
Jackson, R, et al. 2020 PyDDA: A Pythonic Direct Data Assimilation
Framework for Wind Retrievals. Journal of Open Research
Software, 8: 20. DOI: https://doi.org/10.5334/jors.264

Journal of
open research software

SOFTWARE METAPAPER

PyDDA: A Pythonic Direct Data Assimilation Framework
for Wind Retrievals
Robert Jackson1, Scott Collis1, Timothy Lang2, Corey Potvin3 and Todd Munson1

1 Argonne National Laboratory, Argonne, IL, US
2 NASA Marshall Space Flight Center, Huntsville, AL, US
3 NOAA/OAR National Severe Storms Laboratory, and Cooperative Institute for Mesoscale Meteorological Studies, University of
Oklahoma, Norman, OK, US

Corresponding author: Robert Jackson (rjackson@anl.gov)

This software assimilates data from an arbitrary number of weather radars together with other spatial
wind fields (eg numerical weather forecasting model data) in order to retrieve high resolution three
dimensional wind fields. PyDDA uses NumPy and SciPy’s optimization techniques combined with the Python
Atmospheric Radiation Measurement (ARM) Radar Toolkit (Py-ART) in order to create wind fields using
the 3D variational technique (3DVAR). PyDDA is hosted and distributed on GitHub at https://github.com/
openradar/PyDDA. PyDDA has the potential to be used by the atmospheric science community to develop
high resolution wind retrievals from radar networks. These retrievals can be used for the evaluation of
numerical weather forecasting models and plume modelling. This paper shows how wind fields from 2 NEXt
generation RADar (NEXRAD) WSR-88D radars and the High Resolution Rapid Refresh can be assimilated
together using PyDDA to create a high resolution wind field inside Hurricane Florence.

Keywords: winds; radar; weather; high resolution; doppler
Funding statement: The development of this software is supported by the Climate Model Development
and Validation (CMDV) activity which is funded by the Office of Biological and Environmental Research in
the US Department of Energy Office of Science.

(1) Overview
Introduction
High resolution 3D wind retrievals have a wide range of
practical applications. For example, 3D wind retrievals are
frequently used to gain insight on the kinematic processes
inside thunderstorms, hurricanes, and tornadoes (i.e. [1,
2]). Furthermore, 3D wind fields are critical for dispersion
modelling [3] and for predicting potential hazards to
infrastructure. These wind retrievals are commonly
created from data from networks of scanning weather
radars such as those from the NEXt generation RADar
(NEXRAD) network of WSR-88Ds installed by the National
Oceanic and Atmospheric Adminstration (NOAA) all over
the United States that can detect the velocity of particles in
the direction of the radar beam over a volume, commonly
called the radial or Doppler velocity [4, 5]. The NEXRAD
network samples volumes of approximately 250 km by
250 km by 20 km every 5 to 10 minutes. While other
wind measurements such as profilers and anemometers
provide the most accurate wind measurements, they
measure a much more limited volume than a scanning
radar being limited to the column and single point in
space respectively. Numerical weather forecasting models
provide 3D winds with a greater volume coverage than the

NEXRAD network, but they are affected by uncertainties
in the model prediction and assimilation and generally
provide data at coarser spatial and temporal scales than
wind observations made by scanning radars. Therefore
a solution for integrating wind observations from many
different sources operating at differing spatial and
temporal scales has the best capability of providing a
complete picture of the spatial and temporal evolution of
the 3D wind field.

Since each sensor and model produces winds at
differing spatial and temporal scales, retrieving the 3D
winds from them is a nontrivial task. For a single radar,
deriving a 3D wind field amounts to solving one equation
with three unknowns since only the wind velocity in the
direction relative to the radar beam is known. Therefore
the problem of deriving 3D winds from one radar requires
additional constraints. For more than one radar, we can
increase the number of equations corresponding to each
radar. However, even in the multi-radar scenario, there
are measurement uncertainties related to the differing
sampling strategies and sensitivities of each radar.
Therefore extra assumptions must be made to retrieve the
3D wind field from velocities recorded network of radars
and produced by models. Two frameworks have typically

https://doi.org/10.5334/jors.264
mailto:rjackson@anl.gov
https://github.com/openradar/PyDDA
https://github.com/openradar/PyDDA

Jackson et al: PyDDAArt. 20, page 2 of 9

been used to retrieve the 3D winds from a network of radars.
One is the framework that imposes a strong constraint by
integrating the mass continuity equation from the surface
to the top of the atmosphere [6, 7]. The other, is the 3D
variational (3DVAR) framework that minimizes a sum of
cost functions related to radar measurements, equations
of motion, balloon based profiles of wind measurements
and high resolution weather forecasting models [8, 9, 10,
11, 12]. The 3DVAR framework has the advantage in that
it is easier to integrate observations from extra sensors
and models than the strong constraint framework and
is less sensitive to initial and boundary conditions [9, 12,
13]. Therefore, the current standard for 3D wind retrievals
from radars is the 3DVAR framework.

