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The Ocean Tensor Package is an open-source package for matrix and tensor operations on CPU and GPU. 
The package aims to serve as a foundational layer for applications that require dense tensor operations on 
a variety of device types. All operations are available through a unified interface that is carefully designed 
to be powerful, extensible, and at the same time easy to use. The package has a modular implementation 
in C and provides a light-weight Python interface. Modularity of the package facilitates the addition of 
new operations as well as new device types.
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(1) Overview
Introduction
Over the last decade or so, general-purpose GPUs have been 
successfully used in fields such as medical imaging [13, 
17], molecular dynamics simulations [8], radio astronomy 
[2], data mining [3], graph processing [14], and many 
others [9]. More recently, GPUs have found widespread 
use in deep learning. Perhaps more so than in other fields, 
there has been a proliferation of software packages for 
deep learning, such as Caffe [7], Torch [6], and Tensorflow 
[1]. One reason for this is the flexibility required in deep 
learning to try out different network architectures and 
data transformations to obtain the best possible model. 
Given that the data, node parameters, and intermediate 
results are conveniently expressed in the form of multi-
dimensional arrays, or tensors, these packages have 
seen a gradual shift towards general-purpose compute 
environments. Despite these advances there is still a 
lot of room for improvement: existing packages tend 
to be monolithic, require a large number of external 
dependencies, and tend to lack in tensor layout flexibility, 
supported data types, or extensions to new device types. 
Most importantly, a stand-alone tensor-support package 
designed to serve as the foundation for a wide range of 
other applications is still missing. To fill this gap and 
address some of the shortcomings of existing packages, 
we propose the Ocean Tensor Package, a modular open-
source1 foundation library for dense tensor operations.

Functionality
The Ocean Tensor Package [16] provides a comprehensive 
set of tensor operations for CPU and GPU. The functions 
are available directly as a C library, or through an easy-to-
use Python interface. In this section we explore some of 
the features of the package, illustrated with code excerpts 
based on the Python interface.

Object types
The user interface to the Ocean Tensor Package exposes 
several object types, illustrated in Figure 1. At the top of 
the object hierarchy are Tensors and Scalars, each of which 
has a given data type. Tensors are views on contiguous 
chunks of memory, stored as Storage objects. Associated 
with each Storage object is a Stream, which is used to 
schedule asynchronous operations as well as to maintain 
inter-stream dependencies. Stream objects themselves are 
associated with a Device instance (such as CPU or GPU #0) 
of a certain Device type (such as CPU or GPU).

Devices
Device objects enable the specification of the device to 
be used when instantiating a Tensor or Storage object. In 
addition, they provide generic information of the given 
device, such as the support for byte-swapped data or a 
list of all currently loaded modules. Depending on the 
device type, addition information may be available. For 
instance, on GPU devices it is possible to query numerous 
properties, including the multiprocessor count, or the 
currently available amount of free memory. Advanced 
functions include the instantiation of a new stream, 
and the specification of the number of intermediate 
tensor buffers for the device and their maximum size. 
Ocean maintains a list of available devices, including the 
ocean.cpu device as well as the ocean.gpu list of GPU 
devices, which can be indexed to obtain the desired device 
instance.

Storage
Storage objects encapsulate a contiguous piece of 
memory that is either allocated dynamically or provided 
by an external source. The data type associated with the 
storage has two main purposes: first as the default data 
type when instantiating a tensor from the storage without 

https://doi.org/10.5334/jors.268
mailto:evandenberg@us.ibm.com


van den Berg: The Ocean Tensor PackageArt. 26, page 2 of 8 

providing a type; and second, for formatting the storage 
elements for display. The data type of storage objects can 
be changed freely without affecting the tensors that use 
it. It is possible to superimpose tensors of different data 
types on the same storage. One typical example where 
this happens is when querying the imaginary part of a 
complex double-precision tensor, which results in an 
additional tensor view on the storage of type double. 
There are no restrictions on the number of different tensor 
types that can share the same storage. Tensor operations 
use the storage stream for synchronization to avoid race 
conditions and inconsistencies in the data. Storage data 
can be marked as read only, which prevents any updates 
to the data, either directly or through tensors operations 
(marking storage as read-only is reflected in all derived 
tensors).

