
van den Berg, E 2019 The Ocean Tensor Package.
Journal of Open Research Software, 7: 26. DOI:
https://doi.org/10.5334/jors.268

Journal of
open research software

SOFTWARE METAPAPER

The Ocean Tensor Package
Ewout van den Berg
IBM T.J. Watson Research Center, Yorktown Heights, NY, US
evandenberg@us.ibm.com

The Ocean Tensor Package is an open-source package for matrix and tensor operations on CPU and GPU.
The package aims to serve as a foundational layer for applications that require dense tensor operations on
a variety of device types. All operations are available through a unified interface that is carefully designed
to be powerful, extensible, and at the same time easy to use. The package has a modular implementation
in C and provides a light-weight Python interface. Modularity of the package facilitates the addition of
new operations as well as new device types.

Keywords: Matrix operations; tensor operations; computational devices; CPU; GPU; data types; C; Python

(1) Overview
Introduction
Over the last decade or so, general-purpose GPUs have been
successfully used in fields such as medical imaging [13,
17], molecular dynamics simulations [8], radio astronomy
[2], data mining [3], graph processing [14], and many
others [9]. More recently, GPUs have found widespread
use in deep learning. Perhaps more so than in other fields,
there has been a proliferation of software packages for
deep learning, such as Caffe [7], Torch [6], and Tensorflow
[1]. One reason for this is the flexibility required in deep
learning to try out different network architectures and
data transformations to obtain the best possible model.
Given that the data, node parameters, and intermediate
results are conveniently expressed in the form of multi-
dimensional arrays, or tensors, these packages have
seen a gradual shift towards general-purpose compute
environments. Despite these advances there is still a
lot of room for improvement: existing packages tend
to be monolithic, require a large number of external
dependencies, and tend to lack in tensor layout flexibility,
supported data types, or extensions to new device types.
Most importantly, a stand-alone tensor-support package
designed to serve as the foundation for a wide range of
other applications is still missing. To fill this gap and
address some of the shortcomings of existing packages,
we propose the Ocean Tensor Package, a modular open-
source1 foundation library for dense tensor operations.

Functionality
The Ocean Tensor Package [16] provides a comprehensive
set of tensor operations for CPU and GPU. The functions
are available directly as a C library, or through an easy-to-
use Python interface. In this section we explore some of
the features of the package, illustrated with code excerpts
based on the Python interface.

Object types
The user interface to the Ocean Tensor Package exposes
several object types, illustrated in Figure 1. At the top of
the object hierarchy are Tensors and Scalars, each of which
has a given data type. Tensors are views on contiguous
chunks of memory, stored as Storage objects. Associated
with each Storage object is a Stream, which is used to
schedule asynchronous operations as well as to maintain
inter-stream dependencies. Stream objects themselves are
associated with a Device instance (such as CPU or GPU #0)
of a certain Device type (such as CPU or GPU).

Devices
Device objects enable the specification of the device to
be used when instantiating a Tensor or Storage object. In
addition, they provide generic information of the given
device, such as the support for byte-swapped data or a
list of all currently loaded modules. Depending on the
device type, addition information may be available. For
instance, on GPU devices it is possible to query numerous
properties, including the multiprocessor count, or the
currently available amount of free memory. Advanced
functions include the instantiation of a new stream,
and the specification of the number of intermediate
tensor buffers for the device and their maximum size.
Ocean maintains a list of available devices, including the
ocean.cpu device as well as the ocean.gpu list of GPU
devices, which can be indexed to obtain the desired device
instance.

Storage
Storage objects encapsulate a contiguous piece of
memory that is either allocated dynamically or provided
by an external source. The data type associated with the
storage has two main purposes: first as the default data
type when instantiating a tensor from the storage without

https://doi.org/10.5334/jors.268
mailto:evandenberg@us.ibm.com

van den Berg: The Ocean Tensor PackageArt. 26, page 2 of 8

providing a type; and second, for formatting the storage
elements for display. The data type of storage objects can
be changed freely without affecting the tensors that use
it. It is possible to superimpose tensors of different data
types on the same storage. One typical example where
this happens is when querying the imaginary part of a
complex double-precision tensor, which results in an
additional tensor view on the storage of type double.
There are no restrictions on the number of different tensor
types that can share the same storage. Tensor operations
use the storage stream for synchronization to avoid race
conditions and inconsistencies in the data. Storage data
can be marked as read only, which prevents any updates
to the data, either directly or through tensors operations
(marking storage as read-only is reflected in all derived
tensors).