Past software applied to 3D wind retrievals includes
Custom Editing and Display of Reduced Information
(CEDRIC) [13] and MultiDop [9, 11, 14]. CEDRIC is
based off of the traditional mass continuity integration
technique which, again, limits the ability of the user to
account for measurement uncertainties than 3DVAR.
While ground-breaking at the time, CEDRIC is difficult to
use as it involves learning a separate scripting language
just to use it. Multidop is a Python wrapper around a C
program implementing the 3DVAR technique called Dual
Doppler Analysis (DDA). Multidop bought 3DVAR winds
to the open source community for the first time. However,
it is based off of legacy code for the minimization of
the cost function, can be difficult to compile, currently
only supports up to 3 radars, is challenging to extend,
and is not thread-safe for mass processing of winds on
a multiple computational cores. Pythonic Direct Data
Assimilation (PyDDA) was developed in order to make a
fully Pythonic, open source solution for implementing the
3DVAR framework for 3D wind retrievals where data from
an arbitrary number of radars and models can be added.
PyDDA is fully written in Python and is built on standard
packages in the Scientific Python ecosystem including
NumPy [15], SciPy [16], Cartopy [17], and matplotlib [18]
as well as the Python ARM Radar Toolkit [19].

In this paper, we will first introduce how the 3DVAR
framework in PyDDA was implemented using the Scientific
Python ecosystem and how contributors can expand
PyDDA to include their data. After that, an example case
of using the software to retrieve winds from NEXRAD

observations and High Resolution Rapid Refresh (HRRR)
model runs in Hurricane Florence is presented. Finally,
details on how PyDDA is quality controlled are presented.

Implementation and architecture
3DVAR framework
Let v(x, y, z) = (u(x, y, z), v(x, y, z), w(x, y, z)) ∈ ℜ3 be the
analysis wind field over a Cartesian grid. The v(x, y, z)
are defined over a discrete Cartesian grid of m by n by o
points provided as (xijk, yijk, zijk) for i ∈ [0, m), j ∈ [0, n),
and k ∈ [0, o). PyDDA derives v(xijk, yijk, zijk) for i ∈ [0, m),
j ∈ [0, n) by finding the v(xijk, yijk, zijk) that minimizes the
cost function in Equation (1).

() o o mass mass v v r r

s s model model point point

J C J C J C J C J

C J C J C J

v
 (1)

with a gradient ∇J(v) that is the sum of the gradients Cn
∇Jn of each term in Equation 1. All of the Jn, ∇Jn terms are
defined as in Tables 1 and 2. Detailed formulas of each
function in Tables 1 and 2 are available in the source
code of the cost_functions module and in [9, 10,
11]. Equation (1) is written in Python using the NumPy
and SciPy libraries.

The Cn terms are user adjustable weighting coefficients
for each constraint. Therefore, the importance of a
particular measurement or model derived data point to the
constraint can be adjusted. This is useful for accounting
for the uncertainties in each constraint. For example, the
retrieval can be more weakly constrained by model data
that has higher uncertainty than the radar observations.
Furthermore, since Equation (1) is a sum of cost functions
and their gradients, adding more terms to Equation (1) is a
simple way to expand this framework. All of the functions
in Tables 1 and 2 are currently implemented in the
cost_functions module of PyDDA.

Optimization problem
Finding the v(xijk, yijk, zijk) that minimizes J(v) involves the
minimization of a cost function of the order of a million
(3mno) dimensions, three dimensions for each (xijk, yijk, zijk)
for i ∈ [0, m), j ∈ [0, n), and k ∈ [0, o). SciPy’s implementation
of the Limited Memory Broyden-Fletcher-Goldfarb-Shanno
Bounded (L-BFGS-B) optimization technique is suited for

Table 1: List of cost functions currently implemented in PyDDA.