Tensors
Ocean tensors are easy to instantiate on any of the 
available devices. For example, creation of a 3 × 4 tensor 
with single-precision floating-point format on device 
gpu[0] is done simply by writing: tensor = ocean.
tensor([3,4], ocean.float, ocean.gpu[0]). 
When the data type or device is omitted, user-specified 
default values are used. In contrast to some of the existing 
packages, there is no notion of a currently active device, 
and no explicit device changes need to be done in order to 
instantiate new tensors, or perform operations on them. 
By default, tensors follow a column-major memory layout, 
but general strides (given in bytes) are supported, thereby 
allowing compatibility with most Numpy tensors. Two 
differences with Numpy [11] are (1) the support of the 
complex half-precision data type in Ocean, and additional 
data types in Numpy (such as string and datetime), and 
(2) the maximum number of tensors dimensions. The 
maximum number of tensor dimensions in Ocean is 
currently set to eight, but this restriction is easy relaxed or 
removed; Numpy has a hard-coded maximum of 32 tensor 
dimensions. Similar to Numpy, Ocean allows tensors on 
the CPU to have either little and big endian byte order, 
and tensor operations can be applied in either byte order. 
The byte order can be easily changed, if needed, either 
by byte-swapping the elements, or, in case of a mismatch 
between the flag and the actual byte ordering, by simply 
specifying the appropriate byte order.

Tensor operations
Tensor operations in Ocean are provided through 
modules. The Core module forms the basis of Ocean, and 
includes the definition of the basic object classes as well 
as the device instances. As the most elementary operation, 
the Core module supports tensor creation; from storage, 

from data in the form of nested lists, sequences, and other 
tensor types, or without initialization. Aside from tensor 
creation, the Core module provides an extensive set of 
elementary functions, including functions for shape and 
axis manipulation, indexing, copy functions, type and 
device casting, basic arithmetic operations, trigonometric 
operations (supported on all real and complex floating-
point types), as well as tensor reductions along one or 
more axes. (A complete list of functions can be found 
on the Ocean Tensor Package repository [16].) Below we 
highlight some of the functionalities.

Type casting
The type of a tensor can be seen as the combination of 
the data type and the device associated with the tensor. 
Tensors in Ocean have an associated type, and type 
casting may therefore be necessary at times. Explicit type 
casting can be using the ocean.cast function, which 
returns a copy of the tensor with the desired type, and 
the ocean.ensure function, which returns a type-
cast tensor only if the requested type differs from that 
of the input. Type casting a tensor T with a data type 
(ocean.float(T)) or device instance (ocean.gpu[1]
(T)) is equivalent to calling the ensure function with only 
a data type or device update.

Implicit type casting is used in Ocean to ensure that the 
input arguments to tensor operations have appropriate 
types and byte order. Consider for instance the tensor 
addition: C = A+B. To avoid implementing addition for 
all possible type combinations we need to determine the 
type of C based on those of A and B, and normalize the 
data types and device accordingly. One way of resolving the 
device type is to impose a device ordering and choose the 
device with the highest priority. This requires specification 
of the order and may result in unexpected results, certainly 
when the device order could be changed from other parts 
of the code. Another way is to always use the device from 
the left-hand side of the operator, or the first parameter 
in the argument list. In A+=B it is clear that B should be 
coerced to the device of A, and we therefore do the same 
for A+B. In case it is desirable to use the device of B (i.e., 
B.device), it possible in this case to write B+A, or to use 
explicit casting: ocean.ensure(A,B.device) + B, 
or simply B.device(A) + B.

For implicit casting of the data types we follow Numpy 
and use the smallest available data type that can keep both 
data types. For instance, addition of signed and unsigned 
8-bit integers would give a 16-bit signed integer. Since no 
standard data type is available for quadruple-precision 
floats, an exception is made for 64-bit integers and 
floating-point numbers, which result in double-precision 
floats. Automatic type casting in Ocean is switched on by 

Figure 1: Connection between the main object types in Ocean.
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default, but can be disabled by the user in case strict type 
checks are needed. When switched off, an exception is 
raised whenever a type mismatch is encountered.

Type casting based on the contents of the tensor is 
desirable, for example, when taking the square root of 
negative real numbers or the arccosine of scalars with 
magnitude larger than one. Should such operations result 
in a not-a-number (NaN) value, return a complex-valued 
result, or generate an error? The approach taken in Ocean 
is to add parameters to such operators that indicate the 
compute mode. In the standard mode no checks on the 
tensor elements are done and NaN values are generated 
whenever needed. Checks are made in the warning and 
error modes, giving respectively a warning or an error 
when elements with values outside of the operator 
domain are encountered. Finally, in the complex mode, 
checks are made to determine whether the resulting data 
type should be real or complex. If needed, explicit types 
casting can always be used.