Tensors
Ocean tensors are easy to instantiate on any of the
available devices. For example, creation of a 3 × 4 tensor
with single-precision floating-point format on device
gpu[0] is done simply by writing: tensor = ocean.
tensor([3,4], ocean.float, ocean.gpu[0]).
When the data type or device is omitted, user-specified
default values are used. In contrast to some of the existing
packages, there is no notion of a currently active device,
and no explicit device changes need to be done in order to
instantiate new tensors, or perform operations on them.
By default, tensors follow a column-major memory layout,
but general strides (given in bytes) are supported, thereby
allowing compatibility with most Numpy tensors. Two
differences with Numpy [11] are (1) the support of the
complex half-precision data type in Ocean, and additional
data types in Numpy (such as string and datetime), and
(2) the maximum number of tensors dimensions. The
maximum number of tensor dimensions in Ocean is
currently set to eight, but this restriction is easy relaxed or
removed; Numpy has a hard-coded maximum of 32 tensor
dimensions. Similar to Numpy, Ocean allows tensors on
the CPU to have either little and big endian byte order,
and tensor operations can be applied in either byte order.
The byte order can be easily changed, if needed, either
by byte-swapping the elements, or, in case of a mismatch
between the flag and the actual byte ordering, by simply
specifying the appropriate byte order.

Tensor operations
Tensor operations in Ocean are provided through
modules. The Core module forms the basis of Ocean, and
includes the definition of the basic object classes as well
as the device instances. As the most elementary operation,
the Core module supports tensor creation; from storage,

from data in the form of nested lists, sequences, and other
tensor types, or without initialization. Aside from tensor
creation, the Core module provides an extensive set of
elementary functions, including functions for shape and
axis manipulation, indexing, copy functions, type and
device casting, basic arithmetic operations, trigonometric
operations (supported on all real and complex floating-
point types), as well as tensor reductions along one or
more axes. (A complete list of functions can be found
on the Ocean Tensor Package repository [16].) Below we
highlight some of the functionalities.

Type casting
The type of a tensor can be seen as the combination of
the data type and the device associated with the tensor.
Tensors in Ocean have an associated type, and type
casting may therefore be necessary at times. Explicit type
casting can be using the ocean.cast function, which
returns a copy of the tensor with the desired type, and
the ocean.ensure function, which returns a type-
cast tensor only if the requested type differs from that
of the input. Type casting a tensor T with a data type
(ocean.float(T)) or device instance (ocean.gpu[1]
(T)) is equivalent to calling the ensure function with only
a data type or device update.

Implicit type casting is used in Ocean to ensure that the
input arguments to tensor operations have appropriate
types and byte order. Consider for instance the tensor
addition: C = A+B. To avoid implementing addition for
all possible type combinations we need to determine the
type of C based on those of A and B, and normalize the
data types and device accordingly. One way of resolving the
device type is to impose a device ordering and choose the
device with the highest priority. This requires specification
of the order and may result in unexpected results, certainly
when the device order could be changed from other parts
of the code. Another way is to always use the device from
the left-hand side of the operator, or the first parameter
in the argument list. In A+=B it is clear that B should be
coerced to the device of A, and we therefore do the same
for A+B. In case it is desirable to use the device of B (i.e.,
B.device), it possible in this case to write B+A, or to use
explicit casting: ocean.ensure(A,B.device) + B,
or simply B.device(A) + B.

For implicit casting of the data types we follow Numpy
and use the smallest available data type that can keep both
data types. For instance, addition of signed and unsigned
8-bit integers would give a 16-bit signed integer. Since no
standard data type is available for quadruple-precision
floats, an exception is made for 64-bit integers and
floating-point numbers, which result in double-precision
floats. Automatic type casting in Ocean is switched on by

Figure 1: Connection between the main object types in Ocean.

StorageTensor Stream

Data type Scalar

Device typeDevice

van den Berg: The Ocean Tensor Package Art. 26, page 3 of 8

default, but can be disabled by the user in case strict type
checks are needed. When switched off, an exception is
raised whenever a type mismatch is encountered.

Type casting based on the contents of the tensor is
desirable, for example, when taking the square root of
negative real numbers or the arccosine of scalars with
magnitude larger than one. Should such operations result
in a not-a-number (NaN) value, return a complex-valued
result, or generate an error? The approach taken in Ocean
is to add parameters to such operators that indicate the
compute mode. In the standard mode no checks on the
tensor elements are done and NaN values are generated
whenever needed. Checks are made in the warning and
error modes, giving respectively a warning or an error
when elements with values outside of the operator
domain are encountered. Finally, in the complex mode,
checks are made to determine whether the resulting data
type should be real or complex. If needed, explicit types
casting can always be used.

