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ABSTRACT
Plant cell wall biomass is composed of a range of different types of carbon-based 
compounds. The proportions of the primary carbon types affect how cell walls 
decompose, an important ecosystem process because their decay contributes to soil 
carbon. Traditionally, these components are estimated using wet chemistry methods 
that can be costly and degrade the environment. Thermogravimetric analysis is an 
alternative method, already used by biofuel researchers, that involves pyrolysing dry, 
ground plant litter and estimating contribution of carbon components from a resulting 
mass decay curve. Because carbon types break down relatively independently, we can 
apply a mixture model to the multi-peaked rate of mass loss curve to identify mass 
loss of each carbon component. The mixchar package conducts this peak separation 
analysis in an open-source and reproducible way using R. mixchar has been tested 
over a range of plant litter types, composed primarily of the fiber components: 
hemicellulose, cellulose, and lignin.
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(1) OVERVIEW
INTRODUCTION
Plant cell wall biomass is composed of a range of different 
types of carbon-based compounds [3, 16, 11]. We can 
use the relative proportion of these carbon components 
to understand species characteristics, such as litter 
decomposition [6]. Traditional methods for estimating 
carbon components, particularly lignocellulosic biomass, 
involve wet chemistry assays [8] that use sulfuric 
acid and acetic anhydride, among other chemicals. 
These chemicals, however, can adversely impact the 
environment and lead to loss of lignocellulose and other 
compounds [10]. Thermogravimetric analysis (TGA) is 
an alternative method, already in use among biofuel 
researchers, to approximate the proportions of these 
compounds in plants [11, 5]. In this method, we use 
mass loss data obtained by heating a biomass sample 
in an N2 environment, termed pyrolysis, to estimate the 
proportion of different carbon components in a sample.

Mass loss during complete pyrolysis is the sum of the 
degradation of the main components of the sample, 
often simplified to the three main components of 
lignocellulose: hemicelluloses, cellulose, and lignin [18, 
16, 15]. The rate of mass loss is generally a multi-peaked 
curve, which can be mathematically separated into its 
constituent parts with a mixture model, in a process 
termed ‘deconvolution’ [17, 13]. The component peaks 
identified by the mixture model represent the proportion 
of initial mass lost by each component during pyrolysis. 
The integral, or area under the curve, of these peaks 
therefore gives us an estimate of the proportion of each 
component in the original sample. Carbon component 
estimation from deconvolution of thermogravimetric 
loss curves has been validated with estimates achieved 
with wet chemistry measurements [27].

Most researchers who conduct thermogravimetric 
analysis use commercial software to deconvolve the 
rate of mass loss curves [for example OriginPro 3, 
PeakFit 18, Fityk 18, or Datafit 5]. However, the majority 
of these proprietary software employ point-and-click 
interfaces that hinder independent replication of the 
deconvolution analysis. The inability to reproduce readily 
others’ experimental results using these software, a 
guiding principle of functional trait measurement [19], 
might in part explain why thermogravimetric analysis 
has not been widely adopted by functional ecologists 
despite its proven promise [such as in marine and coastal 
macrophytes 25, and in eucalyptus trees 16].

The mixchar package in R is an open-source tool 
for the deconvolution of thermal decay curves from 
thermogravimetric analysis. This tool improves upon 
existing software by making implicit mixture model 
choices, such as starting values and number of peaks to 
estimate, programmatic and transparent. Although the 
nonlinear mixture model used for peak separation at the 
core of this package could be used for many different 

purposes, our mixchar package provides specific 
guidelines for using thermal decay curve analysis to 
estimate carbon components in plant material. Detailed 
vignettes and several default plotting options are included 
in mixchar so that researchers interested in adopting this 
method can readily do so for the purpose of estimating 
carbon components in plant biomass samples.

IMPLEMENTATION AND ARCHITECTURE
Litter collection and preparation
We collected the litter for development of this package 
from three freshwater wetlands surrounding Melbourne, 
Victoria (sites within 60 km of –37.455, 144.985). In the 
field, we placed the plant litter collected for this analysis 
in moist plastic bags and stored them in dark coolers 
until we could transport them to the lab where they 
were promptly dried at 60°C for 72 hours to ensure our 
component estimates were an accurate representation 
of the original composition of the litter samples we 
collected. We ground our dry litter to <40 μm using a 
Retsch Centrifugal Mill ZM200.

We pyrolysed 10–20 mg subsamples of dry, 
ground litter in an N2 environment from 30–800°C at a 
temperature ramp of 10°C/min using a Netzsch TGA-FTIR 
thermogravimetric analyser (Department of Biomedical 
Engineering, University of Melbourne).

