
SOFTWARE METAPAPER

“StudySandboxx: A Tool
for Scraping, Sandboxing,
Preserving, and Preparing
Interactive Web Sites for
Use in Human-computer
Interaction and Behavioral
Studies”

GABI WETHOR

MATTHEW L. HALE

ABSTRACT
Human-computer interaction and computer-mediated behavioral psychology
research studies often rely on capturing user interaction data to characterize online
behaviors. IRB considerations, site policies, and/or security and privacy concerns may
force researchers to use screenshots or offline copies of pages of interest, instead of
live websites, in their study designs. These interaction modalities reduce the fidelity
and contextual realism of web content and often affect interface aesthetic quality –
due to broken links, missing images, and/or malfunctioning scripts. StudySandboxx
is a tool that allows websites to be saved exactly as they appear online. The tool
sandboxes websites in a way that removes dangerous scripts that threaten privacy and
security. Saved websites are encapsulated into a single portable file that contains all
related website resources. Finally, the tool also supports certain types of permutations
commonly used in research – such as changing links in a page. The project is housed
within a GitHub repository at https://github.com/gewethor/study-sandbox.

CORRESPONDING AUTHOR:
Matthew L. Hale

Assistant Professor, School of
Interdisciplinary Informatics,
College of Information Science
and Technology, University of
Nebraska at Omaha, US

mlhale@unomaha.edu

KEYWORDS:
Interactive content; human
computer interaction;
sandboxing; fidelity; behavioral
studies; interaction studies;
offline; web

TO CITE THIS ARTICLE:
Wethor G, Hale ML 2022
“StudySandboxx: A Tool
for Scraping, Sandboxing,
Preserving, and Preparing
Interactive Web Sites for
Use in Human-computer
Interaction and Behavioral
Studies”. Journal of Open
Research Software, 10: 6.
DOI: https://doi.org/10.5334/
jors.274

*Author affiliations can be found in the back matter of this article

https://github.com/gewethor/study-sandbox
mailto:mlhale@unomaha.edu
https://doi.org/10.5334/jors.274
https://doi.org/10.5334/jors.274
https://orcid.org/0000-0002-8433-2744

2Wethor and Hale Journal of Open Research DOI: 10.5334/jors.274

(1) OVERVIEW
INTRODUCTION
Websites are increasingly rich, make use of client-
side responsive rendering, and use sophisticated
JavaScript and Cascading Style Sheet (CSS) frameworks
to provide dynamic, interactive, and responsive online
user experiences. Human-computer interaction (HCI)
researchers and behavioral psychologists focusing on
human-computer issues often build experiments and
conduct studies that involve users interacting with website
content. Engagement drivers [19], design aesthetics [16],
cognitive overload [3], and workflow efficiency [20] are
but a few active subfields in HCI research that rely on
user-to-web interaction data. Due to IRB constraints, site
policies, security and privacy concerns, or other reasons,
studies are often forced to use offline forms of content to
study user interaction [5]. This can mean using web pages
that have been downloaded and converted for offline use
[7] or screenshotting live websites of interest and later
showing them as static images for subject assessment
[11, 17]. These methods diminish the fidelity, interactivity,
and often, the aesthetic quality of the content – which
can, in turn, limit the research study design.

User privacy, security, and safety concerns are
critically important in experimental design. In web-
based studies, leaking participant personal information
is a real possibility, since researchers often do not have
control of how a participant may interact with a site [1],
what data the site collects [2], or the potential network
of other sites and services which may have access to user
data on a live website [4]. For studies in the cybersecurity
research domain, lack of control of webpage content is a
large safety concern [7, 12], since content of interest may
include malicious links, unexpected popups, malware,
and other generally maligned web content.

StudySandboxx is a new content preparation tool that
allows websites to be saved exactly as they appear online
while ensuring privacy and security constraints are met in
research studies. The tool does more than just download
a webpage. It downloads every connected resource and
collapses the webpage and all of its related resources
into a single portable file. The file is then sandboxed
(a term that means “to isolate in a contained box”) to
free it of unwanted, potentially dangerous, malicious,
or privacy violating, scripts. StudySandboxx is built with
open source technologies and can save, sandbox, and
store any website online while preserving the dynamism,
interactability, and aesthetic quality of the original.