Indexing
Ocean supports a variety of indexing modes along one or 
more dimensions that can be combined to index a tensor. 
The basic single-dimension indexing modes are (1) scalars, 
to index a single element along an axis; (2) ranges, to 
index a regularly spaced set of elements; and (3) the colon 
‘:’ operator to indicate the entire dimension. In addition 
to the basic modes it is possible to use one or two-
dimensional index arrays to select particular elements, by 
specifying the indices along a single dimension, or tuples 
of indices along several dimensions. As is customary in 
Python, negative indices can be used to indicate the index 
relative to the end of the dimension. Finally, boolean 
tensors can be used as masks for indexing, with the non-
zero elements indicating the elements to be selected. 
Dimensions that are omitted in the indexing are implicitly 
indexed with the colon operator, and the ellipsis object 
‘…’ can appear once to indicate application of zero or 
more colon operator in that location to complete the 
index. When indexing a tensor using only basic indexing 
modes (either explicitly or implicitly), a view of that tensor 
is returned in the form of a new tensor that shares the 
original storage. In all other cases a new tensor is created 
by copying the indexed elements.

Special preprocessing is needed for index arrays and 
boolean masks: for index arrays the indices need to be 
checked for validity; whereas for boolean masks it is 
necessary to count the number of selected elements, in 
order to determine the size of the output tensor; and to 
convert the selected indices into relative offsets into the 
data buffer of tensor being indexed. When such indices 
are used repeatedly, computational efforts are wasted 
in applying the same preprocessing steps for each use. 
To avoid this situation, Ocean introduces index objects, 
which are constructed by indexing the ocean.index 
object (ranges and colons are not allowed as parameters 
in regular function calls). Once an index object is created 
it can be bound to a tensor size to convert negative 
indices, check the validity of indices, determine the 
overlap of index ranges with the given dimensions, and 

convert boolean masks to explicit indices. Index objects 
can subsequently (or directly) be bound to tensor strides, 
which converts all index arrays and boolean masks to 
relative offsets within the tensor data. Both bound and 
unbound index object can be used in exactly the same 
way as the index modes used to construct it. As such, 
index objects can be used to create yet other index 
objects, if needed. When index objects are bound to size, 
the relevant tensor dimensions must match, and likewise 
for strides.

Interoperability
The Python interface of Ocean provides for plug-in 
modules to define external object types for tensors 
and scalars, and the conversion between these and the 
corresponding Ocean types. All extended object types 
provided by the plug-ins are compared against when 
parsing the tensor operation parameters. This allows them 
to be used in essentially the same way as Ocean tensors 
and scalars. As an example, we can declare the Numpy 
tensor and scalar types by importing pyOceanNumpy. 
Once this is done, it is possible to write expressions 
such as A + np.asarray([4,5,6]), where A is an 
Ocean tensor. Conversion to Numpy can be done using 
A.convertTo(‘numpy’), where the ‘numpy’ string 
is registered by the plug-in. When supported by the 
external tensor type, a shallow copy of the tensor is made, 
unless otherwise requested by the user.

Deallocation
Automatic garbage collection in Python can delay the 
deletion of tensor objects and cause devices to run out 
of free memory despite careful management by the user. 
In order to force tensor deletion, it is possible to call the 
dealloc tensor function, which maintains the Python 
tensor object, but replaces the content by an empty tensor. 
This frees up any dynamically allocated tensor data, while 
avoiding problems with accidental usage of the tensor 
after deallocation.

Existing packages
We now compare some of the features in Ocean with 
those in other packages. Since most of the packages are in 
active development, we only discuss the features available 
at the time of writing.

Numpy [11] is the de facto Python package for dense 
tensor operations. Numpy was written for tensors on CPUs 
and does not support tensors on any other device types. 
The more recent CuPy [10] package implements tensors 
for GPU devices with an interface that closely mirrors that 
of Numpy, but is otherwise largely independent. Both 
packages are written as a Python-C API and directly extend 
Python classes, which limits their usage as stand-alone 
packages. Moreover, each of these two package supports 
only a single device type.

A package that supports multiple device types and 
is written as a general library with separate language 
bindings is ArrayFire [18]. The same applies to most deep-
learning packages. As mentioned in the introduction, 
tensor operations form the foundation of deep-learning 
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packages, and we therefore consider some of the most 
popular ones: Caffe [7], PyTorch [5, 12], TensorFlow [1], 
and MXNet [4]. All of these packages support tensor 
operations on multiple device types, and expose at 
least part of the available tensor operations to the user. 
Nevertheless, given the focus on deep learning, these 
packages are not written or intended to serve as stand-
alone tensor support packages. In particular, many of 
the packages define tensor classes with highly domain-
specific member functions and variables. For example, the 
class may provide gradient information with each tensor, 
or include references to a symbolic compute graph node 
that contains the tensor.

