
Radtke, H, et al. 2019 Validator – a Web-Based Interactive
Tool for Validation of Ocean Models at Oceanographic
Stations. Journal of Open Research Software, 7: 18. DOI:
https://doi.org/10.5334/jors.259

Journal of
open research software

SOFTWARE METAPAPER

Validator – a Web-Based Interactive Tool for Validation
of Ocean Models at Oceanographic Stations
Hagen Radtke1, Florian Börgel1, Sandra-Esther Brunnabend1, Anja Eggert1,2, Madline
Kniebusch1, H. E. Markus Meier1,3, Daniel Neumann1, Thomas Neumann1 and Manja Placke1

1	 Section of Physical Oceanography and Instrumentation, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Seestr 15,
Rostock, DE

2	 Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, Dummerstorf, DE
3	 Swedish Meteorological and Hydrological Institute, Norrköping, SE
Corresponding author: Hagen Radtke (hagen.radtke@io-warnemuende.de)

Numerical ocean models, like other geoscientific models, are a strongly simplified representation of real
oceans. They are used as tools to answer research questions about the real-world systems. Therefore,
their thorough validation is essential to ensure that the conclusions drawn from the model experiment
are valid in reality. We demonstrate a software which allows an interactive model validation through a
web interface based on the R Shiny framework. At pre-defined stations, different kinds of plots can be
rendered within a few seconds, according to the user’s choice, allowing a live validation of different
model parameters even in model simulations which are still running. This makes it different from validation
approaches which generate a pre-defined set of plots after the calculations have finished and make it
particularly useful for model tuning purposes. Observation data can be read in from text files or can be
extracted from a database.

Once set up, the validation tool requires no technical skills to use. It can be used for single- or
multi-model validation and allows saving the generated plots as high-resolution images suitable for use
in scientific publications.

A Linux operating system is required for the Validator app, but via a virtual machine, the software can
run on Windows or MacOS hosts as well. A Dockerfile is supplied which allows to test the software with
example data without installation.

Keywords: Validation; Ocean model; Station data; Database; Model intercomparison
Funding statement: This software was developed at the Leibniz Institute for Baltic Sea Research
Warnemünde (IOW) on institutional funding.

(1) Overview
Introduction
Functionality
The software aims at comparing ocean model output,
which may be both physical or biogeochemical, to
oceanographic observations.

The user selects

•	 	a data set containing a pre-defined list of
oceanographic stations, i.e., all stations of a particular
measurement network,

•	 	an oceanographic station from this dataset, either via
a drop-down list or via a map,

•	 	a variable to compare between model results and
measurements, e.g., temperature,

•	 	between one and four models whose results will be
compared to the observed data, and

•	 	a plot type of their choice.

Five different kinds of plots can be selected, see
Figure 1:

•	 	Time series
◦	� Model data are averaged vertically over a chosen

depth interval and drawn as curves over time.
Measurements from within the depth range are
drawn as points.

•	 	Vertical profile
◦	 Model data are time-averaged over a selected

period and month range, e.g., Dec-Feb, and drawn
as curves over depth. Individual measurements
are drawn as points.

•	 	Scatter plot
◦	 Model results at the same time and location as

the measurements are plotted against these
observations.

•	 	Taylor diagram

https://doi.org/10.5334/jors.259
mailto:hagen.radtke@io-warnemuende.de

Radtke et al: Validator – a Web-Based Interactive Tool for Validation of Ocean
Models at Oceanographic Stations

Art. 18, page 2 of 6

◦	 The standard deviation in model data and
measurements, the correlation between them
and the standard error are shown in the same
diagram following [1].

•	 	Seasonal and/or long-term signal extracted with a
Generalised Additive Mixed Model (GAMM)
◦	 Model data are vertically averaged to create a

time series. Then, a GAMM model [2] is used to
fit smooth splines through measurements and
model results. Both long-term and periodic 	n a l
splines can be selected. The latter allows for
a comparison of the seasonal cycle between
model and measurements. This can be used to
compare seasonality and long-term trends in the
data.

A set of additional options exists depending on the plot
type, e.g., showing the 5th and 95th percentile in a vertical
profile plot. Also, the user can select a sub-range of time
or depth, which allows a detailed exploration of individual
aspects of model behaviour.