EXISTING WEBPAGE COLLECTION TECHNIQUES
Multiple works [6, 8, 13] highlight the importance of
contextual realism and true-to-form interfaces when
exploring research problems related to user engagement
and user experience (UX). Without this realism, results
may not be meaningful or applicable to the interface(s)
of interest [18]. Researchers conducting experiments

involving web-based content have the following options
available to them for capturing web pages of interest: use
the pages as they appear online as hosted by external
entities, capture screenshots of the pages, download the
pages using a browser, or develop look-alike copies of the
pages themselves. Each approach has various benefits
and drawbacks. Using real online websites has the most
contextual realism, but websites can change at any time,
making them difficult to use in studies. Privacy and security
concerns also complicate user studies involving IRBs.
Screenshots provide the least realism but are stable and free
of privacy and security concerns. Downloading pages using
a browser and running the sites offline ensure stability of
the content, but pages may not render correctly or may run
unwanted scripts. Developing look-alike pages deals with
privacy and security concerns but is prohibitively expensive
in all but trivial cases due to the time and resources required
to mimic the look and feel of the real sites.

Sandboxing is a concept that derives its name from
the playground. The concept implies a clean separation
between what is in the sandbox and what isn’t. When
applied to web pages, the term is often referred to
as “content sandboxing” to indicate that content is
rendered in a contained, protected space. Driven by HCI
and behavioral psychology, the research community has
created a few sandboxing tools. Among these, two are
commonly used in research studies. The first, HTTrack
[15], downloads an existing website for local use as well
as any third-party resources in the site. Built for windows
and Linux, HTTrack does not remove external resources
and scripts hosted by 3rd parties, e.g. tracking scripts, and
does not save webpage as a single file, which complicates
hosting the webpages in user studies. The second,
commonly used tool, named GrabzIt [10], offers a simple
API for creating thumbnails and website screenshots.
The tool offers multiple tiers of account plans ranging
from free to $54.99 a month. As a screenshot-based
approach, GrabzIt does not preserve the fidelity or
interactive features of content, reducing realism if used
in UX or user engagement research studies. Neither
HTTtrack or GrabzIt provide any content customization.

Other researchers, including [7, 9], have used simple
approaches tools such as “Save page as” or CURL (a
command-line tool for downloading online media) to
save pages and their sub resources to for offline usage.
The problem with these approaches is that they run the
same code the page has online – meaning scripts may
connect to third-party resources, log participant data,
or run unsafe malicious code that violates safety and
privacy requirements of the research space.

Our survey of existing literature and inability to identify
extant sandbox tooling that both preserved content fidelity
and protected user privacy and security is what ultimately
led to the creation of StudySandboxx. To exemplify this
motivation further, Figures 1–3 show a network capture
of facebook.com using the Chrome Developer Tools

http://facebook.com

3Wethor and Hale Journal of Open Research DOI: 10.5334/jors.274

Figure 1 Scripts loaded at run-time by other scripts running on facebook.com, as shown in Chrome Developer Tools.

Figure 2 Chrome Developer Tools inspecting the network behavior of “Save as Page” version of facebook.com. Here the site exhibits
similar run-time behavior as seen in Figure 1.

Figure 3 Network behavior of StudySandboxxed version of Facebook.com. Here the site loads only text, CSS, and image files.
Overall, the number of requests has been reduced to 15 and no scripts are running in the page. The red failed image resources are
advertisements from third parties.

http://facebook.com
http://facebook.com
http://facebook.com

4Wethor and Hale Journal of Open Research DOI: 10.5334/jors.274

network tab. Figure 1 shows a capture of the live online
site as hosted by Facebook. Figure 2 shows the network
traffic generated when the page is saved locally and
run from a browser. Finally, Figure 2 shows the network
traffic generated by the page after it has been saved and
sandboxed using StudySandboxx. Both the Facebook
origin site and the locally “Save page as” versions of the
site show that scripts are running in the background and
loading additional scripts dynamically at run time. These
may be collecting information about the user, in this case
a research participant, or associated research space. By
contrast, Figure 3 shows that no scripts or third-party
resources are loaded at render time or dynamically during
run time afterwards. In this way, StudySandboxx alleviates
risk to research participants of accidental data exfiltration.

