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This software assimilates data from an arbitrary number of weather radars together with other spatial 
wind fields (eg numerical weather forecasting model data) in order to retrieve high resolution three 
dimensional wind fields. PyDDA uses NumPy and SciPy’s optimization techniques combined with the Python 
Atmospheric Radiation Measurement (ARM) Radar Toolkit (Py-ART) in order to create wind fields using 
the 3D variational technique (3DVAR). PyDDA is hosted and distributed on GitHub at https://github.com/
openradar/PyDDA. PyDDA has the potential to be used by the atmospheric science community to develop 
high resolution wind retrievals from radar networks. These retrievals can be used for the evaluation of 
numerical weather forecasting models and plume modelling. This paper shows how wind fields from 2 NEXt 
generation RADar (NEXRAD) WSR-88D radars and the High Resolution Rapid Refresh can be assimilated 
together using PyDDA to create a high resolution wind field inside Hurricane Florence.
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(1) Overview
Introduction
High resolution 3D wind retrievals have a wide range of 
practical applications. For example, 3D wind retrievals are 
frequently used to gain insight on the kinematic processes 
inside thunderstorms, hurricanes, and tornadoes (i.e. [1, 
2]). Furthermore, 3D wind fields are critical for dispersion 
modelling [3] and for predicting potential hazards to 
infrastructure. These wind retrievals are commonly 
created from data from networks of scanning weather 
radars such as those from the NEXt generation RADar 
(NEXRAD) network of WSR-88Ds installed by the National 
Oceanic and Atmospheric Adminstration (NOAA) all over 
the United States that can detect the velocity of particles in 
the direction of the radar beam over a volume, commonly 
called the radial or Doppler velocity [4, 5]. The NEXRAD 
network samples volumes of approximately 250 km by 
250 km by 20 km every 5 to 10 minutes. While other 
wind measurements such as profilers and anemometers 
provide the most accurate wind measurements, they 
measure a much more limited volume than a scanning 
radar being limited to the column and single point in 
space respectively. Numerical weather forecasting models 
provide 3D winds with a greater volume coverage than the 

NEXRAD network, but they are affected by uncertainties 
in the model prediction and assimilation and generally 
provide data at coarser spatial and temporal scales than 
wind observations made by scanning radars. Therefore 
a solution for integrating wind observations from many 
different sources operating at differing spatial and 
temporal scales has the best capability of providing a 
complete picture of the spatial and temporal evolution of 
the 3D wind field.

Since each sensor and model produces winds at 
differing spatial and temporal scales, retrieving the 3D 
winds from them is a nontrivial task. For a single radar, 
deriving a 3D wind field amounts to solving one equation 
with three unknowns since only the wind velocity in the 
direction relative to the radar beam is known. Therefore 
the problem of deriving 3D winds from one radar requires 
additional constraints. For more than one radar, we can 
increase the number of equations corresponding to each 
radar. However, even in the multi-radar scenario, there 
are measurement uncertainties related to the differing 
sampling strategies and sensitivities of each radar. 
Therefore extra assumptions must be made to retrieve the 
3D wind field from velocities recorded network of radars 
and produced by models. Two frameworks have typically 
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been used to retrieve the 3D winds from a network of radars. 
One is the framework that imposes a strong constraint by 
integrating the mass continuity equation from the surface 
to the top of the atmosphere [6, 7]. The other, is the 3D 
variational (3DVAR) framework that minimizes a sum of 
cost functions related to radar measurements, equations 
of motion, balloon based profiles of wind measurements 
and high resolution weather forecasting models [8, 9, 10, 
11, 12]. The 3DVAR framework has the advantage in that 
it is easier to integrate observations from extra sensors 
and models than the strong constraint framework and 
is less sensitive to initial and boundary conditions [9, 12, 
13]. Therefore, the current standard for 3D wind retrievals 
from radars is the 3DVAR framework.