Implementation overview
The software is implemented as an R Shiny app [3], making
it easy to use via an interactive web-based front-end. The
back-end can run both on a private computer or on a
server. It requires RStudio or Shiny Server, respectively, and
a Linux operating system, possibly in a virtual machine.
A Dockerfile is supplied such that the software can be
used with example data without the need to install the
software itself. The use of the Dockerfile and installation

instructions are explained in the user’s guide. The software
can load model data from a predefined list of models given
in a text file. The same applies for measurement datasets.
The app requires read access to the data over the (server-
side) file system, an online upload of data is not intended.
Model data have to be provided in the NetCDF format [4]
and measurement data as text files or via an SQL database.
We refer to the user’s guide for details on the format of
the required data.

Alternatives
This software is, to our best knowledge, the first example
of a web-based open-source solution aimed at validating
ocean model output. There are, however, alternative
software packages which could be used to obtain similar
validation results.

The first alternative is the use of visualisation software
for geodata. This includes the programs NOAA Ferret [5]
and GrADS [6], which are specialised software solutions
for geodata visualisation. The diversity of statistics and
plots which can be produced by these programs strongly
exceeds the possibilities in our software. This, however,
comes at the expense of a dedicated script language
which needs to be learned in order to perform the
required tasks.

A second alternative is the use of more general script
languages like R [7] or MATLAB [8], for which packages for
model data access or validation routines exist. An example
for accessing model results from the R programming
language is the package rNOMADS [9]. An example for a
library of scripts for doing a numerous set of validation

Figure 1: Examples of plots generated by Validator: (a) time series, (b) nonlinear seasonal trend, (c) scatter plot,
(d) vertical profile, (e) Taylor diagram.

Radtke et al: Validator – a Web-Based Interactive Tool for Validation of Ocean
Models at Oceanographic Stations

Art. 18, page 3 of 6

plots is the open-source Python package VACUMM by
Ifremer [10].

A third alternative to our Validator is the use of software
which aims at assigning model scores as a measure of
the goodness of the fit, rather than providing graphical
evaluation. Software of this kind can be used for model
intercomparison and assessing which model performs
best compared to a predefined set of measurements.
Examples for these tools are the NOAA model skill
assessment software [11] or the ESMValTool [12], which
is designed for obtaining performance metrics of Earth
system models from the Coupled Model Intercomparison
Project (CMIP6).

Implementation and architecture
The software provides a user interface generated by the R
Shiny framework. In this framework, a Shiny server acts
as a web server which creates an Asynchronous JavaScript
and XML (AJAX) based user interface from R code. This
user interface contains widgets, in our case drop-down
boxes and radio buttons which allow the user to select

•	 	a measurement dataset containing a pre-defined list
of oceanographic stations, i.e., all stations of a particu-
lar measurement network,

•	 	an oceanographic station from this dataset, either via
a drop-down list or via a map,

•	 	one to four models whose results will be compared to
the observed data,

•	 	a variable to compare between model and measure-
ments, e.g., temperature,

•	 	a plot type of their choice, and
•	 	range settings (time, depth, season) depending on the

type of plot.

When the user selects one option, the AJAX widgets
communicate this choice to the Shiny server, where the
chosen values are stored in so-called “reactive expressions”.
These reactive expressions are passed as arguments to the
plotting function, which will be explained in detail later.
The result of the plotting function is the desired diagram,
which is shown as output in the validator application. The
concept of the “reactive expressions” is that an update of

their values, e.g., when the user selects a new oceanographic
station, causes all functions depending on them to be
re-evaluated. In this case, this means drawing a new plot.

The plotting function launches a separate process using
the “mcparallel” function in R (system package “parallel”).
This keeps the user interface responsive during the
plotting process. Should the user select different options
(i.e., demand a different plot) before the plotting process
is finished, it will be aborted and a new plotting process
will be started instead.

There is an exception to this rule, which prevents the
starting of too many plotting processes in a short time.
E.g., this would happen if the user uses the up/down
arrows at a numeric input field to change its value (e.g.,
from a depth of 5 m to 10 m by clicking the “up” arrow 5
times. The exception says that if a new plot is desired too
quickly after the last one (in our implementation less than
0.8 seconds after the last plotting started), plotting will
be delayed until no new plot has been requested during
a period of these 0.8 seconds. So, the program waits until
the user has finished their choice. Figure 2 shows a flow
chart which visualises the course of action when a plotting
process is started.

The plotting function itself consists of five steps:

1. �Checking the consistency of the input arguments
2. Loading model data
3. Loading measurement data
4. �If required, discarding the months which are not part

of the selected seasonal range
5. �Calling the actual plot function, depending on the

plot type

These steps will be outlined in the following subsections.
The same plotting function will also be executed when

the user clicks a “save the plot as …” button, in which case
it will provide a PNG image file with publication-ready
resolution for download.