In Table 1 we list several properties that we consider to 
be important in a general-purpose tensor package, and are 
therefore implemented in Ocean. One of these properties is 
the support for automatic type casting, as discussed earlier. 
This feature is supported in Numpy, CuPy, and ArrayFire, 
but is missing from all the deep-learning packages under 
consideration. From a developer’s point of view it is 
convenient to have a unified tensor type or class. This is 
supported by all packages except Caffe, which provides a 
template class (several of the other packages use templated 
classes behind the scenes, but provide a unified type in 
the API). Support for a comprehensive set of data types is 
clearly important for a tensor package.2 Coverage between 
packages differs substantially, and we therefore focus on 
support for complex data types, which required additional 
functionality, such as conjugation and access to real and 
imaginary parts of the tensor. Of the four deep-learning 
packages considered, only TensorFlow supports complex 
tensor types (based on single and double-precision floats). 
These types are also supported by Numpy, CuPy, and 
ArrayFire. Ocean is the only package that additionally 
provides a complex data type based on half-precision floats.

The layout of tensors in memory is given by the strides, 
or distance between successive elements along each of 
the dimensions. Flexibility in the tensor strides enables 
features such as broadcasting along dimensions, easy 
manipulation of axes, and creation of views on regularly 
indexed subtensors. In addition, it ensures compatibility 
with a wide range of existing data types for tensors and 
matrices. Most of the deep-learning packages, as well as 
ArrayFire, adhere to a contiguous row-major data order, 
with implicit strides that can be inferred based on the 
tensor dimensions and the element size of the given data 
type. PyTorch also uses this data order by default, but 

allows users to override the standard layout by specifying 
tensor strides as nonnegative multiples of the element 
size. Numpy and CuPy support arbitrary strides. Each of 
these packages, along with Ocean, implements sorting 
of axes and merging of consecutive axes, when possible, 
to increase memory locality and reduce the overhead of 
iterating over dimensions, both of which help increase the 
computational efficiency of tensor operations on strided 
data. Packages that use a contiguous tensor layout can 
flatten tensors to a single dimension for many operations, 
such as unary and binary elementwise operations; other 
operations may require optimizations similar to those 
mentioned above. ArrayFire limits the number of tensor 
dimensions to four and often uses explicit nested for-
loops with index computation at the innermost loop to 
traverse the data.

Some of the difficulties that come with the provision 
for arbitrary strides is that tensors may self overlap in 
memory. Hence, overlap detection between pairs of 
tensors becomes non-trivial. For consistent results in 
computations, such as A[[1, 2]] = A[[2, 1]], good support 
for overlap detection is essential. Ocean checks for self-
overlapping tensors and treats them as read-only for most 
operations (the semantics of writing different values to 
the same memory address is not well defined). Overlap 
detection between pairs of tensors and allocation of 
intermediate tensors to resolve overlaps is also included. 
Similar checks are present in PyTorch and Numpy. Overlap 
detection in TensorFlow is restricted to tensor views.

Aside from Ocean, none of the packages considered 
in this section defines a clear separation between tensor 
types and the low-level implementation of the tensor 
operations. As a result, none of the tensor operations 
other than those already provided by existing libraries, 
such as BLAS and cuBLAS, are easily transferable for use 
in other packages.

Illustrative example
We now illustrate some of the features of the Ocean 
Tensor Package based on an example QR factorization (see 
for instance [15]). This is of course only an example; QR 
factorization should be an integral part of the package, 
and direct support is planned in a future linear-algebra 
module. A comprehensive list of functions provided by 
the core module, as well as a large number of examples 
can be found in the documentation of the Ocean Tensor 
Package repository [16].

Table 1: Comparison between different packages providing tensor functionality.

Numpy CuPy Caffe PyTorch TensorFlow MXNet ArrayFire Ocean

Multiple device types        

Automatic type casting        

Unified tensor type        

Complex data types        

Flexible tensor strides        

Tensor overlap detection        
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The functions shown in Figure 2(a) and (b) implement 
two variations of an in-place QR factorization A = QR. 
The original matrix A is stored in the first parameter, Q, 
and will be overwritten by the orthonormal part of the 
factorization. The second parameter, R, is assumed to be 
pre-allocated and will be used to store the upper-diagonal 
part of the factorization. Normally the only input to the 
function would be A, but here we allow the user to specify 

Q and R with any data type and device. In line 2 of the 
code we determine the number of columns in Q. The QR 
factorization then proceeds by repeating the following 
process on each of the columns i in Q. First we get the 
current column q = Q[:,i] in line 4. Because the 
indexing is regular this tensor will be a view of the original 
Q. In line 5 we determine the two-norm of q by taking 
the square root of the inner-product with itself. Note that, 

Figure 2: In-place QR factorization functions with (a) individual column updates in Q, and (b) multi-column rank-one 
matrix updates of Q; along with (c) the calling script, and (d) the output annotated with comments. Note that Ocean 
supports vector inner and outer products of the form u.T*v and u*v.T.