Past software applied to 3D wind retrievals includes 
Custom Editing and Display of Reduced Information 
(CEDRIC) [13] and MultiDop [9, 11, 14]. CEDRIC is 
based off of the traditional mass continuity integration 
technique which, again, limits the ability of the user to 
account for measurement uncertainties than 3DVAR. 
While ground-breaking at the time, CEDRIC is difficult to 
use as it involves learning a separate scripting language 
just to use it. Multidop is a Python wrapper around a C 
program implementing the 3DVAR technique called Dual 
Doppler Analysis (DDA). Multidop bought 3DVAR winds 
to the open source community for the first time. However, 
it is based off of legacy code for the minimization of 
the cost function, can be difficult to compile, currently 
only supports up to 3 radars, is challenging to extend, 
and is not thread-safe for mass processing of winds on 
a multiple computational cores. Pythonic Direct Data 
Assimilation (PyDDA) was developed in order to make a 
fully Pythonic, open source solution for implementing the 
3DVAR framework for 3D wind retrievals where data from 
an arbitrary number of radars and models can be added. 
PyDDA is fully written in Python and is built on standard 
packages in the Scientific Python ecosystem including 
NumPy [15], SciPy [16], Cartopy [17], and matplotlib [18] 
as well as the Python ARM Radar Toolkit [19].

In this paper, we will first introduce how the 3DVAR 
framework in PyDDA was implemented using the Scientific 
Python ecosystem and how contributors can expand 
PyDDA to include their data. After that, an example case 
of using the software to retrieve winds from NEXRAD 

observations and High Resolution Rapid Refresh (HRRR) 
model runs in Hurricane Florence is presented. Finally, 
details on how PyDDA is quality controlled are presented.

Implementation and architecture
3DVAR framework
Let v(x, y, z) = (u(x, y, z), v(x, y, z), w(x, y, z)) ∈ ℜ3 be the 
analysis wind field over a Cartesian grid. The v(x, y, z) 
are defined over a discrete Cartesian grid of m by n by o 
points provided as (xijk, yijk, zijk) for i ∈ [0, m), j ∈ [0, n), 
and k ∈ [0, o). PyDDA derives v(xijk, yijk, zijk) for i ∈ [0, m), 
j ∈ [0, n) by finding the v(xijk, yijk, zijk) that minimizes the 
cost function in Equation (1).
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with a gradient ∇J(v) that is the sum of the gradients Cn 
∇Jn of each term in Equation 1. All of the Jn, ∇Jn terms are 
defined as in Tables 1 and 2. Detailed formulas of each 
function in Tables 1 and 2 are available in the source 
code of the cost_functions module and in [9, 10, 
11]. Equation (1) is written in Python using the NumPy 
and SciPy libraries.

The Cn terms are user adjustable weighting coefficients 
for each constraint. Therefore, the importance of a 
particular measurement or model derived data point to the 
constraint can be adjusted. This is useful for accounting 
for the uncertainties in each constraint. For example, the 
retrieval can be more weakly constrained by model data 
that has higher uncertainty than the radar observations. 
Furthermore, since Equation (1) is a sum of cost functions 
and their gradients, adding more terms to Equation (1) is a 
simple way to expand this framework. All of the functions 
in Tables 1 and 2 are currently implemented in the 
cost_functions module of PyDDA.

Optimization problem
Finding the v(xijk, yijk, zijk) that minimizes J(v) involves the 
minimization of a cost function of the order of a million 
(3mno) dimensions, three dimensions for each (xijk, yijk, zijk) 
for i ∈ [0, m), j ∈ [0, n), and k ∈ [0, o). SciPy’s implementation 
of the Limited Memory Broyden-Fletcher-Goldfarb-Shanno 
Bounded (L-BFGS-B) optimization technique is suited for 

Table 1: List of cost functions currently implemented in PyDDA.

Cost Function Symbol Routine

Total J(v) J_function

Radar observations Jo
calculate_radial_vel_cost_function

Mass continuity Jmass
calculate_mass_continuity

Vertical vorticity Jv
calculate_vertical_vorticity_cost

Rawinsonde Jr
calculate_background_cost

Smoothness Js
calculate_smoothness_cost

Model Jmodel
calculate_model_cost

Point Jpoint
calculate_point_cost
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minimizing such a cost function [16, 20]. The L-BFGS-B 
technique needs the cost function J(v), its gradient ∇J(v), 
the bounds of v(xijk, yijk, zijk) and initial guess of v(xijk, yijk, zijk) 
for i ∈ [0, m), j ∈ [0, n), and k ∈ [0, o), all of which are 
obtainable since J(v) is twice differentiable. L-BFGS-B is 
suited for minimizing J(v) as it is designed to conserve 
memory which is important when the dimensionality of 
J(v) is on the order of millions. Furthermore, since L-BFGS-B 
minimizes J(v) over a bounded domain, this ensures that 
convergence to a physically realistic solution is reached. 
In addition, SciPy’s implementation of L-BFGS-B takes 
advantage of as many cores that are present in a single 
machine allowing for fast convergence.