Checking the consistency of input arguments
The plotting process only continues if the input passes
some basic checks, e.g., if the input type is numeric or if
upper range limits are below lower range limits.

Figure 2: Flow chart diagram showing the course of action when a plotting process will be started as a separate process.

Radtke et al: Validator – a Web-Based Interactive Tool for Validation of Ocean
Models at Oceanographic Stations

Art. 18, page 4 of 6

Loading model data
The required time and depth range of the selected variable
is read from the input file and loaded into memory, for up
to four selected models. Model data need to be provided
as one NetCDF file per oceanographic station. For format
details we refer to the user’s guide.

Loading measurement data
Measurement data can be either loaded from an ASCII
file or from a database. Both methods are illustrated in
the example setup we provide. We use the open-source
data base MariaDB, but any database which supports
SQL queries should work. R connects to the data base via
the package RMariaDB. Two tables need to be provided
in the data base: The “measurements” table contains the
observation values and the time and depth in which they
were taken, while the “variables” table contains details
about the observed variable, e.g., the name and unit.
Details can be found in the user’s guide. After the data
are loaded from a data base, they are stored in a cache
directory to minimise data base requests. In summary, this
takes the following steps:

1.	If data for the selected station and temporal range
do not exist in the cache directory, perform a cor-
responding data base request and save the acquired
data in ASCII format. During the processing of the
data base request, the process cannot be aborted
when the user selects a new plot, but its creation will
be delayed.

2.	Data will be loaded from the corresponding ASCII file
in the cache directory.

3.	The selected subrange of depth and time will be
selected.

Select seasonal range
The user can select a range of months (e.g., Dec to Feb)
which they want to include in the plot output. Both
measurements and model data outside the given range
will be discarded.

Calling the actual plot function, depending on the
plot type
The actual plot function will create a plot showing both
the model data (of up to four models) and observations.
The “ggplot2” package is used. The first three plot types
(time series, vertical profile, scatter plot) require no
further explanation.

Choosing the option “Taylor diagram” will plot a Taylor
diagram [1] displaying three measures of the model fit to
the measurements at the same time: Pearson´s correlation
coefficient, root mean squared error and the standard
deviation.

Choosing the option “seasonal/long term trend” will
fit each one Generalised Additive Mixed Model (GAMM)
[2] through the observations and every model’s data. The
data are modelled by fitting two smooth splines: One of
them is periodic with a one-year period describing the
seasonality of the measured variable, the second one
describes the long-term behaviour. The random error

terms are represented by a first-order autoregressive
model (continuous AR-1) [2]. Plotting the resulting
splines allows to independently evaluate whether or not
(a) the seasonality of the observed variable and (b) the
(non-linear) long-term trend match between model(s) and
observations.

Quality control
No additional testing has been carried out on the code
apart from its regular practical application at our institute
since 2017. As the functionality of the program is only to
generate plots from existing data, it is itself of rather low
complexity and therefore not very error prone.

The last two plot types require statistical methods to
be applied to the data before plotting. These algorithms
are of a higher complexity. Our program uses existing
R functions and packages for this task, and we rely on
their correctness, which is supported by the open-source
availability of the code and the frequent use of the
functions by a broad community.

Examples with sample input data are provided together
with the model code, and the resulting figures can be
compared to those shown in the user’s guide to check
whether the program is working properly.

(2) Availability
Operating system
The software is written in R, but still requires a Linux
environment due to the use of forking (function
mcparallel) in the parallel package. However, it can be run
both locally or as a web server application. When running
as a web server, e.g., on a virtual machine, clients can use
the software from any operating system with a modern
web browser (works at least with Mozilla Firefox 65.0 and
Microsoft Edge 42.17134.1.0).

Programming language
Software is written in R using the R Shiny framework. It
requires R version 3.5.1.

Additional system requirements
If live-extraction of measurements from a database is used,
hard disk space in the order of 1 GB can be required for
cached files, depending on the number of observations.

Dependencies
The software requires installation of the following R
packages:

•	 	ggplot2 2.2.1
•	 	RNetCDF 1.9-1
•	 	shiny 1.0.5
•	 	plotrix 3.7-2
•	 	RCurl 1.95-4.10
•	 	mgcv 1.8-23

If measured data are live-extracted from a database,
additional packages may be required for database access.
If the example MySQL database is used, the package
RMariaDB 1.0.6 is required.

Radtke et al: Validator – a Web-Based Interactive Tool for Validation of Ocean
Models at Oceanographic Stations

Art. 18, page 5 of 6

List of contributors
All of the authors contributed to the creation or testing of
the software.