Cost Function Symbol Routine

Total J(v) J_function

Radar observations Jo
calculate_radial_vel_cost_function

Mass continuity Jmass
calculate_mass_continuity

Vertical vorticity Jv
calculate_vertical_vorticity_cost

Rawinsonde Jr
calculate_background_cost

Smoothness Js
calculate_smoothness_cost

Model Jmodel
calculate_model_cost

Point Jpoint
calculate_point_cost

Jackson et al: PyDDA Art. 20, page 3 of 9

minimizing such a cost function [16, 20]. The L-BFGS-B
technique needs the cost function J(v), its gradient ∇J(v),
the bounds of v(xijk, yijk, zijk) and initial guess of v(xijk, yijk, zijk)
for i ∈ [0, m), j ∈ [0, n), and k ∈ [0, o), all of which are
obtainable since J(v) is twice differentiable. L-BFGS-B is
suited for minimizing J(v) as it is designed to conserve
memory which is important when the dimensionality of
J(v) is on the order of millions. Furthermore, since L-BFGS-B
minimizes J(v) over a bounded domain, this ensures that
convergence to a physically realistic solution is reached.
In addition, SciPy’s implementation of L-BFGS-B takes
advantage of as many cores that are present in a single
machine allowing for fast convergence.

The retrieval module contains the code that
implements the 3DVAR technique using L-BFGS-B. In
particular, the code is contained within the get_dd_
wind_field procedure which takes in input from an
arbitrary number of Py-ART Grid objects representing

an arbitrary number of radars and automatically enters
in the optimal inputs to L-BFGS-B for the user. get_
dd_wind_field will run iterations of L-BFGS-B until
convergence is reached. Convergence is reached when
either |∇(J(v))|<10–3 or when the maximum change in w
over 10 iterations is less than 0.2 m s–1.

Another component of the optimization problem is
that the final v may be sensitive to the initial guess for
v. Therefore, PyDDA has an initalization module
that provides users with several options for initial guesses
listed in Table 3. All of these functions return the initial
v as a 3-tuple of NumPy arrays on the Py-ART Grid
objects’ grid. This standardized form for outputs in the
initialization module allows for the addition of
custom initializations.

Having both the initialization and retrieval contained
within PyDDA reduces the wind retrieval technique to just
a few lines of code as shown below.

import pyart
import pydda

berr_grid = pyart.io.read_grid(“grid1.nc”)
cpol_grid = pyart.io.read_grid(“grid2.nc”)
sounding = pyart.io.read_arm_sonde(“arm_sounding.cdf”)

Load sounding data and insert as an intialization
u_init, v_init, w_init = pydda.initialization.make_wind_field_from_profile(
 cpol_grid, sounding)

Start the wind retrieval. This example only uses the mass
continuity and radar observational constraints.
Grids = pydda.retrieval.get_dd_wind_field([berr_grid, cpol_grid],
 u_init, v_init, w_init, Co=10.0, Cm=1500.0)

In addition to constraining against radar observations,
PyDDA includes support for constraining against model
wind data interpolated to the analysis grid. Currently,
the constraints module contains procedures that
interpolate WRF and HRRR data to PyDDA’s analysis grid

using SciPy’s interpolation module. These modules add
model fields to Py-ART Grid objects using the NetCDF4 and
cfgrib modules for reading the model data. get_dd_wind_
field takes in any number of wind fields with any name,
adding support for more constraints from various data.

Table 2: List of cost function gradients currently implemented in PyDDA.

Cost Function Symbol Gradient

Total ∇J(v) grad_J

Radar observations ∇Jo
calculate_grad_radial_vel

Mass continuity ∇Jmass
calculate_mass_continuity_gradient

Vertical vorticity ∇Jv
calculate_vertical_vorticity_gradient

Rawinsonde ∇Jr
calculate_background_gradient

Smoothness ∇Js
calculate_smoothness_gradient

Model ∇Jmodel
calculate_model_gradient

Point ∇Jpoint
calculate_point_cost

Table 3: List of current initialization options in PyDDA.