The retrieval module contains the code that 
implements the 3DVAR technique using L-BFGS-B. In 
particular, the code is contained within the get_dd_
wind_field procedure which takes in input from an 
arbitrary number of Py-ART Grid objects representing 

an arbitrary number of radars and automatically enters 
in the optimal inputs to L-BFGS-B for the user. get_
dd_wind_field will run iterations of L-BFGS-B until 
convergence is reached. Convergence is reached when 
either |∇(J(v))|<10–3 or when the maximum change in w 
over 10 iterations is less than 0.2 m s–1.

Another component of the optimization problem is 
that the final v may be sensitive to the initial guess for 
v. Therefore, PyDDA has an initalization module 
that provides users with several options for initial guesses 
listed in Table 3. All of these functions return the initial 
v as a 3-tuple of NumPy arrays on the Py-ART Grid 
objects’ grid. This standardized form for outputs in the 
initialization module allows for the addition of 
custom initializations.

Having both the initialization and retrieval contained 
within PyDDA reduces the wind retrieval technique to just 
a few lines of code as shown below.

import pyart
import pydda

berr_grid = pyart.io.read_grid(“grid1.nc”)
cpol_grid = pyart.io.read_grid(“grid2.nc”)
sounding = pyart.io.read_arm_sonde(“arm_sounding.cdf”)

# Load sounding data and insert as an intialization
u_init, v_init, w_init = pydda.initialization.make_wind_field_from_profile(
 cpol_grid, sounding)

# Start the wind retrieval. This example only uses the mass
# continuity and radar observational constraints.
Grids = pydda.retrieval.get_dd_wind_field([berr_grid, cpol_grid],
 u_init, v_init, w_init, Co=10.0, Cm=1500.0)

In addition to constraining against radar observations, 
PyDDA includes support for constraining against model 
wind data interpolated to the analysis grid. Currently, 
the constraints module contains procedures that 
interpolate WRF and HRRR data to PyDDA’s analysis grid 

using SciPy’s interpolation module. These modules add 
model fields to Py-ART Grid objects using the NetCDF4 and 
cfgrib modules for reading the model data. get_dd_wind_
field takes in any number of wind fields with any name, 
adding support for more constraints from various data.

Table 2: List of cost function gradients currently implemented in PyDDA.

Cost Function Symbol Gradient

Total ∇J(v) grad_J

Radar observations ∇Jo
calculate_grad_radial_vel

Mass continuity ∇Jmass
calculate_mass_continuity_gradient

Vertical vorticity ∇Jv
calculate_vertical_vorticity_gradient

Rawinsonde ∇Jr
calculate_background_gradient

Smoothness ∇Js
calculate_smoothness_gradient

Model ∇Jmodel
calculate_model_gradient

Point ∇Jpoint
calculate_point_cost

Table 3: List of current initialization options in PyDDA.

Initialization Routine name

Constant wind field make_constant_wind_field

Py-ART HorizontalWindProfile object make_wind_field_from_profile

Weather Research and Forecasting (WRF) make_background_from_wrf

High Resolution Rapid Refresh (HRRR) make_initialization_from_hrrr
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Data visualization
In addition to calculation, PyDDA comes with a basic 
visualization module that supports the plotting of 
wind barbs and streamlines over gridded radar reflectivity 
fields for easy viewing of the results. visualization 
was written in Python and uses the matplotlib and cartopy 
libraries for visualization of the data. Figure 1 shows an 
example cross section through a thunderstorm sampled 
by 2 Doppler radars in Darwin, Australia. In addition to 
plotting over the analysis grid, plotting over geographic 
maps is supported through the use of the cartopy package 
[17], with an example streamline plot shown in Figure 2.