Indexing
Ocean supports a variety of indexing modes along one or
more dimensions that can be combined to index a tensor.
The basic single-dimension indexing modes are (1) scalars,
to index a single element along an axis; (2) ranges, to
index a regularly spaced set of elements; and (3) the colon
‘:’ operator to indicate the entire dimension. In addition
to the basic modes it is possible to use one or two-
dimensional index arrays to select particular elements, by
specifying the indices along a single dimension, or tuples
of indices along several dimensions. As is customary in
Python, negative indices can be used to indicate the index
relative to the end of the dimension. Finally, boolean
tensors can be used as masks for indexing, with the non-
zero elements indicating the elements to be selected.
Dimensions that are omitted in the indexing are implicitly
indexed with the colon operator, and the ellipsis object
‘…’ can appear once to indicate application of zero or
more colon operator in that location to complete the
index. When indexing a tensor using only basic indexing
modes (either explicitly or implicitly), a view of that tensor
is returned in the form of a new tensor that shares the
original storage. In all other cases a new tensor is created
by copying the indexed elements.

Special preprocessing is needed for index arrays and
boolean masks: for index arrays the indices need to be
checked for validity; whereas for boolean masks it is
necessary to count the number of selected elements, in
order to determine the size of the output tensor; and to
convert the selected indices into relative offsets into the
data buffer of tensor being indexed. When such indices
are used repeatedly, computational efforts are wasted
in applying the same preprocessing steps for each use.
To avoid this situation, Ocean introduces index objects,
which are constructed by indexing the ocean.index
object (ranges and colons are not allowed as parameters
in regular function calls). Once an index object is created
it can be bound to a tensor size to convert negative
indices, check the validity of indices, determine the
overlap of index ranges with the given dimensions, and

convert boolean masks to explicit indices. Index objects
can subsequently (or directly) be bound to tensor strides,
which converts all index arrays and boolean masks to
relative offsets within the tensor data. Both bound and
unbound index object can be used in exactly the same
way as the index modes used to construct it. As such,
index objects can be used to create yet other index
objects, if needed. When index objects are bound to size,
the relevant tensor dimensions must match, and likewise
for strides.

Interoperability
The Python interface of Ocean provides for plug-in
modules to define external object types for tensors
and scalars, and the conversion between these and the
corresponding Ocean types. All extended object types
provided by the plug-ins are compared against when
parsing the tensor operation parameters. This allows them
to be used in essentially the same way as Ocean tensors
and scalars. As an example, we can declare the Numpy
tensor and scalar types by importing pyOceanNumpy.
Once this is done, it is possible to write expressions
such as A + np.asarray([4,5,6]), where A is an
Ocean tensor. Conversion to Numpy can be done using
A.convertTo(‘numpy’), where the ‘numpy’ string
is registered by the plug-in. When supported by the
external tensor type, a shallow copy of the tensor is made,
unless otherwise requested by the user.

Deallocation
Automatic garbage collection in Python can delay the
deletion of tensor objects and cause devices to run out
of free memory despite careful management by the user.
In order to force tensor deletion, it is possible to call the
dealloc tensor function, which maintains the Python
tensor object, but replaces the content by an empty tensor.
This frees up any dynamically allocated tensor data, while
avoiding problems with accidental usage of the tensor
after deallocation.

Existing packages
We now compare some of the features in Ocean with
those in other packages. Since most of the packages are in
active development, we only discuss the features available
at the time of writing.

Numpy [11] is the de facto Python package for dense
tensor operations. Numpy was written for tensors on CPUs
and does not support tensors on any other device types.
The more recent CuPy [10] package implements tensors
for GPU devices with an interface that closely mirrors that
of Numpy, but is otherwise largely independent. Both
packages are written as a Python-C API and directly extend
Python classes, which limits their usage as stand-alone
packages. Moreover, each of these two package supports
only a single device type.

A package that supports multiple device types and
is written as a general library with separate language
bindings is ArrayFire [18]. The same applies to most deep-
learning packages. As mentioned in the introduction,
tensor operations form the foundation of deep-learning

van den Berg: The Ocean Tensor PackageArt. 26, page 4 of 8

packages, and we therefore consider some of the most
popular ones: Caffe [7], PyTorch [5, 12], TensorFlow [1],
and MXNet [4]. All of these packages support tensor
operations on multiple device types, and expose at
least part of the available tensor operations to the user.
Nevertheless, given the focus on deep learning, these
packages are not written or intended to serve as stand-
alone tensor support packages. In particular, many of
the packages define tensor classes with highly domain-
specific member functions and variables. For example, the
class may provide gradient information with each tensor,
or include references to a symbolic compute graph node
that contains the tensor.