Initialization Routine name

Constant wind field make_constant_wind_field

Py-ART HorizontalWindProfile object make_wind_field_from_profile

Weather Research and Forecasting (WRF) make_background_from_wrf

High Resolution Rapid Refresh (HRRR) make_initialization_from_hrrr

Jackson et al: PyDDAArt. 20, page 4 of 9

Data visualization
In addition to calculation, PyDDA comes with a basic
visualization module that supports the plotting of
wind barbs and streamlines over gridded radar reflectivity
fields for easy viewing of the results. visualization
was written in Python and uses the matplotlib and cartopy
libraries for visualization of the data. Figure 1 shows an
example cross section through a thunderstorm sampled
by 2 Doppler radars in Darwin, Australia. In addition to
plotting over the analysis grid, plotting over geographic
maps is supported through the use of the cartopy package
[17], with an example streamline plot shown in Figure 2.

Software Quality control
Using the GitHub issue tracker, users can request for help
with PyDDA as well as point out potential issues with the
software. This provides a forum for contributors to make
various improvements to PyDDA. When a contributor
makes a modification to PyDDA, the contributor submits a
pull request to the master branch of openradar/PyDDA
on GitHub. For each pull request, pytest runs a suite of
tests on each module of PyDDA to assure that the quality of
the retrievals are maintained. In addition, whenever a user
submits a pull request on GitHub, Travis CI builds PyDDA in
the test environment and runs pytest whenever a pull request
is made to the master branch of PyDDA. Travis CI runs these

tests on Python 3.6, 3.7, and 3.8 environments on Linux. If the
build from Travis CI fails, the contributor is asked to resolve
the issues with the code until the continuous integration
completes successfully. In addition, each pull request has
to be approved by the main developer. Therefore, the main
developer determines if the contributor should write a unit
test for their added module. Furthermore, PyDDA is also
released on the conda-forge repository which requires that
Circle CI, Travis CI, and AppVeyor all run PyDDA’s unit tests
before the release is published on conda-forge.

Unit tests also need to validate the results of PyDDA
against basic dynamical principles. For example, the unit
tests that tests the get_dd_wind_field function will
perform the retrieval on the example in Figure 2 against
previous 3DVAR retrievals of this same dataset by [21].
While there are differences between the retrieval used
by [21] and in PyDDA, both [21] and PyDDA should show
resolve a strong updraft (w > 1) in the location given in
Figure 2b. Therefore, the test checks for the presence of
this updraft. In order to test individual cost functions,
properties of the wind field that would be expected from
physical or mathematical principles are checked. For
example, in order to test the Jmass = ∇ · v, the test check
to see if Jmass is zero in a constant wind field, but negative
in a convergent wind field and positive in a divergent
wind field.

Figure 1: An example wind barb plot overlaid on radar reflectivity at 3.5 km altitude for winds retrieved in thunderstorms
sampled by 2 radars over Darwin. Contours represent the presence of updrafts with given velocities at the 3.5 km
height level. The area inside the two circles indicate where the wind retrieval is most reliable.

Jackson et al: PyDDA Art. 20, page 5 of 9

Support
Documentation
Documentation is provided at http://openradarscience.
org/PyDDA. It is automatically updated by Travis CI when
pull request to the master branch is approved on GitHub.
Sphinx automatically generates documentation from the
docstrings at the top of each procedure that are written
in reStructuredText. Travis CI, using doctr, will run Sphinx
every time a pull request to the master branch is approved
in order to update the documentation. Therefore,
contributors must provide documentation in docstrings
at the top of their procedures. Three examples on how
to use PyDDA are provided in the documentation. Any
user can download and run them to check if the PyDDA
is working.

Issues
Developing wind retrievals from radars is typically a
complicated task. Therefore, PyDDA has support methods
available for users. The primary method of support is
through PyDDA’s issue tracker on GitHub. On the issue

tracker, users are encouraged to ask questions as well as
point out potential bugs in PyDDA. In addition, users can
provide input for features they would like to see as well as
develop their own contributions. The PyDDA developers
will examine each issue and provide support. If the issue
is related to a bug in PyDDA, either the developer or the
contributor will work on resolving the bug.

(2) Availability
Operating system
Windows, Mac OS X, and Linux

Programming language
Python 3.6+

Additional system requirements
We recommend:

1. 8+ GB RAM
2. 1 GB+ of hard drive space.
3. An Intel x86 compatible CPU with 4+ cores.

