sections of the experiment can be selected

https://doi.org/10.5334/jors.281
mailto:violetagp@protonmail.com

Gonzalez-Perez et al: A Python Package to Preprocess the Data Produced by Novonix
High-Precision Battery-Testers

Art. 3, page 2 of 5

combining the loop number with either the state and step
number values or the protocol line values.

The example data provided within the repository for
this code is shown in Figure 1. This figure compares the
raw Novonix data with the data after being processed
by the preparenovonix package. The example raw
data contains individual measurements for which the
experimental run time decreases. As it can be seen in
Figure 1, these measurements are removed by the
preparenovonix package. The example raw data
file also includes a failed test. The preparenovonix
package takes the capacity from the failed test and adds
it to the capacities from the completed experiment.
This shifts the result capacity curve by a constant value,
as it can be seen in Figure 1. This figure also shows
the increasing loop number when the measurements
are within a repeat loop and the protocol line each
measurement corresponds to.

Implementation and architecture
The main functions available in the preparenovonix
package5 are listed below in alphabetical order. The list
contains the module name followed by the function name
with the expected input parameters in brackets.

•	 n o v o n i x _ a d d . c r e a t e _ r e d u c e d _
protocol(infile,verbose=False): Given a
cleaned Novonix data file, infile, generate a reduced
protocol.

•	 n o v o n i x _ a d d . n o v o n i x _ a d d _
loopnr(infile,verbose=False): Given a
cleaned Novonix data file, infile, add a reduced pro-
tocol to the header and the columns Protocol line and
Loop number.

•	 n o v o n i x _ a d d . n o v o n i x _ a d d _
state(infile,verbose=False): Given a cleaned
Novonix data file, infile, add the State column.

Figure 1: Comparisson of the raw battery testing data (thin dashed lines) and the data after being processed by the
preparenovonix package (thick solid lines), as a function of the experimental run time. The top panel shows
the potential and capacity of the battery. The middle panel shows the step number, which indicates the type of
measurement being done. The bottom panel shows the loop number and protocol line, which are only available after
processing the raw data with the preparenovonix package.

Gonzalez-Perez et al: A Python Package to Preprocess the Data Produced by Novonix
High-Precision Battery-Testers

Art. 3, page 3 of 5

•	 novonix_clean.cleannovonix(infile):
Given a Novonix data file, infile, clean it as it is
described below.

•	 novonix_io.isnovonix(infile): Given a file,
infile, check if it is or not a Novonix data file.

•	 novonix_io.read_column(infile,column_
name,outtype=’float’): Given a column name,
column_name, read it from a cleaned Novonix data
file, infile, as a numpy array of the type given in
outtype.

•	 novonix_prep.prepare_novonix(infile,a
ddstate=False,lprotocol=False,overwr
ite=False,verbose=False): Master function
of the preparenovonix package that prepares a
Novonix data file by cleaning it and adding to it derived
information. This function follows the flow chart pre-
sented in Figure 2. Running all the available features
from the preparenovonix package through this
function can take form few seconds to up to few min-
utes depending on the size of the input file.

In what follows, the above functions will be referred by
simply their name, without stating the modules they
belong to.

As it is shown in Figure 2, the preparenovonix
package only cleans data files that are consider to be
exported from the Novonix battery-testers and it only
derives information for cleaned Novonix files. The master
function prepare_novonix allows the user to call
either the cleaning process or the addition of extra columns
ensuring that these dependencies are taken into account.
The input parameters for this function are the path to a
file and four boolean optional parameters: addstate,
lprotocol, overwrite and verbose. The
last parameter provides the option to output more
information about the run. If the overwrite parameter
is set to False, a new file will be generated with a name
similar to the input one, except for the addition of _prep
before the extension of the file.

The function isnovonix decides if a file has the
expected structure (including a full header) for an

Figure 2: Flow chart for the prepare_novonix function (within the novonix_prep module) which contains all
the functionality of the preparenovonix package presented here. Besides the name of the input file, this function
has four optional boolean input parameters: addstate, lprotocol, overwrite and verbose. The last two
parameters are not included in the flow chart, but they are described in the text. In this chart rectangle shapes
indicate processes, rounder rectangles end of processes and diamonds decisions. Note that for simplicity not all the
decisions made in the code are shown here.

Gonzalez-Perez et al: A Python Package to Preprocess the Data Produced by Novonix
High-Precision Battery-Testers

Art. 3, page 4 of 5

exported file produced by the Novonix battery-testers. If
the file is lacking the header or if it has not been exported
with a Novonix battery-tester using the covered software,6
the code will exit with an error message and without
generating a new file.

The function cleannovonix produces a new Novonix
type file after performing the following tasks:

•	 Delete failed tests within a single file, adding the final
capacity of all failed tests to the capacity column of
the finished test.