In Table 1 we list several properties that we consider to
be important in a general-purpose tensor package, and are
therefore implemented in Ocean. One of these properties is
the support for automatic type casting, as discussed earlier.
This feature is supported in Numpy, CuPy, and ArrayFire,
but is missing from all the deep-learning packages under
consideration. From a developer’s point of view it is
convenient to have a unified tensor type or class. This is
supported by all packages except Caffe, which provides a
template class (several of the other packages use templated
classes behind the scenes, but provide a unified type in
the API). Support for a comprehensive set of data types is
clearly important for a tensor package.2 Coverage between
packages differs substantially, and we therefore focus on
support for complex data types, which required additional
functionality, such as conjugation and access to real and
imaginary parts of the tensor. Of the four deep-learning
packages considered, only TensorFlow supports complex
tensor types (based on single and double-precision floats).
These types are also supported by Numpy, CuPy, and
ArrayFire. Ocean is the only package that additionally
provides a complex data type based on half-precision floats.

The layout of tensors in memory is given by the strides,
or distance between successive elements along each of
the dimensions. Flexibility in the tensor strides enables
features such as broadcasting along dimensions, easy
manipulation of axes, and creation of views on regularly
indexed subtensors. In addition, it ensures compatibility
with a wide range of existing data types for tensors and
matrices. Most of the deep-learning packages, as well as
ArrayFire, adhere to a contiguous row-major data order,
with implicit strides that can be inferred based on the
tensor dimensions and the element size of the given data
type. PyTorch also uses this data order by default, but

allows users to override the standard layout by specifying
tensor strides as nonnegative multiples of the element
size. Numpy and CuPy support arbitrary strides. Each of
these packages, along with Ocean, implements sorting
of axes and merging of consecutive axes, when possible,
to increase memory locality and reduce the overhead of
iterating over dimensions, both of which help increase the
computational efficiency of tensor operations on strided
data. Packages that use a contiguous tensor layout can
flatten tensors to a single dimension for many operations,
such as unary and binary elementwise operations; other
operations may require optimizations similar to those
mentioned above. ArrayFire limits the number of tensor
dimensions to four and often uses explicit nested for-
loops with index computation at the innermost loop to
traverse the data.

Some of the difficulties that come with the provision
for arbitrary strides is that tensors may self overlap in
memory. Hence, overlap detection between pairs of
tensors becomes non-trivial. For consistent results in
computations, such as A[[1, 2]] = A[[2, 1]], good support
for overlap detection is essential. Ocean checks for self-
overlapping tensors and treats them as read-only for most
operations (the semantics of writing different values to
the same memory address is not well defined). Overlap
detection between pairs of tensors and allocation of
intermediate tensors to resolve overlaps is also included.
Similar checks are present in PyTorch and Numpy. Overlap
detection in TensorFlow is restricted to tensor views.

Aside from Ocean, none of the packages considered
in this section defines a clear separation between tensor
types and the low-level implementation of the tensor
operations. As a result, none of the tensor operations
other than those already provided by existing libraries,
such as BLAS and cuBLAS, are easily transferable for use
in other packages.

Illustrative example
We now illustrate some of the features of the Ocean
Tensor Package based on an example QR factorization (see
for instance [15]). This is of course only an example; QR
factorization should be an integral part of the package,
and direct support is planned in a future linear-algebra
module. A comprehensive list of functions provided by
the core module, as well as a large number of examples
can be found in the documentation of the Ocean Tensor
Package repository [16].

Table 1: Comparison between different packages providing tensor functionality.

Numpy CuPy Caffe PyTorch TensorFlow MXNet ArrayFire Ocean

Multiple device types

Automatic type casting

Unified tensor type

Complex data types

Flexible tensor strides

Tensor overlap detection

van den Berg: The Ocean Tensor Package Art. 26, page 5 of 8

The functions shown in Figure 2(a) and (b) implement
two variations of an in-place QR factorization A = QR.
The original matrix A is stored in the first parameter, Q,
and will be overwritten by the orthonormal part of the
factorization. The second parameter, R, is assumed to be
pre-allocated and will be used to store the upper-diagonal
part of the factorization. Normally the only input to the
function would be A, but here we allow the user to specify

Q and R with any data type and device. In line 2 of the
code we determine the number of columns in Q. The QR
factorization then proceeds by repeating the following
process on each of the columns i in Q. First we get the
current column q = Q[:,i] in line 4. Because the
indexing is regular this tensor will be a view of the original
Q. In line 5 we determine the two-norm of q by taking
the square root of the inner-product with itself. Note that,

Figure 2: In-place QR factorization functions with (a) individual column updates in Q, and (b) multi-column rank-one
matrix updates of Q; along with (c) the calling script, and (d) the output annotated with comments. Note that Ocean
supports vector inner and outer products of the form u.T*v and u*v.T.