Software Quality control
Using the GitHub issue tracker, users can request for help 
with PyDDA as well as point out potential issues with the 
software. This provides a forum for contributors to make 
various improvements to PyDDA. When a contributor 
makes a modification to PyDDA, the contributor submits a 
pull request to the master branch of openradar/PyDDA 
on GitHub. For each pull request, pytest runs a suite of 
tests on each module of PyDDA to assure that the quality of 
the retrievals are maintained. In addition, whenever a user 
submits a pull request on GitHub, Travis CI builds PyDDA in 
the test environment and runs pytest whenever a pull request 
is made to the master branch of PyDDA. Travis CI runs these 

tests on Python 3.6, 3.7, and 3.8 environments on Linux. If the 
build from Travis CI fails, the contributor is asked to resolve 
the issues with the code until the continuous integration 
completes successfully. In addition, each pull request has 
to be approved by the main developer. Therefore, the main 
developer determines if the contributor should write a unit 
test for their added module. Furthermore, PyDDA is also 
released on the conda-forge repository which requires that 
Circle CI, Travis CI, and AppVeyor all run PyDDA’s unit tests 
before the release is published on conda-forge.

Unit tests also need to validate the results of PyDDA 
against basic dynamical principles. For example, the unit 
tests that tests the get_dd_wind_field function will 
perform the retrieval on the example in Figure 2 against 
previous 3DVAR retrievals of this same dataset by [21]. 
While there are differences between the retrieval used 
by [21] and in PyDDA, both [21] and PyDDA should show 
resolve a strong updraft (w > 1) in the location given in 
Figure 2b. Therefore, the test checks for the presence of 
this updraft. In order to test individual cost functions, 
properties of the wind field that would be expected from 
physical or mathematical principles are checked. For 
example, in order to test the Jmass = ∇ · v, the test check 
to see if Jmass is zero in a constant wind field, but negative 
in a convergent wind field and positive in a divergent 
wind field.

Figure 1: An example wind barb plot overlaid on radar reflectivity at 3.5 km altitude for winds retrieved in thunderstorms 
sampled by 2 radars over Darwin. Contours represent the presence of updrafts with given velocities at the 3.5 km 
height level. The area inside the two circles indicate where the wind retrieval is most reliable.
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Support
Documentation
Documentation is provided at http://openradarscience.
org/PyDDA. It is automatically updated by Travis CI when 
pull request to the master branch is approved on GitHub. 
Sphinx automatically generates documentation from the 
docstrings at the top of each procedure that are written 
in reStructuredText. Travis CI, using doctr, will run Sphinx 
every time a pull request to the master branch is approved 
in order to update the documentation. Therefore, 
contributors must provide documentation in docstrings 
at the top of their procedures. Three examples on how 
to use PyDDA are provided in the documentation. Any 
user can download and run them to check if the PyDDA 
is working.

Issues
Developing wind retrievals from radars is typically a 
complicated task. Therefore, PyDDA has support methods 
available for users. The primary method of support is 
through PyDDA’s issue tracker on GitHub. On the issue 

tracker, users are encouraged to ask questions as well as 
point out potential bugs in PyDDA. In addition, users can 
provide input for features they would like to see as well as 
develop their own contributions. The PyDDA developers 
will examine each issue and provide support. If the issue 
is related to a bug in PyDDA, either the developer or the 
contributor will work on resolving the bug.

(2) Availability
Operating system
Windows, Mac OS X, and Linux

Programming language
Python 3.6+

Additional system requirements
We recommend:

1. 8+ GB RAM
2. 1 GB+ of hard drive space.
3. An Intel x86 compatible CPU with 4+ cores.

Figure 2: (a) An example streamline plot overlaid on radar reflectivity at 3 km altitude observed from 2 radars over 
Darwin, Australia. Contours represent horizontal wind speed. (b) as (a), but zoomed into the region enclosed by the 
grey box. Contours represent vertical wind speed.

http://openradarscience.org/PyDDA
http://openradarscience.org/PyDDA
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Dependencies 
NumPy, SciPy, matplotlib, Py-ART, cartopy are required. 
cfgrib is needed for reading HRRR data, but is currently 
optional as cfgrib does not work on Windows.
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(3) Reuse potential
PyDDA has many applications within meteorology as in 
fields such as air quality modelling and civil engineering. As 
of the writing of this article, the authors are collaborating 

with Dan Chavez at Purdue University to use PyDDA’s 
wind fields to create databases of 3D winds in Hurricane 
Florence and Michael for improving hurricane prediction. 
In a project funded by the Department of Energy’s Office 
of Energy Efficiency & Renewable Energy, PyDDA will 
produce wind fields for assessing the effects of damaging 
winds on the electric grid. In addition, 3D wind retrievals 
are vital to understanding thunderstorm dynamics so an 
open source solution for such retrievals has great potential 
to be used by the meteorology community.