•	 Remove individual measurements for which the run
time goes backwards.

•	 Remove blank lines from the header.
•	 Remove any trailing characters from the header pro-

duced when the file has been previously open with
certain programs, such as Excel.

•	 Add a dummy header name (dum[number]) for
each data column lacking a header name.

A State column can be added to a cleaned Novonix file by
calling the function novonix_add_state or setting
to True the parameter addstate when calling the
function prepare_novonix. This State column can
have the following values:

0 for the first measurement of a given type (for ex-
ample, a constant current charge).
1 for measurements between the first and last of
a given type.
2 for the last measurement of a given type.
–1 for single measurements. This can happen un-
der different circumstances. A type of measure-
ment can end after a single measurement when
some experimental conditions are met, this usu-
ally happens while the time resolution is coarse. At
times, the current can overshoot from negative to
positive values at the beginning of a measurement.
A bug in the Novonix software that locks certain
values, etc. If two single measurements happen to-
gether, the two lines are discarded in the new file
containing the additional State column.

The State column is generated based on the following
quantities provided in the raw Novonix data files: Step
number (integer indicating the type of measurement) and
Step time (this time is assumed to reset to 0 each time a
new type of measurement starts).

The function create_reduced_protocol reads
the complete header from the input file and generates (or
reads) the reduced protocol. This function returns the reduce
protocol itself and a boolean flag, viable_prot. The
reduced protocol consist of an array of strings. Each string
contains a line number, a command from the experimental
protocol and the corresponding experimental conditions
(if aplicable); for example: [4 : Repeat 49 times
:]. Only commands referring to the following processes
will appear in the reduced protocol:7

•	 Open circuit storage (or rest)
•	 Constant current (dis)charge

•	 Constant current – Constant Voltage (dis)charge
•	 (End) Repeat

The reduced protocol is tested against the number of
unique measurements in the file, determined using the
column State. If the number of measurements expected
from the protocol is less than the actual number of
measurements, the flag viable_prot is set to False,
indicating that the construction of the reduced protocol
was not viable.

The Protocol line and Loop number columns can
be generated by either calling directly the function
novonix_add_loopnr or by setting to True the
parameter lprotocol when calling the function
prepare_novonix. The column Protocol line
associates a measurment with its corresponding line
in the reduced protocol. The Loop number column has a
value of 0 if a measurement does not correspond to any
repetition statement in the protocol and otherwise it
grows monotonically with each repetition (see Figure 1).

If the flag viable_prot was set to False by the
reduced_protocol function, the Protocol line and
Loop number columns are populated with the value –999.

Quality control
Each function in the preparenovonix package is tested
with internal checks and with pytest both locally and
through the Travis Continuous Integration service.8 The
tests have been performed in different platforms and using
different Python versions. The tests use an example data
file. This file is automatically retrieved when the dedicated
GitHub repository is either cloned or downloaded (see the
‘Software location’ section for the relevant urls).

Each function is documented with an example of usage.
The expected result when used on the example data is also
provided. Moreover, an example script, example.py, is
provided at the root directory of the dedicated GitHub
repository. This script also produces Figure 1.

The complete documentation for the
preparenovonix package can be found at: https://
prepare-novonix-data.readthedocs.io/.

(2) Availability
Operating system
Windows, OSX, Linux

Programming language
Python 3.5 and above.

Additional system requirements
The code presented here uses as input the data files
exported directly from the Novonix battery-testers. The
on-line documentation described in the ‘Quality control’
section, provides an updated list of the Novonix software
versions that the code presented here has been tested
against.

Dependencies
This software requires the numpy Python library.
Matplotlib is also required for using the plotting routine
compare.plot_vct.py. Further details on how to

https://prepare-novonix-data.readthedocs.io/
https://prepare-novonix-data.readthedocs.io/

Gonzalez-Perez et al: A Python Package to Preprocess the Data Produced by Novonix
High-Precision Battery-Testers

Art. 3, page 5 of 5

install these libraries or how to install the software using
‘pip’ can be found in the ‘Readthedocs’ documentation
mentioned in the ‘Quality control’ section.

List of contributors
The list of contributors comprises the author list and the
contributors reported in the dedicated GitHub repository
(see the url below).

Software location
Archive

Name: Zenodo
 Persistent identifier: http://doi.org/10.5281/zenodo.
3081471
Licence: MIT License
Publisher: Andrew Dawson
Version published: 0.0.1
Date published: 21/05/2019

Code repository
Name: GitHub
 Persistent identifier: https://github.com/BatLab
Lancaster/preparenovonix
Licence: MIT License
Date published: 16/05/19

Language
All documentation is provided in English. For a translation
into an other language, contact the corresponding author.