Figure 2: (a) An example streamline plot overlaid on radar reflectivity at 3 km altitude observed from 2 radars over
Darwin, Australia. Contours represent horizontal wind speed. (b) as (a), but zoomed into the region enclosed by the
grey box. Contours represent vertical wind speed.

http://openradarscience.org/PyDDA
http://openradarscience.org/PyDDA

Jackson et al: PyDDAArt. 20, page 6 of 9

Dependencies
NumPy, SciPy, matplotlib, Py-ART, cartopy are required.
cfgrib is needed for reading HRRR data, but is currently
optional as cfgrib does not work on Windows.

List of contributors
•	 Robert Jackson, Argonne National Laboratory
•	 Scott Collis, Argonne National Laboratory
•	 Todd Munson, Argonne National Laboratory
•	 Zach Sherman, Argonne National Laboratory
•	 Timothy Lang, NASA Marshall Space Flight Center,
•	 Corey Potvin, Cooperative Institute for Mesoscale

Meteorological Studies/University of Oklahoma

Software location
Archive http://openradarscience.org/PyDDA

Name: PyDDA
Persistent identifier: DOI: 10.5281/zenodo.3942686
Licence: BSD 3-clause license
Publisher: Robert Jackson
Version published: 0.5.2
Date published: 07/13/2020

Code repository GitHub
Name: PyDDA
 Persistent identifier: https://github.com/openradar/
PyDDA
Licence: BSD 3-clause license
Date published: 07/13/2020

Language
English

(3) Reuse potential
PyDDA has many applications within meteorology as in
fields such as air quality modelling and civil engineering. As
of the writing of this article, the authors are collaborating

with Dan Chavez at Purdue University to use PyDDA’s
wind fields to create databases of 3D winds in Hurricane
Florence and Michael for improving hurricane prediction.
In a project funded by the Department of Energy’s Office
of Energy Efficiency & Renewable Energy, PyDDA will
produce wind fields for assessing the effects of damaging
winds on the electric grid. In addition, 3D wind retrievals
are vital to understanding thunderstorm dynamics so an
open source solution for such retrievals has great potential
to be used by the meteorology community.

A synergy of radar observations and models in
Hurricane Florence
Using PyDDA, combining observations from high resolu-
tion forecasting models and radar observations to create
a more complete picture of the 3D wind field inside a
hurricane is simple. For this example, we will show how
the winds inside Hurricane Florence can be retrieved
using PyDDA and show how using radar and model data
together demonstrates the improvement in capabilities
that PyDDA provides compared to previous software.

On 14 September 2018, Hurricane Florence was
within range of 2 radars from the NEXRAD network:
KMHX stationed in Newport, NC and KLTX stationed in
Wilmington, NC. Both radars provided continuous 3D
observations of radial velocities inside Hurricane Florence
as it made landfall over North Carolina. In addition, the High
Resolution Rapid Refresh (HRRR) model was run at every
hour, providing model reanalysis of observational data at an
hourly temporal resolution and a 3.7 km spatial resolution.
The archived HRRR data that is supported by PyDDA can
be downloaded from the University of Utah’s HRRR archive
[22, 23].

As one can see, in Figure 3 we have an incomplete
picture of the wind field inside Hurricane Florence as
the 2 NEXRAD radars only provide partial coverage of
the winds at 0.5 km altitude. Therefore, we also constrain

Figure 3: Winds at 0.5 km retrieved by PyDDA using only data from the 2 NEXRAD radars overlaid on a reflectivity
mosaic generated from the two NEXRAD radars. Barbs are in m s–1.

http://openradarscience.org/PyDDA
https://doi.org/10.5281/zenodo.3942686
https://github.com/openradar/PyDDA
https://github.com/openradar/PyDDA

Jackson et al: PyDDA Art. 20, page 7 of 9

against the HRRR calculated winds in Figure 4, which
gives us the retrieval in Figure 5. As you can see, a much
more complete picture of Hurricane Florence is provided,
showing that Eastern North Carolina is indeed having
winds much higher than the 10 m s–1 inferred by Figure 3
and also showing the cyclonic circulation that would be
expected in a hurricane. This shows how the integration
of data from multiple sources enhances the applicability
and expandability of PyDDA compared to other software,
as Multidop and CEDRIC did not support the integration
of model data.