1 def InplaceQR(Q,R) :

2 n = Q.size[1]

3 for i in range(n) :

4 q = Q[:,i]

5 r = ocean.sqrt(q.T * q)

6 q /= r

7 R[i,i] = r

8 for j in range(i+1,n) :

9 r = q.T * Q[:,j]

10 Q[:,j] -= q * r

11 R[i,j] = r

def InplaceQR(Q,R) :

n = Q.size[1]

for i in range(n) :

q = Q[:,i]

r = ocean.sqrt(q.T * q)

q /= r

R[i,i] = r

if (i+1 < n) :

r = Q[:,i+1:].T * q

Q[:,i+1:] -= q * r.T

R[i,i+1:] = r

(a) (b)

1 import ocean

2

3 # Create an example matrix A with one added to the diagonal

4 # entries to make if full rank.

5 A = ocean.arange(25, ocean.double).reshape(5,5)

6 d = A.diag(); d += 1;

7

8 # As an example, create a byte-swapped copy Q on the cpu and a

9 # single-precision result tensor R on gpu[0].

10 Q = A.clone(); Q.byteswap()

11 R = ocean.zeros(A.size, ocean.float, ocean.gpu[0])

12

13 # Call the in-place QR factorization code (see code above)

14 InplaceQR(Q,R)

15

16 # Display matrices, verify orthogonality, and check factorization

17 print(Q); print(R)

18 print(ocean.norm(Q.T * Q - ocean.eye(Q.size[0])))

19 print(ocean.norm(Q*R - A))

(c)

Matrix Q

(:,:)

0.17961 0.41037 0.58318 0.51237 0.44353

0.17961 0.77910 -0.59087 -0.07841 0.07392

0.35921 0.26763 0.51389 -0.66920 -0.29569

0.53882 -0.05947 -0.06544 0.50915 -0.66530

0.71842 -0.38658 -0.20594 -0.15575 0.51745

<tensor.double of size 5x5 on cpu (byteswapped)>

Matrix R

(:,:)

5.56776 15.44606 25.50395 35.56185 45.61975

0.00000 5.42396 9.96772 14.69584 19.42397

0.00000 0.00000 2.27881 2.87354 3.90708

0.00000 0.00000 0.00000 1.76914 1.69502

0.00000 0.00000 0.00000 0.00000 1.55236

<tensor.float of size 5x5 on gpu0>

Orthogonality and factorization using single-precision R

8.81018e-15

2.1845e-6

(d)

van den Berg: The Ocean Tensor PackageArt. 26, page 6 of 8

unlike many other packages, we define the transpose q.T
as a 1 × n matrix rather than the original one-dimensional
vector, to enable natural notation for inner and outer
products. In line 6 we normalize q, and therefore the
corresponding column in Q, and update the diagonal entry
in R. The for-loop in lines 8–11 in Figure 2(a) projects
out the q component in each of the remaining columns
of Q, proceeding one column at a time. The same lines in
Figure 2(b) achieve the same, operating on all remaining
columns at once using indexing and matrix operations
instead of vector operations. In the second case we take
the outer product of vectors q and r, written as qrT.

Figure 2(c) gives an example script calling either one
of the two factorization functions (algorithmically they
are equivalent). After importing the Ocean Tensor Package
in line 1 we create a square matrix A on line 5, by first
creating a vector of type double on the default device
(CPU) containing the numbers 0 through 24 of type
double, and then reshaping the vector to a 5 × 5 matrix.
The resulting matrix has rank 2 instead of 5, and in line 6
we therefore add the identity matrix by creating a view d
on the diagonal and adding 1 to each element. On lines
10–11 we prepare Q by creating a deep copy of matrix A
and byteswapping its data, and allocate a float matrix R on
device gpu[0] with the same dimensions as A. We choose
Q and R to have different data type, device, and byte order
to illustrate the seamless type casting provided by Ocean.
After calling the in-place QR factorization function in line
14, we print out the two matrices along with the Frobenius
norms ∥QTQ – I∥F and ∥QR – A∥F in lines 17–19. The output
of the script given in Figure 2(d) shows the elements and
type of matrices Q and R, and the values of the two norms.
The seemingly inaccurate factorization of A is due to the
use of single-precision floats in R.

Implementation and architecture
The Ocean Tensor Package is designed to serve as a
foundational layer for applications that require dense
tensor operations on one or more device types and
instances. Given the wide range of potential applications
and domains, it is important that the tensor operations
are grouped in coherent modules, rather than be provided
through a huge monolithic package. This way, functionality
can be installed by the user when needed, which helps
reduce the effective number of dependencies. Another
advantage is that interfaces and compatibility with
external libraries is localized to independent modules,
thus making the package easier to manage. Another
design principle used in Ocean, and discussed later in this
section, is the use of well-defined layers.