IMPLEMENTATION AND ARCHITECTURE
In order to create a tool that meets the use cases
outlined above, the following technical requirements
were specified for StudySandboxx:

1.	 Encapsulate a webpage into a single file independent
of resources hosted by 3rd parties.

2.	 Minimize any and all changes to the downloaded
webpages so that they maintain the same visual
effect as the original.

3.	 Maintain interactive features while ensuring users
are not redirected anywhere outside the sandboxed
webpage.

4.	 Prevent information leakage to protect user and
researcher privacy.

5.	 Block external sources from loading potentially
malicious resources.

6.	 Provide ease of use for researchers with limited or no
knowledge of web development.

7.	 Open source

To address these requirements, we created
StudySandboxx as a command-line python-based tool.
The overall software architecture of StudySandboxx is
shown in Figure 4. The section that follows describes the
details and design rationale behind the architecture.

StudySandboxx supports several types of content
encapsulation (see Usage for command-line syntax).
The tool allows users to pass a series of arguments that
determine if a list of sites should be encapsulated or a
single site and if the site should have its links retargeted to
another domain (e.g. changing a link such as “facebook.
com/login” to “fb.com/login”). The first component in the
architecture shown in Figure 4 supports this invocation
logic. After the mode has been determined, web content
is rendered and related resources (e.g. html, CSS, js, and

Figure 4 StudySandboxx Software Architecture.

https://www.facebook.com/home.php
https://www.facebook.com/home.php
https://www.facebook.com/home.php

5Wethor and Hale Journal of Open Research DOI: 10.5334/jors.274

images, from third party sources) are gathered. A feature
that separates StudySandboxx from other webpage
saving/sandboxing methods is the use of a headless
browser (ChromeDriver and Selenium) to actively
render the content as it would normally be rendered
by a browser. This allows the tool to faithfully render
JavaScript heavy client-side web content. Other static-
only approaches would not be able to support these sites
since the content renders its interface at run-time in the
client. Due to the variability in the use of JavaScript within
websites, StudySandboxx renders content twice, once
using JavaScript and once using static-only resources.
Researchers are encouraged to use whichever resource
best matches the origin site. Later, in this work, a set of
automated tests are described to determine best match
using an automated visual analytic method.

Once both the static and JavaScript pages have
rendered, they are exported and saved locally before
being in-lined and encoded using HTMLArk [14]. Any
third-party resources such as images and gifs gathered
in earlier steps are base64 encoded into the html file so
that the researcher ends up with a single file. This also
allows the content to fully render without access to any
external resources or locally stored files.

After the in-lining and encoding process, the content
undergoes an encapsulation process. This process is
another feature that separates StudySandboxx from
simply using a HTML in-liner or another containerization
method such as HTTtrack or GrabzIt. Using BeautifulSoup4,
all interactive elements such as links, buttons, and inputs
are escaped so that they will “return false” when users
attempt to click on or add personal data into elements.
This prevents users from getting redirected to a real site,
if the content is presented in an internet-connected
machine. All script and iframe tags are removed from
the html or sandboxed to prevent run-time loading of
potentially malicious scripts into the website. Furthermore,
“icon” and “shortcut icon” link attributes are removed to
prevent .ico requests from the webpage. The whitespace
is also removed from the html file to minimize file size.

StudySandboxx also allows for the optional ability to
replace links within the content. While the links will not
redirect the user to a new site, hovering over the link
in most web browsers will inform the study participant
where the link would redirect them. This feature has
applications in many research areas such as cybersecurity
phishing studies and UI design where experimenters want
to tweak web domain as an experimental parameter
(e.g. determining how users respond when the see links
to certain trustworthy or untrustworthy sites).