Expanding PyDDA
PyDDA was designed so that contributors can easily add
cost functions and custom initializations to PyDDA. In
particular, since Equation (1) is a sum of cost functions,
adding terms to Equation (1) expands the framework.
The cost_functions module contains all of the cost
functions that are used by PyDDA. Expanding the code to
incorporate more cost functions involves implementing
the cost function, its gradient, and then adding the
cost function to the J_function in the cost_
functions module and the gradient to grad_J in

Figure 4: As Figure 3, but only using the HRRR model as a constraint.

Figure 5: As Figure 3, but using both the radar and HRRR winds as constraints.

Jackson et al: PyDDAArt. 20, page 8 of 9

the cost_functions module. Since a cost function
will typically be the integral of a function over a grid,
commonly called a functional, the gradients are derived by
taking the functional derivative of the cost function. For
more information on functional derivatives, see [24]. See
[10] for formulas for the gradients to the mass continuity
and radar observational cost functions currently used
in PyDDA. Since the functional derivatives and the cost
functions have explicit forms, they are all implemented
into PyDDA using NumPy [14] and SciPy [15].

The constraints module can be expanded to
include more functions that interpolate data from various
datasets to the analysis grid. Currently, it has two examples
from HRRR and WRF data. The get_dd_wind_field
already is able to take in any number of models with any
field name, so any function that interpolates a dataset can
be added to the constraints module.

Another way that PyDDA can be expanded is by adding
in custom initializations to the 3DVAR technique. Since
Py-DDA takes in a 3-tuple of NumPy arrays representing v
with the same shape as the analysis grid as an initialization,
any function that returns this 3-tuple can be added to
the initialization module. Example initializations
consisting of a constant wind field, a sounding, and HRRR
and WRF outputs are already in PyDDA.

The PyDDA development team is currently seeking
collaborators for expanding the functionality of PyDDA.
If a user needs help in expanding PyDDA to include their
own sensor or model, they are encouraged to contact
the main developer currently supporting PyDDA, Robert
Jackson, at rjackson@anl.gov for collaboration on this
effort. There is a contributor’s guide in the documentation
that shows the code style, code of conduct, license, and
documentation standards that must be followed for each
contribution. In addition, we have published a roadmap of
the eventual goals of PyDDA, available at https://github.
com/openradar/PyDDA/blob/master/ROADMAP.md that
show what contributions to PyDDA are useful.

Acknowledgements
We would like to thank Alain Protat and Valentin Louf for
processing the C-band Polarization Radar data. We would
also like to thank Zach Sherman for reorganizing the
software for proper packaging.

Competing Interests
The authors have no competing interests to declare.

References
1. Kosiba, K, Wurman, J, Richardson, Y, Markowski,

P, Robinson, P and Marquis, J 2013 Genesis of
the Goshen County, Wyoming, Tornado on 5 June
2009 during VORTEX2. Monthly Weather Review,
141: 1157–1181. DOI: https://doi.org/10.1175/
MWR-D-12-00056.1

2. Kosiba, K A and Wurman, J 2014 Finescale Dual-
Doppler Analysis of Hurricane Boundary Layer
Structures in Hurricane Frances (2004) at Landfall.
Monthly Weather Review, 142: 1874–1891. DOI:
https://doi.org/10.1175/MWR-D-13-00178.1

3. Fast, J D, Newsom, R K, Allwine, K J, Xu, Q, Zhang,
P, Copeland, J and Sun, J 2008 An Evaluation of
Two NEXRAD Wind Retrieval Methodologies and
Their Use in Atmospheric Dispersion Models. J. Appl.
Meteor. Climatol, 47: 2351–2371. DOI: https://doi.
org/10.1175/1520-0477(1993)074<1669:TWATWO>2.
0.CO;2

4. Crum, T D and Alberty, R L 1993 The WSR-88D
and the WSR-88D Operational Support Facility. Bull.
Amer. Meteor. Soc., 74: 1669–1688, DOI: https://doi.
org/10.1175/1520-0477(1993)074¡1669:TWATWO¿2.
0.CO;2

5. NOAA National Weather Service (NWS) Radar
Operations Center 1991 NOAA Next Generation
Radar (NEXRAD) Level 2 Base Data. [KLTX, KMHX
reflectivity, Doppler velocity]. NOAA National Centers
for Environmental Information. DOI: https://doi.
org/10.7289/V5W9574V [30 Oct 2018].