(3) Reuse potential
The software presented here can clean, enhance and
facilitate the use of data produced by Novonix battery-
testers. The potential for reusing this software is
large among users of these testers, both in academic
research and industry. Two aspects that are particularly
fundamental are the cleaning of raw files, as described
above, and the possibility to read a specific column for
a range of formats from different software versions from
Novonix. The software presented here can be modified
and enhanced by contributing to the dedicated GitHub
repository. Support can be provided by raising issues in
the same repository.

Notes
 1 http://www.novonix.ca/.
 2 https://pypi.org/project/preparenovonix/.

 3 https://github.com/BatLabLancaster/preparenovonix.
 4 Through out the text we will also refer to these as: ‘No-

vonix data files’.
 5 The full list of functions, including those auxiliary of

the ones presented here, can be found in https://pre-
pare-novonix-data.readthedocs.io/.

 6 See an up-to-date list in https://github.com/Bat-
LabLancaster/preparenovonix.

 7 Note that the commands corresponding to increment-
ing the cycle counter and global emergency limits are
ignored in the reduced protocol as there are no meas-
urements associated with those.

 8 https://travis-ci.org/BatLabLancaster/preparenovo-
nix.

 9 http://energysuperstore.org/esrn/multiscale-model-
ling/.

 10 https://faraday.ac.uk/.

Acknowledgements
The authors acknowledge all the formative workshops
provided by the Multi Scale Modelling collaboration9
within the Faraday Institution.10

Competing Interests
The authors have no competing interests to declare.

References
1. Burns, J C, Stevens, D E, Dahn, J R 2015 In-Situ

Detection of Lithium Plating Using High Precision
Coulometry. J. Electrochem. Soc., 162(6): A959–A964.
DOI: https://doi.org/10.1149/2.0621506jes

2. Csala, D, Hoster, H E 2017 Emissions: Step on the
natural gas for German cars. Nature, 541: 157. DOI:
https://doi.org/10.1038/541157b

3. Li, Y, Zou, C, Berecibar, M, Nanini-Maury, E, Chan,
J C W, van den Bossche, P, Van Mierlo, J, Omar, N
2018 Random forest regression for online capacity
estimation of lithium-ion batteries. Applied Energy,
232: 197–210. DOI: https://doi.org/10.1016/j.apenergy.
2018.09.182

4. Yang, Z 2011 Electrochemical Energy Storage for
Green Grid. Chemical reviews, 111(5): 3577–3613. DOI:
https://doi.org/10.1021/cr100290v

5. Wu, B 2015 Differential thermal voltammetry for
tracking of degradation in lithium-ion batteries.
Journal of power sources, 273: 495–501. DOI: https://
doi.org/10.1016/j.jpowsour.2014.09.127

How to cite this article: Gonzalez-Perez, V, Keil, P, Li, Y, Zülke, A, Burrel, R, Csala, D and Hoster, H 2020 A Python Package to
Preprocess the Data Produced by Novonix High-Precision Battery-Testers. Journal of Open Research Software, 8: 3. DOI: https://
doi.org/10.5334/jors.281

Submitted: 11 June 2019 Accepted: 07 February 2020 Published: 04 March 2020

Copyright: © 2020 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

OPEN ACCESSJournal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press.

http://doi.org/10.5281/zenodo.3081471
http://doi.org/10.5281/zenodo.3081471
https://github.com/BatLabLancaster/preparenovonix
https://github.com/BatLabLancaster/preparenovonix
http://www.novonix.ca/
https://pypi.org/project/preparenovonix/
https://github.com/BatLabLancaster/preparenovonix
https://prepare-novonix-data.readthedocs.io/
https://prepare-novonix-data.readthedocs.io/
https://github.com/BatLabLancaster/preparenovonix
https://github.com/BatLabLancaster/preparenovonix
https://travis-ci.org/BatLabLancaster/preparenovonix
https://travis-ci.org/BatLabLancaster/preparenovonix
http://energysuperstore.org/esrn/multiscale-modelling/
http://energysuperstore.org/esrn/multiscale-modelling/
https://faraday.ac.uk/
https://doi.org/10.1149/2.0621506jes
https://doi.org/10.1038/541157b
https://doi.org/10.1016/j.apenergy.2018.09.182
https://doi.org/10.1016/j.apenergy.2018.09.182
https://doi.org/10.1021/cr100290v
https://doi.org/10.1016/j.jpowsour.2014.09.127
https://doi.org/10.1016/j.jpowsour.2014.09.127
https://doi.org/10.5334/jors.281
https://doi.org/10.5334/jors.281
http://creativecommons.org/licenses/by/4.0/

	(1) Overview
	Introduction
	Implementation and architecture
	Quality control

	(2) Availability
	Operating system
	Programming language
	Additional system requirements
	Dependencies
	List of contributors
	Software location
	Archive
	Code repository

	Language

	(3) Reuse potential
	Notes
	Acknowledgements
	Competing Interests
	References
	Figure 1
	Figure 2