Modularity
Modules in Ocean consist of an interface along with
independent implementations for each of the supported
device types. The module interface takes care of device-
independent parameter checks including validity of the
tensors and compatibility of tensor dimensions. It then
determines the data type and device to use, and queries a
function look-up table for the module associated with the
device type. When available, the function is called after

performing all necessary type conversions, broadcasting
of dimensions, and allocation of result and intermediate
tensors (for instance when tensors overlap in memory).
In case the function is not available, or the module
implementation for the device type has not been loaded,
an error is raised. Functions at the device level typically
only need to check for support of tensors of the given data
type and either implement the tensor operation or, more
typically, call a lower-level library function that provides
the desired operation. If needed, functions can access the
module-specific context information associated with each
device instance.

Module interfaces and device implementations can be
loaded separately, except for the core module interface,
which includes the CPU implementation. The separation
between the interface and the implementation makes
it possible to replace the module implementation
with alternatives, such as a highly-tuned or specialized
proprietary version. The use of function tables also makes
it possible to replace individual functions for performance
comparisons or debugging, or to insert functions that
record runtime or accumulate call statistics. The separation
between module interfaces and device implementation
also make it easy to extend Ocean with new device types.
In particular, modules and functions within each module
can be added and tested one at a time, thus avoiding a
huge development effort to get started.

The Core module forms the basis of the Ocean Tensor
Package. It provides all elementary tensor operations
and instantiates and exposes available device instances.
Many of the standard functions, such as printing and
tensor copies between different device types require
tensor support on the CPU, and the Core module interface
is therefore combined with the CPU implementation
(pyOcean_cpu). The GPU implementation can be
loaded separately by importing pyOcean_gpu. For
convenience both packages are loaded by importing
ocean. Dependencies between modules are allowed, and
instantiation of one module can cause other modules to
be loaded. The instantiation order of modules is carefully
registered to ensure that modules are finalized only when
no other modules depend on them.

Layered implementation
In the implementation of the Ocean Tensor Package
care is taken to maintain a clean separation between
the different abstraction levels, as illustrated in Figure
3. The libraries at the bottom level provide low-level
tensor operations that are independent on the tensor
representation. This includes existing libraries such as
BLAS and cuBLAS, as well as the custom developed Solid
foundation library, which provides elementary tensor
functions for CPU and GPU. Libraries at this level are not
specific to Ocean and can be used independently by other
applications that require low-level tensor operations.
The Ocean tensor API defines a unified tensor type
along with a variety of tensor operations, organized as
modules. As described above, modules themselves can
be classified in two layers, namely interfaces and device
implementations. The Ocean API is implemented in C

van den Berg: The Ocean Tensor Package Art. 26, page 7 of 8

to maximize the accessibility from other languages. The
top level in Figure 3 shows possible language bindings
to Ocean (the current version only implements support
for Python). However, usage of the API is not restricted
to language bindings. For instance, applications that
use tensor operations, or libraries that support symbolic
tensor compute graphs, too could be build on top of the
Ocean tensor API.

Quality control
The package comes with an extensive collection of unit
tests in the python/examples directory. The verify
scripts in the cpu and gpu directories can be used to run
the unit tests and check whether the output matches the
reference.

(2) Availability
Operating system
The system has been tested on Red Had Enterprise Linux
version 7.4 running on Power8 and Intel Xeon, as well
as on MacOS High Sierra, version 10.13.4, running on a
MacBook Pro with Intel Core i7.

Programming language
The Ocean Tensor Package is written in C based on the
C99 standard, with GPU functionality implemented using
CUDA. The Python-C API is also written in C, along with
several Python scripts. The package has been tested with
Python 2.7.5 and 3.5.2.

Additional system requirements
When available, the Ocean Tensor Package supports
CUDA-enabled GPUs. The total total disk space required
after compilation is approximately 300Mb.

Dependencies
The CPU part of the code has optional dependencies
on BLAS or CBLAS. The user is encouraged to provide
these, otherwise compilation is done using a non-
optimized implementation provided with the package.
The implementation of multi-threaded tensor operations
is done using OpenMP, when available, otherwise all
operations are single-threaded. Compilation on Linux was
done using GCC 4.8.5; on MacOS compilation was tested
using Clang versions 7.0.0 through 9.1.0.