6. Gal-Chen, T 1978 A Method for the Initialization of
the Anelastic Equations: Implications for Matching
Models with Observations. Mon. Wea. Rev., 106: 587–
606. DOI: https://doi.org/10.1175/1520-0493(1978)
106<0587:AMFTIO>2.0.CO;2

7. Gal-Chen, T and Kropfli, R A 1984 Buoyancy and
Pressure Perturbations Derived from Dual-Doppler
Radar Observations of the Planetary Boundary Layer:
Applications for Matching Models with Observations.
J. Atmos. Sci., 41: 3007–3020. DOI: https://doi.org/
10.1175/1520-0469(1984)041<3007:BAPPDF>2.0.
CO;2

8. Lorenc, A C 1986 Analysis methods for numerical
weather prediction. Quart. J. Roy. Meteor. Soc., 112:
1177–1194. DOI: https://doi.org/10.1002/qj.4971124
7414

9. Shapiro, A, Potvin, C K and Gao, J 2009 Use of
a vertical vorticity equation in variational dual-
Doppler wind analysis. J. Atmos. Oceanic Technol., 26:
2089–2106. DOI: https://doi.org/10.1175/2009JTE
CHA1256.1

10. Gao, J, Xue, M, Shapiro, A and Droegemeier, K K
1999 A Variational Method for the Analysis of Three-
Dimensional Wind Fields from Two Doppler Radars.
Mon. Wea. Rev., 127: 2128–2142. DOI: https://doi.
org/10.1175/1520-0493(1999)127<2128:AVMFTA>2.
0.CO;2

11. Potvin, C K, Shapiro, A and Xue, M 2012 Impact
of a Vertical Vorticity Constraint in Variational Dual-
Doppler Wind Analysis: Tests with Real and Simulated
Supercell Data. J. Atmos. Oceanic Technol., 29: 32–49.
DOI: https://doi.org/10.1175/JTECH-D-11-00019.1

12. Potvin, C K, Betten, D, Wicker, L J, Elmore, K L
and Biggerstaff, M I 2012 3DVAR versus Traditional
Dual-Doppler Wind Retrievals of a Simulated Supercell
Thunderstorm. Mon. Wea. Rev., 140: 3487–3494. DOI:
https://doi.org/10.1175/MWR-D-12-00063.1

13. Miller, L J and Fredrick, S M 1998 Custom Editing
and Display of Reduced Information in Cartesian space
(CEDRIC) manual. National Center for Atmospheric
Research, Mesoscale and Microscale Meteorology
Division. Boulder, CO, 1–130.

mailto:rjackson@anl.gov
https://github.com/openradar/PyDDA/blob/master/ROADMAP.md
https://github.com/openradar/PyDDA/blob/master/ROADMAP.md
https://doi.org/10.1175/MWR-D-12-00056.1
https://doi.org/10.1175/MWR-D-12-00056.1
https://doi.org/10.1175/MWR-D-13-00178.1
https://doi.org/10.1175/1520-0477(1993)074<1669:TWATWO>2.0.CO;2
https://doi.org/10.1175/1520-0477(1993)074<1669:TWATWO>2.0.CO;2
https://doi.org/10.1175/1520-0477(1993)074<1669:TWATWO>2.0.CO;2
https://doi.org/10.1175/1520-0477(1993)074�1669:TWATWO�2.0.CO;2
https://doi.org/10.1175/1520-0477(1993)074�1669:TWATWO�2.0.CO;2
https://doi.org/10.1175/1520-0477(1993)074�1669:TWATWO�2.0.CO;2
https://doi.org/10.7289/V5W9574V
https://doi.org/10.7289/V5W9574V
https://doi.org/10.1175/1520-0493(1978)106<0587:AMFTIO>2.0.CO;2
https://doi.org/10.1175/1520-0493(1978)106<0587:AMFTIO>2.0.CO;2
https://doi.org/10.1175/1520-0469(1984)041<3007:BAPPDF>2.0.CO;2
https://doi.org/10.1175/1520-0469(1984)041<3007:BAPPDF>2.0.CO;2
https://doi.org/10.1175/1520-0469(1984)041<3007:BAPPDF>2.0.CO;2
https://doi.org/10.1002/qj.49711247414
https://doi.org/10.1002/qj.49711247414
https://doi.org/10.1175/2009JTECHA1256.1
https://doi.org/10.1175/2009JTECHA1256.1
https://doi.org/10.1175/1520-0493(1999)127<2128:AVMFTA>2.0.CO;2
https://doi.org/10.1175/1520-0493(1999)127<2128:AVMFTA>2.0.CO;2
https://doi.org/10.1175/1520-0493(1999)127<2128:AVMFTA>2.0.CO;2
https://doi.org/10.1175/JTECH-D-11-00019.1
https://doi.org/10.1175/MWR-D-12-00063.1