The following is a summary of the events that are
performed in the data transformation process:

•	 Retrieves web content and associated resources
•	 Renders content statically and using JavaScript in a

headless browser

•	 Base64 encodes images, gifs, and other media
•	 In-lines media and other resources into HTML

using HTMLArk
•	 Escape all links, buttons, and input elements without

affecting interactivity
•	 Removes white space
•	 Removes and/or sandboxes <script> and <iframe>

tags
•	 Removes HTML attributes allowing .ico file requests
•	 Optional: replaces links with specified target addresses

Once the file encapsulation has finished, StudySandboxx
will output two files per website entered, one statically
rendered and the other rendered with JavaScript. The
researcher can then determine which of the two HTML
files will be most successful in their study. This project
provides a testing component (further discussion
below) which determines which html file is the closest,
visually, to the origin using image processing and pixel
comparison.

USAGE
The requirement for usability independent of web
development knowledge is fulfilled based on limited
installation requirements and the simple command-line
execution. To get started using StudySandboxx, simply
begin by cloning the GitHub repository at https://github.
com/MLHale/study-sandboxx. The repository has further
detailed instructions, starting with a list of required
dependencies. Command-line arguments accepted
by StudySandboxx allow for single website use, multi-
website use, and optional change of target link addresses.
Specific commands are shown below consistent with the
documentation on GitHub.

Single Website Use
To sandbox and encapsulate a single website:
python3 contain.py -u [web address of site]

Example
python3 contain.py -u https://www.facebook.com

containerizes the site as shown in Figure 5.

For containerization as well as transformation of content
links:
python3 contain.py -u [web address of site] -l
[link target address]

Example
python3 contain.py -u facebook.com -l http://www.

anothersite.com

Multiple Website Use
If multiple websites are being containerized, the input
must be passed via a csv file without the use of headers.
See Table 1 for an example CSV file format.

https://github.com/MLHale/study-sandboxx
https://github.com/MLHale/study-sandboxx
https://www.facebook.com
http://www.anothersite.com
http://www.anothersite.com

6Wethor and Hale Journal of Open Research DOI: 10.5334/jors.274

If the user does not wish the change the target
addresses of the content links, the third column should
be left blank.

Example
python3 contain.py -i [path-to-csv]

QUALITY CONTROL
To ensure that StudySandboxx meets its requirements,
the project includes an analytics and testing component
that compares the output of StudySandboxxed content
to its originating site along a number of metrics, described

below. The component also compares our sandboxing
approach against other commonly used containerization
techniques – including saving the website locally using
“Save As” with the format “Webpage, HTML Only”, and
the web capture tool GrabzIt. Figure 6, below, overviews
the flow of testing within the analytics and testing
component. The flow starts by launching the Selenium
web driver. Next, StudySandboxx, Grabzit, and Save
As containerization techniques are run. Next the web
driver framework is used to gather summary statistics
about the operation of the content in its browser-based
environment. Next, the content produced by each

Facebook https://www.facebook.com

GitHub https://github.com/ http://www.testingwebsite.com/

Dropbox https://www.dropbox.com/home

Table 1 Example CSV for Multiple Webpage Use.

Figure 5 Single Website Containerization Process.

Figure 6 Analytics and Testing Process.

https://www.facebook.com
https://github.com/
http://www.testingwebsite.com/
https://www.dropbox.com/home

7Wethor and Hale Journal of Open Research DOI: 10.5334/jors.274

technique is screenshotted and run through a pixel-
match comparison library to determine the % difference
between origin and technique. Finally, summary statistics
and the pixel-match comparison are summarized into
an output table and presented to the user as shown in
Figure 7 below.

In order to test and compare techniques, the
analytics and testing component examines several
metrics in its analysis. Three traits were identified from
the literature as important to user experimentation:
fidelity, security, and privacy. Fidelity, in this context, is
the faithfulness of the containerized content to its origin.
Perfect fidelity is achieved when there is no perceivable
difference between content in an experiment and
the origin content it originated from. Security, in this
context, is that user and experimentation resources are
not compromised or harmed by web content. Privacy
concerns relate to keeping user information private
by not having those details leak out to unauthorized
individuals or entities. In this context, privacy is very
important since the experiments may involve IRBs or
other protective requirements on user data. The metrics
listed below in Table 2 provide objective quantitative
touchpoints to examine if our software requirements
within the areas of Fidelity, Security, and Privacy are

met. They also allow for objective comparison to other
techniques.