1 def InplaceQR(Q,R) :

2 n = Q.size[1]

3 for i in range(n) :

4 q = Q[:,i]

5 r = ocean.sqrt(q.T * q)

6 q /= r

7 R[i,i] = r

8 for j in range(i+1,n) :

9 r = q.T * Q[:,j]

10 Q[:,j] -= q * r

11 R[i,j] = r

def InplaceQR(Q,R) :

n = Q.size[1]

for i in range(n) :

q = Q[:,i]

r = ocean.sqrt(q.T * q)

q /= r

R[i,i] = r

if (i+1 < n) :

r = Q[:,i+1:].T * q

Q[:,i+1:] -= q * r.T

R[i,i+1:] = r

(a) (b)

1 import ocean

2

3 # Create an example matrix A with one added to the diagonal

4 # entries to make if full rank.

5 A = ocean.arange(25, ocean.double).reshape(5,5)

6 d = A.diag(); d += 1;

7

8 # As an example, create a byte-swapped copy Q on the cpu and a

9 # single-precision result tensor R on gpu[0].

10 Q = A.clone(); Q.byteswap()

11 R = ocean.zeros(A.size, ocean.float, ocean.gpu[0])

12

13 # Call the in-place QR factorization code (see code above)

14 InplaceQR(Q,R)

15

16 # Display matrices, verify orthogonality, and check factorization

17 print(Q); print(R)

18 print(ocean.norm(Q.T * Q - ocean.eye(Q.size[0])))

19 print(ocean.norm(Q*R - A))

(c)

# Matrix Q

(:,:)

0.17961 0.41037 0.58318 0.51237 0.44353

0.17961 0.77910 -0.59087 -0.07841 0.07392

0.35921 0.26763 0.51389 -0.66920 -0.29569

0.53882 -0.05947 -0.06544 0.50915 -0.66530

0.71842 -0.38658 -0.20594 -0.15575 0.51745

<tensor.double of size 5x5 on cpu (byteswapped)>

# Matrix R

(:,:)

5.56776 15.44606 25.50395 35.56185 45.61975

0.00000 5.42396 9.96772 14.69584 19.42397

0.00000 0.00000 2.27881 2.87354 3.90708

0.00000 0.00000 0.00000 1.76914 1.69502

0.00000 0.00000 0.00000 0.00000 1.55236

<tensor.float of size 5x5 on gpu0>

# Orthogonality and factorization using single-precision R

8.81018e-15

2.1845e-6

(d)
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unlike many other packages, we define the transpose q.T 
as a 1 × n matrix rather than the original one-dimensional 
vector, to enable natural notation for inner and outer 
products. In line 6 we normalize q, and therefore the 
corresponding column in Q, and update the diagonal entry 
in R. The for-loop in lines 8–11 in Figure 2(a) projects 
out the q component in each of the remaining columns 
of Q, proceeding one column at a time. The same lines in 
Figure 2(b) achieve the same, operating on all remaining 
columns at once using indexing and matrix operations 
instead of vector operations. In the second case we take 
the outer product of vectors q and r, written as qrT.

Figure 2(c) gives an example script calling either one 
of the two factorization functions (algorithmically they 
are equivalent). After importing the Ocean Tensor Package 
in line 1 we create a square matrix A on line 5, by first 
creating a vector of type double on the default device 
(CPU) containing the numbers 0 through 24 of type 
double, and then reshaping the vector to a 5 × 5 matrix. 
The resulting matrix has rank 2 instead of 5, and in line 6 
we therefore add the identity matrix by creating a view d 
on the diagonal and adding 1 to each element. On lines 
10–11 we prepare Q by creating a deep copy of matrix A 
and byteswapping its data, and allocate a float matrix R on 
device gpu[0] with the same dimensions as A. We choose 
Q and R to have different data type, device, and byte order 
to illustrate the seamless type casting provided by Ocean. 
After calling the in-place QR factorization function in line 
14, we print out the two matrices along with the Frobenius 
norms ∥QTQ – I∥F and ∥QR – A∥F in lines 17–19. The output 
of the script given in Figure 2(d) shows the elements and 
type of matrices Q and R, and the values of the two norms. 
The seemingly inaccurate factorization of A is due to the 
use of single-precision floats in R.

Implementation and architecture
The Ocean Tensor Package is designed to serve as a 
foundational layer for applications that require dense 
tensor operations on one or more device types and 
instances. Given the wide range of potential applications 
and domains, it is important that the tensor operations 
are grouped in coherent modules, rather than be provided 
through a huge monolithic package. This way, functionality 
can be installed by the user when needed, which helps 
reduce the effective number of dependencies. Another 
advantage is that interfaces and compatibility with 
external libraries is localized to independent modules, 
thus making the package easier to manage. Another 
design principle used in Ocean, and discussed later in this 
section, is the use of well-defined layers.