A synergy of radar observations and models in 
Hurricane Florence
Using PyDDA, combining observations from high resolu-
tion forecasting models and radar observations to create 
a more complete picture of the 3D wind field inside a 
hurricane is simple. For this example, we will show how 
the winds inside Hurricane Florence can be retrieved 
using PyDDA and show how using radar and model data 
together demonstrates the improvement in capabilities 
that PyDDA provides compared to previous software.

On 14 September 2018, Hurricane Florence was 
within range of 2 radars from the NEXRAD network: 
KMHX stationed in Newport, NC and KLTX stationed in 
Wilmington, NC. Both radars provided continuous 3D 
observations of radial velocities inside Hurricane Florence 
as it made landfall over North Carolina. In addition, the High 
Resolution Rapid Refresh (HRRR) model was run at every 
hour, providing model reanalysis of observational data at an 
hourly temporal resolution and a 3.7 km spatial resolution. 
The archived HRRR data that is supported by PyDDA can 
be downloaded from the University of Utah’s HRRR archive 
[22, 23].

As one can see, in Figure 3 we have an incomplete 
picture of the wind field inside Hurricane Florence as 
the 2 NEXRAD radars only provide partial coverage of 
the winds at 0.5 km altitude. Therefore, we also constrain 

Figure 3: Winds at 0.5 km retrieved by PyDDA using only data from the 2 NEXRAD radars overlaid on a reflectivity 
mosaic generated from the two NEXRAD radars. Barbs are in m s–1.
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against the HRRR calculated winds in Figure 4, which 
gives us the retrieval in Figure 5. As you can see, a much 
more complete picture of Hurricane Florence is provided, 
showing that Eastern North Carolina is indeed having 
winds much higher than the 10 m s–1 inferred by Figure 3 
and also showing the cyclonic circulation that would be 
expected in a hurricane. This shows how the integration 
of data from multiple sources enhances the applicability 
and expandability of PyDDA compared to other software, 
as Multidop and CEDRIC did not support the integration 
of model data.

Expanding PyDDA
PyDDA was designed so that contributors can easily add 
cost functions and custom initializations to PyDDA. In 
particular, since Equation (1) is a sum of cost functions, 
adding terms to Equation (1) expands the framework. 
The cost_functions module contains all of the cost 
functions that are used by PyDDA. Expanding the code to 
incorporate more cost functions involves implementing 
the cost function, its gradient, and then adding the 
cost function to the J_function in the cost_
functions module and the gradient to grad_J in 

Figure 4: As Figure 3, but only using the HRRR model as a constraint.

Figure 5: As Figure 3, but using both the radar and HRRR winds as constraints.
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the cost_functions module. Since a cost function 
will typically be the integral of a function over a grid, 
commonly called a functional, the gradients are derived by 
taking the functional derivative of the cost function. For 
more information on functional derivatives, see [24]. See 
[10] for formulas for the gradients to the mass continuity 
and radar observational cost functions currently used 
in PyDDA. Since the functional derivatives and the cost 
functions have explicit forms, they are all implemented 
into PyDDA using NumPy [14] and SciPy [15].

The constraints module can be expanded to 
include more functions that interpolate data from various 
datasets to the analysis grid. Currently, it has two examples 
from HRRR and WRF data. The get_dd_wind_field 
already is able to take in any number of models with any 
field name, so any function that interpolates a dataset can 
be added to the constraints module.

Another way that PyDDA can be expanded is by adding 
in custom initializations to the 3DVAR technique. Since 
Py-DDA takes in a 3-tuple of NumPy arrays representing v 
with the same shape as the analysis grid as an initialization, 
any function that returns this 3-tuple can be added to 
the initialization module. Example initializations 
consisting of a constant wind field, a sounding, and HRRR 
and WRF outputs are already in PyDDA.

The PyDDA development team is currently seeking 
collaborators for expanding the functionality of PyDDA. 
If a user needs help in expanding PyDDA to include their 
own sensor or model, they are encouraged to contact 
the main developer currently supporting PyDDA, Robert 
Jackson, at rjackson@anl.gov for collaboration on this 
effort. There is a contributor’s guide in the documentation 
that shows the code style, code of conduct, license, and 
documentation standards that must be followed for each 
contribution. In addition, we have published a roadmap of 
the eventual goals of PyDDA, available at https://github.
com/openradar/PyDDA/blob/master/ROADMAP.md that 
show what contributions to PyDDA are useful.
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