Software location
Archive

Name: IOW institutional repository
�Persistent identifier: doi: 10.12754/prog-2019-0001-01
Licence: MIT
Publisher: Hagen Radtke
Version published: 1.0.1
Date published: 16/05/19

Code repository
Name: GitHub
Identifier: https://github.com/hagenradtke/validator
Licence: MIT
Date published: 16/05/19

Language
The software is in English only.

(3) Reuse potential
The software in its present state can be used by any
group of ocean modellers to validate their models against
oceanographic observations. All that needs to be done
is to save observed and modelled data in the required
formats as specified in the user’s guide. Users can also
connect their own measurement database to the software
if they provide an R subroutine to obtain the data from
the database. Also, adding other plot types like, e.g., a
Hovmöller diagram [13] is straightforward.

The program could also be extended to include
measurements not taken at a fixed oceanographic station,
e.g., satellite or glider data. This would, however, require
substantial modifications. Anyone interested in extending
the present software is encouraged to contact the
corresponding author.

Acknowledgements
We would like to thank Steffen Bock from the IT
department at our institute for setting up and maintaining
the R Shiny server. We are grateful to the R Core team [7]
and the developers of the R Shiny framework [14] as well
as the other packages stated above [15–20] for providing
their contributions as free software. The development
of the Validator supports the Earth System Science for
the Baltic Sea region of the Baltic Earth program (Earth
System Science for the Baltic Sea region, see http://www.
baltic.earth).

Competing Interests
The authors have no competing interests to declare.

References
1.	 Taylor, K E 2001 Summarizing multiple aspects

of model performance in a single diagram. Journal
of Geophysical Research: Atmospheres, 106(D7):
7183–7192. DOI: https://doi.org/10.1029/2000J​
D900719

2.	 Pinheiro, J and Bates, D 2000 Mixed-Effects Models in
S and S-PLUS. New York: Springer-Verlag. DOI: https://
doi.org/10.1007/978-1-4419-0318-1

3.	 Chang, W, Cheng, J, Allaire, J J, Xie, Y and
McPherson, J 2017 shiny: Web Application Framework
for R [online]. Available from: https://CRAN.R-project.
org/package=shiny [Accessed 17 May 2018].

4.	 Unidata 2017 NetCDF [online]. Available from:
https://www.unidata.ucar.edu/software/netcdf/
[Accessed 17 May 2018].

5.	 https://ferret.pmel.noaa.gov/Ferret/.
6.	 http://cola.gmu.edu/grads/.
7.	 R Core Team 2018 R: A language and environment for

statistical computing. Vienna, Austria: R Foundation
for Statistical Computing. https://www.R-project.
org/.

8.	 https://www.mathworks.com/products/matlab.html.
9.	 Bowman, D C and Lees, J M 2015 Near Real Time

Weather and OceanModel Data Access with rNOMADS.
Comput. Geosci, 78(C): 88–95. DOI: https://doi.
org/10.1016/j.cageo.2015.02.013

10.	Raynaud, S and Charria, G 2017 VACUMM — VACUMM
v3.5.0 documentation [online]. Available from:
http://www.ifremer.fr/vacumm/ [Accessed 17 May
2018].

11.	Zhang, A, Hess, K W, Wei, E and Myers, E 2006
Implementation of model skill assessment software
for water level and current in tidal regions. NOAA
technical report NOS CS 24 [online]. Available from:
https://repository.library.noaa.gov/view/noaa/2204
[Accessed 17 May 2018].

12.	Eyring, V, Righi, M, Lauer, A, Evaldsson, M, Wenzel,
S, Jones, C, Anav, A, Andrews, O, Cionni, I, Davin, E
L, Deser, C, Ehbrecht, C, Friedlingstein, P, Gleckler,
P, Gottschaldt, K-D, Hagemann, S, Juckes, M,
Kindermann, S, Krasting, J, Kunert, D, Levine, R,
Loew, A, Mäkelä, J, Martin, G, Mason, E, Phillips, A
S, Read, S, Rio, C, Roehrig, R, Senftleben, D, Sterl,
A, Ulft, L H, van Walton, J, Wang, S and Williams,
K D 2016 ESMValTool (v1.0) – a community diagnostic
and performance metrics tool for routine evaluation
of Earth system models in CMIP. Geoscientific Model
Development, 9: 1747–1802. DOI: https://doi.
org/10.5194/gmd-9-1747-2016

13.	Hovmöller, E 1949 The trough-and-ridge diagram.
Tellus, 1(2): 62–66. DOI: https://doi.org/10.3402/
tellusa.v1i2.8498

14.	Chang, W, Cheng, J, Allaire, J J, Xie, Y and
McPherson, J 2018 shiny: Web Application Framework
for R. R package version 1.1.0. https://CRAN.R-project.
org/package=shiny.