The GPU part of the code uses CUDA as well as the
cuBLAS library. The package has been tested with CUDA
versions 7.5, 8.0 (GA1, GA2), 9.0, 9.1, and 9.2. Compilation
on MacOS using NVCC requires the appropriate
combination of Clang and CUDA versions. A table of
compatible versions is provided in the INSTALL.txt file
provided with the package.

The Python interface of the package provides an optional
interface to Numpy, when available on the system.

List of contributors
Ewout van den Berg designed and implemented the
package, and currently maintains the GitHub repository.

Code repository
Name: GitHub
�Persistent� identifier: https://github.com/IBM/
ocean-tensor-package
Licence: Apache-2.0
Date published: 16/08/2018

Language
English

(3) Reuse potential
The Ocean Tensor Package provides support for tensor
operations on CPU and GPU. Given the common usage of
these operations in various fields, there is a large reuse
potential of the package. The package can be used directly
as the user level, or can serve as the foundation for other
packages. Tensor functionality is organized in modules
to enable addition of separate modules with operations
specific to other fields. Additional modules can be
provided as third-party extensions, or incorporated in the
package itself, depending on the level of specialization of
the functions. The package was designed to allow support
for devices other than CPU and GPU, although no such
extensions are currently planned. Please contact the
author if you are interested in extending the package, or if
you have questions or feedback regarding the installation
and usage of the package.

Notes
 1 Available at https://github.com/ibm/ocean-tensor-

package.

Figure 3: Layered design of the Ocean Tensor Package. The current version implements the core modules for CPU and
GPU, based on BLAS, cuBLAS, and the Solid foundation library, along with the Python language binding.

Solid base
BLAS

LAPACK

FFTW cuBLAS

cuFFT cuDNN

 Ocean core
CPU

Ocean core
GPU

Ocean DL
GPU

Ocean LA
CPU

JuliaPython C++Language bindings
 & applications

Ocean tensor API

Tensor independent
low-level functions

https://github.com/IBM/ocean-tensor-package
https://github.com/IBM/ocean-tensor-package
https://github.com/ibm/ocean-tensor-package
https://github.com/ibm/ocean-tensor-package

van den Berg: The Ocean Tensor PackageArt. 26, page 8 of 8

 2 Ocean supports booleans; 8, 16, 32, and 64-bit signed
and unsigned integers; as well as real and complex
half, single and double-precision floating-point data
types.

Competing Interests
The author has no competing interests to declare.

References
1. Abadi, M, Agarwal, A, Barham, P, Brevdo, E,

Chen, Z, Citro, C, Corrado, G S, Davis, A, Dean,
J, Devin, M, Ghemawat, S, Goodfellow, I, Harp,
A, Irving, G, Isard, M, Jia, Y, Jozefowicz, R,
Kaiser, L, Kudlur, M, Levenberg, J, Mané, D,
Monga, R, Moore, S, Murray, D, Olah, C, Schuster,
M, Shlens, J, Steiner, B, Sutskever, I, Talwar, K,
Tucker, P, Vanhoucke, V, Vasudevan, V, Viégas,
F, Vinyals, O, Warden, P, Wattenberg, M,
Wicke, M, Yu, Y and Zheng, X 2015
TensorFlow: Large-scale machine learning on
heterogeneous systems. Software available from
tensorflow.org.

2. Broekema, P C, Mol, J J D, Nijboer, R, van
Amesfoort, A S, Brentjens, M A, Loose, G M, Klijn,
W F A and Romein, J W 2018 A GPU-based correlator
and beamformer for LOFAR. arXiv: 1801.04834. DOI:
https://doi.org/10.1016/j.ascom.2018.04.006

3. Cano, A 2018 A survey on graphic processing unit
computating for large-scale data mining. WIREs Data
Mining Knowledge discovery, 8: e1232. DOI https://
doi.org/10.1002/widm.1232

4. Chen, T, Li, M, Li, Y, Lin, M, Wang, N, Wang, M,
Xiao, T, Xu, B, Zhang, C and Zhang, Z 2015 MXNet:
A flexible and efficient machine learning library
for heterogeneous distributed systems. In Neural
Information Processing Systems, Workshop on Machine
Learning Systems.

5. Collobert, R, Bengio, S and Marithoz, J 2002 Torch:
A modular machine learning software library.

6. Collobert, R, Kavukcuoglu, K and Farabet, C 2011
Torch7: A Matlab-like environment for machine
learning. In BigLearn, NIPS Workshop, number
EPFLCONF-192376.