Modularity
Modules in Ocean consist of an interface along with 
independent implementations for each of the supported 
device types. The module interface takes care of device-
independent parameter checks including validity of the 
tensors and compatibility of tensor dimensions. It then 
determines the data type and device to use, and queries a 
function look-up table for the module associated with the 
device type. When available, the function is called after 

performing all necessary type conversions, broadcasting 
of dimensions, and allocation of result and intermediate 
tensors (for instance when tensors overlap in memory). 
In case the function is not available, or the module 
implementation for the device type has not been loaded, 
an error is raised. Functions at the device level typically 
only need to check for support of tensors of the given data 
type and either implement the tensor operation or, more 
typically, call a lower-level library function that provides 
the desired operation. If needed, functions can access the 
module-specific context information associated with each 
device instance.

Module interfaces and device implementations can be 
loaded separately, except for the core module interface, 
which includes the CPU implementation. The separation 
between the interface and the implementation makes 
it possible to replace the module implementation 
with alternatives, such as a highly-tuned or specialized 
proprietary version. The use of function tables also makes 
it possible to replace individual functions for performance 
comparisons or debugging, or to insert functions that 
record runtime or accumulate call statistics. The separation 
between module interfaces and device implementation 
also make it easy to extend Ocean with new device types. 
In particular, modules and functions within each module 
can be added and tested one at a time, thus avoiding a 
huge development effort to get started.

The Core module forms the basis of the Ocean Tensor 
Package. It provides all elementary tensor operations 
and instantiates and exposes available device instances. 
Many of the standard functions, such as printing and 
tensor copies between different device types require 
tensor support on the CPU, and the Core module interface 
is therefore combined with the CPU implementation 
(pyOcean_cpu). The GPU implementation can be 
loaded separately by importing pyOcean_gpu. For 
convenience both packages are loaded by importing 
ocean. Dependencies between modules are allowed, and 
instantiation of one module can cause other modules to 
be loaded. The instantiation order of modules is carefully 
registered to ensure that modules are finalized only when 
no other modules depend on them.

Layered implementation
In the implementation of the Ocean Tensor Package 
care is taken to maintain a clean separation between 
the different abstraction levels, as illustrated in Figure 
3. The libraries at the bottom level provide low-level 
tensor operations that are independent on the tensor 
representation. This includes existing libraries such as 
BLAS and cuBLAS, as well as the custom developed Solid 
foundation library, which provides elementary tensor 
functions for CPU and GPU. Libraries at this level are not 
specific to Ocean and can be used independently by other 
applications that require low-level tensor operations. 
The Ocean tensor API defines a unified tensor type 
along with a variety of tensor operations, organized as 
modules. As described above, modules themselves can 
be classified in two layers, namely interfaces and device 
implementations. The Ocean API is implemented in C 
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to maximize the accessibility from other languages. The 
top level in Figure 3 shows possible language bindings 
to Ocean (the current version only implements support 
for Python). However, usage of the API is not restricted 
to language bindings. For instance, applications that 
use tensor operations, or libraries that support symbolic 
tensor compute graphs, too could be build on top of the 
Ocean tensor API.

Quality control
The package comes with an extensive collection of unit 
tests in the python/examples directory. The verify 
scripts in the cpu and gpu directories can be used to run 
the unit tests and check whether the output matches the 
reference.

(2) Availability
Operating system
The system has been tested on Red Had Enterprise Linux 
version 7.4 running on Power8 and Intel Xeon, as well 
as on MacOS High Sierra, version 10.13.4, running on a 
MacBook Pro with Intel Core i7.

Programming language
The Ocean Tensor Package is written in C based on the 
C99 standard, with GPU functionality implemented using 
CUDA. The Python-C API is also written in C, along with 
several Python scripts. The package has been tested with 
Python 2.7.5 and 3.5.2.

Additional system requirements
When available, the Ocean Tensor Package supports 
CUDA-enabled GPUs. The total total disk space required 
after compilation is approximately 300Mb.

Dependencies
The CPU part of the code has optional dependencies 
on BLAS or CBLAS. The user is encouraged to provide 
these, otherwise compilation is done using a non-
optimized implementation provided with the package. 
The implementation of multi-threaded tensor operations 
is done using OpenMP, when available, otherwise all 
operations are single-threaded. Compilation on Linux was 
done using GCC 4.8.5; on MacOS compilation was tested 
using Clang versions 7.0.0 through 9.1.0.