Most of the metrics are self-explanatory. Two, of them
require some further discussion. The first, interactive
elements, is the sum of all html elements that have
interactive capabilities. Interactive capabilities are
those that allow for a user action, such as buttons,
links, mouseovers, etc. The second, pixel difference, is
the percentage difference between the origin and the
content generated by each respective containerization
technique. The percentage of pixel difference is
calculated by comparing a screenshot of the origin
website and a screenshot of the website created by one
of the compared techniques. This is done using an image
comparison library called pixelmatch. The library creates
a diff image of the two screenshots and pixel-by-pixel
compares the diff with the origin screenshot.

The total number of different pixels is divided by the
total amount of pixels within the screenshot (resolution
1920x1080) then multiplied by 100 to produce a percentage.
It should be noted that GrabzIt automatically returns
the value 0% for pixel percent difference in the output of
the script. This is due to down sampling pixel issues that
result from the difference in image size when running pixel
comparison between the origin and GrabzIt images.

METRIC DESCRIPTION

Fidelity

Pixel Difference Percentage The percent of pixel difference between a screenshot of the origin website and a
screenshot of website acquired using each of the content techniques.

Number of Interactive Elements The total amount of interactive elements (input and link elements) within each webpage.

Security

Number of Running Scripts The number of scripts running in the browser.

Number of non-image HTTP Requests for
Third-Party Sources

The number of non-image HTTP requests for third-party sources.

Privacy

Number of Cookies The number of cookies from the origin website.

Number of iframes The number of running iframes.

Table 2 Captured Fidelity, Security, and Privacy Metrics for Content Comparison.

Figure 7 Output from the Analytics and Testing Component.

8Wethor and Hale Journal of Open Research DOI: 10.5334/jors.274

(2) AVAILABILITY
OPERATING SYSTEM
Windows, MacOS, Linux

PROGRAMMING LANGUAGE
Python 3.7 (minimum Python 3.0)
JavaScript

ADDITIONAL SYSTEM REQUIREMENTS
Memory: 500MB RAM
Disk space: 1 GB
Processor: 32-bit or 64-bit

DEPENDENCIES
Containerization Script
Selenium 3.141.0
ChromeDriver (2.46)
HTMLArk 1.0.0
argparse 1.4.0
beautifulsoup4 4.7.1
urllib3 (Python 3.4+)
Pandas 0.23.4

Testing Script
sharp 0.21.3
sleep 6.0.0
pixelmatch 4.0.2
request 2.88.0
GrabzIt 3.3.0-1
CLI Table 0.3.1
Colors.js 1.3.3
python-shell 1.0.7

LIST OF CONTRIBUTORS
Gabi Wethor & Matt L. Hale

SOFTWARE LOCATION:
Archive
Name: StudySandboxx (Version 1.0).
Persistent identifier: http://doi.org/10.5281/zenodo.367​
4294
License: Creative Commons Attribution 4.0
International
Publisher: Matthew L. Hale
Version published: v1.0.0
Date published: 18/02/20

Code Repository
Name: StudySandboxx
Identifier: https://github.com/MLHale/study-sandboxx
License: MIT
Date published: 14/03/19

LANGUAGE
English

(3) REUSE POTENTIAL

From communication to news to retail to entertainment,
day-to-day needs are increasingly being met online.
Large shifts in individual behavior, such as increasing
e-commerce, social media usage, and use of curated
new sources pose new and varied research questions
for behavioral psychologists, and human-computer
interaction researchers studying the effects of computer-
mediation on social and psychological user behaviors.