7. Jia, Y, Shelhamer, E, Donahue, J, Karayev, S,
Long, J, Girshick, R, Guadarrama, S and Darrell,
T 2014 Caffe: Convolutional architecture for fast
feature embedding. In Proceedings of the 22nd ACM

International Conference on Multimedia, 675–678.
DOI: https://doi.org/10.1145/2647868.2654889

8. Kutzner, C, Páll, S, Fechner, M, Esztermann, A, de
Groot, B L and Grubmüller, H 2015 Best bang for
your buck: GPU nodes for GROMACS biomolecular
simulations. Journal of Computational Chemistry,
36(26): 1990–2008. DOI: https://doi.org/10.1002/
jcc.24030

9. NVIDIA. GPU-accelerated applications. https://www.
nvidia.com/en-us/data-center/gpu-accelerated-
applications/catalog/.

10. Okuta, R, Unno, Y, Nishino, D, Hido, S and Loomis,
C 2017 CuPy: A NumPycompatible library for NVIDIA
GPU calculations. In Proceedings of Workshop on
Machine Learning Systems (LearningSys) in The
Thirty-first Annual Conference on Neural Information
Processing Systems (NIPS).

11. Oliphant, T E 2006 A guide to Numpy. Trelgol
Publishing.

12. Paszke, A, Gross, S, Chintala, S, Chanan, G, Yang, E,
DeVito, Z, Lin, Z, Desmaison, A, Antiga, L and Lerer,
A 2017 Automatic differentiation in PyTorch. In NIPS
2017 Autodiff Workshop.

13. Shi, L, Liu, W, Zhang, H, Xie, Y and Wang, D 2012
A survey of GPU-based medical image computing
techniques. Quantitative Imaging in Medicine and
Surgery, 2(3): 188–206.

14. Shi, X, Zheng, Z, Zhou, Y, Jin, H, He, L, Liu, B and
Hua, Q-S 2018 Graph processing on GPUs: A survey.
ACM Computing Surveys, 50(6): 81: 1–35. DOI: https://
doi.org/10.1145/3128571

15. Trefethen, L N and Bau, D, III 1997 Numerical
Linear Algebra. SIAM. DOI: https://doi.
org/10.1137/1.9780898719574

16. van den Berg, E 2018 The Ocean Tensor Package.
Available at https://github.com/ibm/ocean-tensor-
package.

17. Wang, H, Peng, H, Chang, Y and Liang, D 2018 A
survey of GPU-based acceleration techniques in mri
reconstructions. Quantitative Imaging in Medicine
and Surgery, 8(2): 196–208. DOI: https://doi.
org/10.21037/qims.2018.03.07

18. Yalamanchili, P, Arshad, U, Mohammed, Z,
Garigipati, P, Entschev, P, Kloppenborg, B, James, J
and Melonakos, J 2015 ArrayFire – a high performance
software library for parallel computing with an easy-
to-use API. https://github.com/arrayfire/arrayfire.

How to cite this article: van den Berg, E 2019 The Ocean Tensor Package. Journal of Open Research Software, 7: 26. DOI:
https://doi.org/10.5334/jors.268

Submitted: 12 March 2019 Accepted: 18 July 2019 Published: 01 August 2019

Copyright: © 2019 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

OPEN ACCESSJournal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press

http://tensorflow.org
https://doi.org/10.1016/j.ascom.2018.04.006
https://doi.org/10.1002/widm.1232
https://doi.org/10.1002/widm.1232
https://doi.org/10.1145/2647868.2654889
https://doi.org/10.1002/jcc.24030
https://doi.org/10.1002/jcc.24030
https://www.nvidia.com/en-us/data-center/gpu-accelerated-applications/catalog/
https://www.nvidia.com/en-us/data-center/gpu-accelerated-applications/catalog/
https://www.nvidia.com/en-us/data-center/gpu-accelerated-applications/catalog/
https://doi.org/10.1145/3128571
https://doi.org/10.1145/3128571
https://doi.org/10.1137/1.9780898719574
https://doi.org/10.1137/1.9780898719574
https://github.com/ibm/ocean-tensor-package
https://github.com/ibm/ocean-tensor-package
https://doi.org/10.21037/qims.2018.03.07
https://doi.org/10.21037/qims.2018.03.07
https://github.com/arrayfire/arrayfire
https://doi.org/10.5334/jors.268
http://creativecommons.org/licenses/by/4.0/

	(1) Overview
	Introduction
	Functionality
	Object types
	Devices
	Storage
	Tensors

	Tensor operations
	Type casting
	Indexing
	Interoperability
	Deallocation

	Existing packages
	Illustrative example
	Implementation and architecture
	Modularity
	Layered implementation
	Quality control

	(2) Availability
	Operating system
	Programming language
	Additional system requirements
	Dependencies
	List of contributors
	Code repository
	Language

	(3) Reuse potential
	Notes
	Competing Interests
	References
	Figure 1
	Figure 2
	Figure 3
	Table 1