The GPU part of the code uses CUDA as well as the 
cuBLAS library. The package has been tested with CUDA 
versions 7.5, 8.0 (GA1, GA2), 9.0, 9.1, and 9.2. Compilation 
on MacOS using NVCC requires the appropriate 
combination of Clang and CUDA versions. A table of 
compatible versions is provided in the INSTALL.txt file 
provided with the package.

The Python interface of the package provides an optional 
interface to Numpy, when available on the system.

List of contributors
Ewout van den Berg designed and implemented the 
package, and currently maintains the GitHub repository.

Code repository
Name: GitHub
�Persistent� identifier: https://github.com/IBM/
ocean-tensor-package
Licence: Apache-2.0
Date published: 16/08/2018

Language
English

(3) Reuse potential
The Ocean Tensor Package provides support for tensor 
operations on CPU and GPU. Given the common usage of 
these operations in various fields, there is a large reuse 
potential of the package. The package can be used directly 
as the user level, or can serve as the foundation for other 
packages. Tensor functionality is organized in modules 
to enable addition of separate modules with operations 
specific to other fields. Additional modules can be 
provided as third-party extensions, or incorporated in the 
package itself, depending on the level of specialization of 
the functions. The package was designed to allow support 
for devices other than CPU and GPU, although no such 
extensions are currently planned. Please contact the 
author if you are interested in extending the package, or if 
you have questions or feedback regarding the installation 
and usage of the package.

Notes
 1 Available at https://github.com/ibm/ocean-tensor-

package.

Figure 3: Layered design of the Ocean Tensor Package. The current version implements the core modules for CPU and 
GPU, based on BLAS, cuBLAS, and the Solid foundation library, along with the Python language binding.
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 2 Ocean supports booleans; 8, 16, 32, and 64-bit signed 
and unsigned integers; as well as real and complex 
half, single and double-precision floating-point data 
types.

Competing Interests
The author has no competing interests to declare.

References
1. Abadi, M, Agarwal, A, Barham, P, Brevdo, E, 

Chen, Z, Citro, C, Corrado, G S, Davis, A, Dean, 
J, Devin, M, Ghemawat, S, Goodfellow, I, Harp, 
A, Irving, G, Isard, M, Jia, Y, Jozefowicz, R, 
Kaiser, L, Kudlur, M, Levenberg, J, Mané, D,  
Monga, R, Moore, S, Murray, D, Olah, C, Schuster, 
M, Shlens, J, Steiner, B, Sutskever, I, Talwar, K, 
Tucker, P, Vanhoucke, V, Vasudevan, V, Viégas, 
F, Vinyals, O, Warden, P, Wattenberg, M,  
Wicke, M, Yu, Y and Zheng, X 2015 
TensorFlow: Large-scale machine learning on 
heterogeneous systems. Software available from  
tensorflow.org.

2. Broekema, P C, Mol, J J D, Nijboer, R, van 
Amesfoort, A S, Brentjens, M A, Loose, G M, Klijn, 
W F A and Romein, J W 2018 A GPU-based correlator 
and beamformer for LOFAR. arXiv: 1801.04834. DOI: 
https://doi.org/10.1016/j.ascom.2018.04.006

3. Cano, A 2018 A survey on graphic processing unit 
computating for large-scale data mining. WIREs Data 
Mining Knowledge discovery, 8: e1232. DOI https://
doi.org/10.1002/widm.1232

4. Chen, T, Li, M, Li, Y, Lin, M, Wang, N, Wang, M, 
Xiao, T, Xu, B, Zhang, C and Zhang, Z 2015 MXNet: 
A flexible and efficient machine learning library 
for heterogeneous distributed systems. In Neural 
Information Processing Systems, Workshop on Machine 
Learning Systems.

5. Collobert, R, Bengio, S and Marithoz, J 2002 Torch: 
A modular machine learning software library.

6. Collobert, R, Kavukcuoglu, K and Farabet, C 2011 
Torch7: A Matlab-like environment for machine 
learning. In BigLearn, NIPS Workshop, number 
EPFLCONF-192376.

7. Jia, Y, Shelhamer, E, Donahue, J, Karayev, S, 
Long, J, Girshick, R, Guadarrama, S and Darrell, 
T 2014 Caffe: Convolutional architecture for fast 
feature embedding. In Proceedings of the 22nd ACM 

International Conference on Multimedia, 675–678. 
DOI: https://doi.org/10.1145/2647868.2654889

8. Kutzner, C, Páll, S, Fechner, M, Esztermann, A, de 
Groot, B L and Grubmüller, H 2015 Best bang for 
your buck: GPU nodes for GROMACS biomolecular 
simulations. Journal of Computational Chemistry, 
36(26): 1990–2008. DOI: https://doi.org/10.1002/
jcc.24030

9. NVIDIA. GPU-accelerated applications. https://www.
nvidia.com/en-us/data-center/gpu-accelerated-
applications/catalog/.