In lab studies of behavior, there are limited methods
available which accurately emulate real-world web
ecosystems in user studies. While some studies allow
for participants to interact directly with live websites or
in active online communities, for many this is not an
option. IRB constraints, site policies, privacy concerns, and
other factors can force researchers to use offline content
when conducting user research. Furthermore, current
offline content acquisition approaches present flaws in
interactability, participant safety, and aesthetic quality.
This software presents researchers with the ability to
rapidly prepare webpage content for user-centric studies
while at the same time does not sacrifice content richness.

StudySandboxx is a living project with availability
for growth and expansion. Any developers interested
in contributing to StudySandboxx can do so by making
a pull request on our GitHub page, https://github.com/
MLHale/study-sandboxx. Furthermore, if any issues arise
while using this software, they may be reported within
the issues tab of our repository.

FUNDING STATEMENT

This work was supported in part by a Nebraska Research
Initiative (NRI) grant entitled “Identifying, assessing, and
mitigating wearable security issues in the internet of
things.” NRI is an investment by the State of Nebraska
to provide a research base to enhance economic growth
in business and industry, agriculture, social services and
health care. The views expressed in this paper are those
of the authors and do not necessarily reflect those of NRI
or the State of Nebraska.

COMPETING INTERESTS
The authors have no competing interests to declare.

AUTHOR AFFILIATIONS
Gabi Wethor
Associate Professor, College of Information Science and
Technology, University of Nebraska at Omaha, US

Matthew L. Hale orcid.org/0000-0002-8433-2744
Assistant Professor, School of Interdisciplinary Informatics,
College of Information Science and Technology, University of
Nebraska at Omaha, US

http://doi.org/10.5281/zenodo.3674294
http://doi.org/10.5281/zenodo.3674294
https://github.com/MLHale/study-sandboxx
https://github.com/MLHale/study-sandboxx
https://github.com/MLHale/study-sandboxx
https://orcid.org/0000-0002-8433-2744

9Wethor and Hale Journal of Open Research DOI: 10.5334/jors.274

REFERENCES

1.	 Ackerman MS, Mainwaring SD. Privacy issues and human-

computer interaction. Computer. 2005; 27(5): 19–26.

2.	 Adams A, Sasse MA. Privacy in multimedia communications:

Protecting users, not just data. In People and computers XV—

Interaction without frontiers, 2001; 49–64. 2001. London:

Springer. DOI: https://doi.org/10.1007/978-1-4471-0353-0_4

3.	 Alomyan H. Individual differences: Implications for

Web-based learning design. International Education

Journal. 2004; 4(4): 188–196.

4.	 Barkhuus L. The mismeasurement of privacy: using

contextual integrity to reconsider privacy in HCI.

In Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems, 2012, May; 367–376. DOI: https://

doi.org/10.1145/2207676.2207727

5.	 Beel J, Langer S. A comparison of offline evaluations,

online evaluations, and user studies in the context of

research-paper recommender systems. In International

conference on theory and practice of digital libraries, 2015,

September; 153–168. Cham: Springer. DOI: https://doi.

org/10.1007/978-3-319-24592-8_12

6.	 Carter AS, Hundhausen CD. How is user interface prototyping

really done in practice? a survey of user interface designers.

In 2010 IEEE Symposium on Visual Languages and Human-

Centric Computing, 2010, September; 207–211. IEEE. DOI:

https://doi.org/10.1109/VLHCC.2010.36

7.	 Darwish A, Bataineh E. Eye tracking analysis of browser

security indicators. In 2012 International Conference

on Computer Systems and Industrial Informatics, 2012,

December; 1–6. IEEE. DOI: https://doi.org/10.1109/

ICCSII.2012.6454330

8.	 Dede C. Immersive interfaces for engagement and

learning. Science. 2009; 323(5910): 66–69. DOI: https://doi.

org/10.1126/science.1167311

9.	 Dhamija R, Tygar JD, Hearst M. Why phishing works.

In Proceedings of the SIGCHI conference on Human Factors

in computing systems, 2006, April; 581–590. DOI: https://

doi.org/10.1145/1124772.1124861

10.	 GrabzIt. 2018. Available: https://grabz.it/.

11.	 Kim N, Koo B, Yoon J, Cho K. Understanding the formation

of user›s first impression on an interface design from

a Neurophysiological Perspective-EEG Pilot Study.