15.	Wickham, H 2009 ggplot2: Elegant Graphics for
Data Analysis. New York: Springer. DOI: https://doi.
org/10.1007/978-0-387-98141-3

16.	Michna, P and Woods, M 2017 RNetCDF:
Interface to NetCDF Datasets. R package
version 1.9-1. https://CRAN.R-project.org/
package=RNetCDF.

17.	Lemon, J 2006 Plotrix: a package in the red light
district of R. R-News, 6(4): 8–12.

https://doi.org/10.12754/prog-2019-0001-01
https://github.com/hagenradtke/validator
http://www.baltic.earth
http://www.baltic.earth
https://doi.org/10.1029/2000JD900719
https://doi.org/10.1029/2000JD900719
https://doi.org/10.1007/978-1-4419-0318-1
https://doi.org/10.1007/978-1-4419-0318-1
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny
https://www.unidata.ucar.edu/software/netcdf/
https://ferret.pmel.noaa.gov/Ferret/
http://cola.gmu.edu/grads/
https://www.R-project.org/
https://www.R-project.org/
https://www.mathworks.com/products/matlab.html
https://doi.org/10.1016/j.cageo.2015.02.013
https://doi.org/10.1016/j.cageo.2015.02.013
http://www.ifremer.fr/vacumm/
https://repository.library.noaa.gov/view/noaa/2204
https://doi.org/10.5194/gmd-9-1747-2016
https://doi.org/10.5194/gmd-9-1747-2016
https://doi.org/10.3402/tellusa.v1i2.8498
https://doi.org/10.3402/tellusa.v1i2.8498
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny
https://doi.org/10.1007/978-0-387-98141-3
https://doi.org/10.1007/978-0-387-98141-3
https://CRAN.R-project.org/package=RNetCDF
https://CRAN.R-project.org/package=RNetCDF

Radtke et al: Validator – a Web-Based Interactive Tool for Validation of Ocean
Models at Oceanographic Stations

Art. 18, page 6 of 6

18.	Lang, D T and CRAN team 2018 RCurl: General
Network (HTTP/FTP/…) Client Interface for R. R
package version 1.95-4.10. https://CRAN.R-project.
org/package=RCurl.

19.	Wood, S N 2011 Fast stable restricted maximum
likelihood and marginal likelihood estimation
of semiparametric generalized linear models.

Journal of the Royal Statistical Society (B), 73(1):
3–36 DOI: https://doi.org/10.1111/j.1467-
9868.2010.00749.x

20.	Müller, K, Ooms, J, James, D, DebRoy, S, Wickham,
H and Horner, J 2018 RMariaDB: Database Interface
and ‘MariaDB’ Driver. R package version 1.0.6. https://
CRAN.R-project.org/package=RMariaDB.

How to cite this article: Radtke, H, Börgel, F, Brunnabend, S-E, Eggert, A, Kniebusch, M, Meier, H E M, Neumann, D, Neumann,
T and Placke, M 2019 Validator – a Web-Based Interactive Tool for Validation of Ocean Models at Oceanographic Stations.
Journal of Open Research Software, 7: 18. DOI: https://doi.org/10.5334/jors.259

Submitted: 14 February 2019 Accepted: 20 May 2019 Published: 12 June 2019

Copyright: © 2019 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

OPEN ACCESSJournal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press

https://CRAN.R-project.org/package=RCurl
https://CRAN.R-project.org/package=RCurl
https://doi.org/10.1111/j.1467-9868.2010.00749.x
https://doi.org/10.1111/j.1467-9868.2010.00749.x
https://CRAN.R-project.org/package=RMariaDB
https://CRAN.R-project.org/package=RMariaDB
https://doi.org/10.5334/jors.259
http://creativecommons.org/licenses/by/4.0/

	(1) Overview
	Introduction
	Functionality
	Implementation overview
	Alternatives

	Implementation and architecture
	Checking the consistency of input arguments
	Loading model data
	Loading measurement data
	Select seasonal range
	Calling the actual plot function, depending on the plot type

	Quality control

	(2) Availability
	Operating system
	Programming language
	Additional system requirements
	Dependencies
	List of contributors
	Software location
	Archive
	Code repository

	Language

	(3) Reuse potential
	Acknowledgements
	Competing Interests
	References
	Figure 1
	Figure 2