10. Okuta, R, Unno, Y, Nishino, D, Hido, S and Loomis, 
C 2017 CuPy: A NumPycompatible library for NVIDIA 
GPU calculations. In Proceedings of Workshop on 
Machine Learning Systems (LearningSys) in The 
Thirty-first Annual Conference on Neural Information 
Processing Systems (NIPS).

11. Oliphant, T E 2006 A guide to Numpy. Trelgol 
Publishing.

12. Paszke, A, Gross, S, Chintala, S, Chanan, G, Yang, E, 
DeVito, Z, Lin, Z, Desmaison, A, Antiga, L and Lerer, 
A 2017 Automatic differentiation in PyTorch. In NIPS 
2017 Autodiff Workshop.

13. Shi, L, Liu, W, Zhang, H, Xie, Y and Wang, D 2012 
A survey of GPU-based medical image computing 
techniques. Quantitative Imaging in Medicine and 
Surgery, 2(3): 188–206.

14. Shi, X, Zheng, Z, Zhou, Y, Jin, H, He, L, Liu, B and 
Hua, Q-S 2018 Graph processing on GPUs: A survey. 
ACM Computing Surveys, 50(6): 81: 1–35. DOI: https://
doi.org/10.1145/3128571

15. Trefethen, L N and Bau, D, III 1997 Numerical 
Linear Algebra. SIAM. DOI: https://doi.
org/10.1137/1.9780898719574

16. van den Berg, E 2018 The Ocean Tensor Package. 
Available at https://github.com/ibm/ocean-tensor-
package.

17. Wang, H, Peng, H, Chang, Y and Liang, D 2018 A 
survey of GPU-based acceleration techniques in mri 
reconstructions. Quantitative Imaging in Medicine 
and Surgery, 8(2): 196–208. DOI: https://doi.
org/10.21037/qims.2018.03.07

18. Yalamanchili, P, Arshad, U, Mohammed, Z, 
Garigipati, P, Entschev, P, Kloppenborg, B, James, J 
and Melonakos, J 2015 ArrayFire – a high performance 
software library for parallel computing with an easy-
to-use API. https://github.com/arrayfire/arrayfire.

How to cite this article: van den Berg, E 2019 The Ocean Tensor Package. Journal of Open Research Software, 7: 26. DOI: 
https://doi.org/10.5334/jors.268

Submitted: 12 March 2019    Accepted: 18 July 2019    Published: 01 August 2019

Copyright: © 2019 The Author(s). This is an open-access article distributed under the terms of the Creative Commons 
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

OPEN ACCESSJournal of Open Research Software is a peer-reviewed open access journal published by 
Ubiquity Press

http://tensorflow.org
https://doi.org/10.1016/j.ascom.2018.04.006
https://doi.org/10.1002/widm.1232
https://doi.org/10.1002/widm.1232
https://doi.org/10.1145/2647868.2654889
https://doi.org/10.1002/jcc.24030
https://doi.org/10.1002/jcc.24030
https://www.nvidia.com/en-us/data-center/gpu-accelerated-applications/catalog/
https://www.nvidia.com/en-us/data-center/gpu-accelerated-applications/catalog/
https://www.nvidia.com/en-us/data-center/gpu-accelerated-applications/catalog/
https://doi.org/10.1145/3128571
https://doi.org/10.1145/3128571
https://doi.org/10.1137/1.9780898719574
https://doi.org/10.1137/1.9780898719574
https://github.com/ibm/ocean-tensor-package
https://github.com/ibm/ocean-tensor-package
https://doi.org/10.21037/qims.2018.03.07
https://doi.org/10.21037/qims.2018.03.07
https://github.com/arrayfire/arrayfire
https://doi.org/10.5334/jors.268
http://creativecommons.org/licenses/by/4.0/

	(1) Overview 
	Introduction 
	Functionality 
	Object types 
	Devices 
	Storage 
	Tensors 

	Tensor operations 
	Type casting 
	Indexing 
	Interoperability 
	Deallocation 

	Existing packages 
	Illustrative example 
	Implementation and architecture 
	Modularity 
	Layered implementation 
	Quality control 

	(2) Availability 
	Operating system 
	Programming language 
	Additional system requirements 
	Dependencies 
	List of contributors 
	Code repository 
	Language 

	(3) Reuse potential 
	Notes 
	Competing Interests 
	References 
	Figure 1
	Figure 2
	Figure 3
	Table 1