In Proceedings of HCI Korea, 2016; 139–145. DOI: https://

doi.org/10.17210/hcik.2016.01.139

12.	 Miyamoto D, Blanc G, Kadobayashi Y. November. Eye

can tell: On the correlation between eye movement and

phishing identification. In International Conference on Neural

Information Processing, 2009; 3847–3852. Cham: Springer.

DOI: https://doi.org/10.1007/978-3-319-26555-1_26

13.	 Petrie H, Harrison C. Measuring users› emotional reactions

to websites. In CHI’09 Extended Abstracts on Human

Factors in Computing Systems, 2009; 3847–3852. DOI:

https://doi.org/10.1145/1520340.1520582

14.	 Powell D. HTMLArk; 2015.

15.	 Roche X. HTTrack Website Copier; 2018.

16.	 Schenkman BN, Jönsson FU. Aesthetics and

preferences of web pages. Behaviour & Information

Technology. 2000; 19(5): 367–377. DOI: https://doi.

org/10.1080/014492900750000063

17.	 Stojmenovic M, Pilgrim C, Lindgaard G. Perceived and

objective usability and visual appeal in a website domain

with a less developed mental model. In Proceedings of the

26th Australian computer-human interaction conference

on design, 2014, December; 316–323. DOI: https://doi.

org/10.1145/2686612.2686660

18.	 Tashiro JS, Dunlap D. The impact of realism on learning

engagement in educational games. In Proceedings of the

2007 conference on Future Play, 2007, November; 113–120.

DOI: https://doi.org/10.1145/1328202.1328223

19.	 Webster J, Ahuja JS. Enhancing the design of web

navigation systems: The influence of user disorientation

on engagement and performance. Mis Quarterly. 2006;

661–678. DOI: https://doi.org/10.2307/25148744

20.	 Wiley K, Getto G. A UX workflow for building

awesome applications. Communication Design

Quarterly Review. 2015; 3(3): 49–52. DOI: https://doi.

org/10.1145/2792989.2792996

TO CITE THIS ARTICLE:
Wethor G, Hale ML 2022 “StudySandboxx: A Tool for Scraping, Sandboxing, Preserving, and Preparing Interactive Web Sites for Use in
Human-computer Interaction and Behavioral Studies”. Journal of Open Research Software, 10: 6. DOI: https://doi.org/10.5334/jors.274

Submitted: 26 March 2019 Accepted: 06 March 2020 Published: 12 July 2022

COPYRIGHT:
© 2022 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0
International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original
author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by Ubiquity Press.

https://doi.org/10.1007/978-1-4471-0353-0_4
https://doi.org/10.1145/2207676.2207727
https://doi.org/10.1145/2207676.2207727
https://doi.org/10.1007/978-3-319-24592-8_12
https://doi.org/10.1007/978-3-319-24592-8_12
https://doi.org/10.1109/VLHCC.2010.36
https://doi.org/10.1109/ICCSII.2012.6454330
https://doi.org/10.1109/ICCSII.2012.6454330
https://doi.org/10.1126/science.1167311
https://doi.org/10.1126/science.1167311
https://doi.org/10.1145/1124772.1124861
https://doi.org/10.1145/1124772.1124861
https://grabz.it/
https://doi.org/10.17210/hcik.2016.01.139
https://doi.org/10.17210/hcik.2016.01.139
https://doi.org/10.1007/978-3-319-26555-1_26
https://doi.org/10.1145/1520340.1520582
https://doi.org/10.1080/014492900750000063
https://doi.org/10.1080/014492900750000063
https://doi.org/10.1145/2686612.2686660
https://doi.org/10.1145/2686612.2686660
https://doi.org/10.1145/1328202.1328223
https://doi.org/10.2307/25148744
https://doi.org/10.1145/2792989.2792996
https://doi.org/10.1145/2792989.2792996
https://doi.org/10.5334/jors.274
http://creativecommons.org/licenses/by/4.0/