Jackson et al: PyDDA Art. 20, page 9 of 9

14. Lang, T, Souto, M, Khobahi, S and Jackson, B 2017
nasa/MultiDop: MultiDop v0.3. Version v0.3. Zenodo.
DOI: https://doi.org/10.5281/zenodo.1035904

15. Oliphant, T E 2006 A guide to NumPy. USA: Trelgol
Publishing.

16. Oliphant, T E, Peterson, P, et al. 2001 SciPy: Open
Source Scientific Tools for Python. Available at: http://
www.scipy.org/ [Online; accessed 2018-10-19].

17. Met Office 2015 Cartopy: a cartographic python
library with a matplotlib interface. Exeter, Devon.
Available at: http://scitools.org.uk/cartopy.

18. Hunter, J D 2007 Matplotlib: A 2D graphics
environment. Computing in Science & Engineering,
9(3): 90–95. DOI: https://doi.org/10.1109/MCSE.
2007.55

19. Helmus, J J and Collis, S M 2016 The Python ARM
Radar Toolkit (Py-ART), a Library for Working with
Weather Radar Data in the Python Programming
Language. Journal of Open Research Software, 4(1):
e25. DOI: https://doi.org/10.5334/jors.119

20. Liu, D C and Nocedal, J 1989 On the Limited Memory
Method for Large Scale Optimization. Mathematical
Programming B, 45(3): 503–528. DOI: https://doi.
org/10.1007/BF01589116

21. Collis, S, Protat, A, May, P T and Williams, C 2013
Statistics of Storm Updraft Velocities from TWP-ICE
Including Verification with Profiling Measurements. J.
Appl. Meteor. Climatol., 52: 1909–1922. DOI: https://
doi.org/10.1175/JAMC-D-12-0230.1

22. Blaylock, B K, Horel, J D and Liston, S T 2017
Cloud archiving and data mining of High-Resolution
Rapid Refresh forecast model output. Computers
& Geosciences, 109: 43–50. DOI: https://doi.org/
10.1016/j.cageo.2017.08.005

23. Horel, J and Blaylock, B 2018 Archive of the High
Resolution Rapid Refresh Model. Dataset. University of
Utah. DOI: https://doi.org/10.7278/S5JQ0Z5B

24. Roubicek, T, Calculus of variations 2014 Chap.17
In: Grinfield, M (ed.), Mathematical Tools for
Physicists, 551–588. Weinheim: J. Wiley.

How to cite this article: Jackson, R, Collis, S, Lang, T, Potvin, C and Munson, T 2020 PyDDA: A Pythonic Direct Data Assimilation
Framework for Wind Retrievals. Journal of Open Research Software, 8: 20. DOI: https://doi.org/10.5334/jors.264

Submitted: 28 February 2019 Accepted: 16 September 2020 Published: 07 October 2020

Copyright: © 2020 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

OPEN ACCESSJournal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press.

https://doi.org/10.5281/zenodo.1035904
http://www.scipy.org/
http://www.scipy.org/
http://scitools.org.uk/cartopy
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.5334/jors.119
https://doi.org/10.1007/BF01589116
https://doi.org/10.1007/BF01589116
https://doi.org/10.1175/JAMC-D-12-0230.1
https://doi.org/10.1175/JAMC-D-12-0230.1
https://doi.org/10.1016/j.cageo.2017.08.005
https://doi.org/10.1016/j.cageo.2017.08.005
https://doi.org/10.7278/S5JQ0Z5B
https://doi.org/10.5334/jors.264
http://creativecommons.org/licenses/by/4.0/

	(1) Overview
	Introduction
	Implementation and architecture
	3DVAR framework
	Optimization problem

	Data visualization
	Software Quality control
	Support
	Documentation
	Issues

	(2) Availability
	Operating system
	Programming language
	Additional system requirements
	Dependencies
	List of contributors
	Software location
	Language

	(3) Reuse potential
	A synergy of radar observations and models in Hurricane Florence
	Expanding PyDDA

	Acknowledgements
	Competing Interests
	References
	Table 1
	Table 2
	Table 3
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5