We developed and tested the functions of our mixchar 
package using the thermogravimetric decay data of the 
litter of 29 different plant species. Two species from our 
data are available as datasets in the package — the 
freshwater reed Juncus amabilis (accessed as juncus) 
and the freshwater fern Marsilea drumondii (accessed as 
marsilea). The data resulting from the pyrolysis is mass 
loss (mg) against temperature (Figure 1).

library(mixchar)
head(juncus, n = 3)

## temp_C mass_loss
## 1 31.453 -0.000931
## 2 31.452 -0.001340
## 3 31.450 -0.001350

Deconvolution using mixchar
Rate of mass loss
After completing the thermogravimetric analysis, the 
resulting data can be loaded into R. Using mixchar, the 
process function calculates the rate of mass loss by 
taking the derivative of mass loss over temperature. 
The process() function needs the following dataset 
features: the initial mass of the sample, the name of the 
temperature data column, and the name of the mass 
column (mg). Since TGA-FTIR instruments can export 
data in variable units, the mass column can be specified 
either as mass loss data with the mass_loss argument or 
as mass data with the mass argument.

https://doi.org/10.5334/jors.249
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deriv_juncus <- process(juncus,
 init_mass = 18.96, # initial mass of sample
 temp = 'temp_C', # temperature data column name
 mass_loss = 'mass_loss', # mass loss data column name
 temp_units = 'C') # 'C' is the default setting
deriv_juncus

## Derivative thermogravimetry data (DTG) calculated for
## 768 datapoints from 31.5 to 798.52 degrees C.

The process function produces a modified dataframe, 
which includes the derivative thermogravimetric rate 
of mass loss data (DTG), the initial mass value that was 
supplied, and the maximum and minimum temperature 
values in the data. Plotting the output of the process 
function yields the mass of sample across temperature 
curve and the rate of mass loss curve (Figure 2). The rate 
of mass loss is a multi-peaked curve encompassing three 
main phases [16]:

1. A short period with a pronounced peak of moisture 
evolution, up until approximately 120°C.

2. A wide mid-range of high mass loss, caused 
by devolatilisation of primary biomass carbon 
components, between approximately 120–650°C.

3. A final period of little mass loss when carbonaceous 
material associated with the inorganic fraction 
combusts, after approximately 650°C.

Subset DTG data
Since the overall DTG curve represents the loss of 
extractives, water, inorganic matter, and volatiles in 
addition to the components in which we are interested 
[11], we isolate mass loss from our primary biomass 
components by subsetting the DTG data to Phase 2. The 
deconvolve function defaults to temperature bounds 
at 120°C and 700°C, but these can be modified with the 
lower_temp and upper_temp arguments.

Non-linear mixture model
Biomass components combust relatively independently 
because they do not interact very much during thermal 
volatilisation [27]. Therefore, the subsetted DTG curve 
can be mathematically deconvolved into constituent 
parts using a mixture model. The derivative rate of mass 
loss equation ( dm

dT- ) can be expressed as the sum of n 
independent reactions (Eq. 1), as follows [16]:

Figure 1 Mass across temperature for pyrolysis of Juncus amabilis.
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where mass (m) is expressed as a fraction of mass at 
temperature T (MT) of the initial sample mass (M0) (Eq. 2), 
ci is the mass of component i that is decayed (Eq. 3), and 
the mass loss curve of each individual component ( id

dT
a

) 
is the derivative of αi, the conversion of mass at a given 
temperature (MTi), from the initial (M0i), as a proportion 
of total mass lost between the initial and final (M∞i) 
temperature for each peak (Eq. 4).

Although the carbon distribution of many species 
can be described with only n = 3 peaks, corresponding 
to a single peak for each of hemicelluose, cellulose, 
and lignin, some litter samples yield a second 
hemicellulose peak at a lower temperature, resulting in 
n = 4 independent peaks. This is because the soluble 
carbohydrates in plant tissue can take many forms, 
including xylan, amylose, etc., which apparently 
degrade at different temperatures [see also 3, 15]. 
deconvolve() will decide whether three or four peaks 
are best using an internal function that determines 
if there is a peak below 220°C. Alternatively, upon 
inspection of the curve, users can specify the number of 
peaks with the n_peaks argument.

In order to fit the mixture model to the data, we must 
decide upon the shape of the individual peaks ( id

dT
a

) that 
are summed to produce it. Many different functions have 
been proposed: the asymmetric bi-Gaussian [23], logistic 
[1], Weibull [2], asymmetric double sigmoidal [3], and 
the Fraser-Suzuki function [18, 11]. Researchers have 
compared several techniques [24, 18, 5] and found that 
the Fraser-Suzuki function best fit these kinetic peaks. 
This is because the Fraser-Suzuki function allows for 
asymmetry (a parametric examination of the Fraser-
Suzuki function can be found in Figure 3). We therefore 
use the Fraser-Suzuki function to describe the rate 
expression of a single peak (Eq. 5) as follows:
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 (5)

where T is temperature (°C), and the parameters hi (°C
–1), 

si, pi (°C), and wi (°C) are height, skew, position, and width 
of the peak, respectively. In total, our model estimates 
12 or 16 parameters, one for each parameter of Eq. 5 for 
either three or four primary components.

Likelihood functions in mixture models have multiple 
maxima, and therefore expectation-maximisation 
algorithms are highly dependent on starting value 
selection [21, 22]. The vector of starting values for the 12 
or 16 estimated parameters is based on curves depicted 
in the literature [15] and from the results of running 
an identical deconvolution on pure cellulose (carboxy-
methyl cellulose) and lignin (alkali lignin from Sigma 
Aldrich). Hemicelluloses decay in a reasonably narrow 

Figure 2 Derivative thermogravimetric rate of mass loss across temperature, scaled by initial mass of sample for Juncus amabilis. Line 
segments 1, 2, and 3 represent mass loss phases.
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band beginning at a lower temperature [15], so we use 
270°C for position and 50°C for width. Linear cellulose 
crystals decay at a higher temperature, but decay more 
rapidly after peak temperatures are reached, so we set 
its starting position to 310°C and width to 30°C. Lignin 
typically decays beginning at a high temperature and 
over a wide interval [4], so we begin position and width 
at 410°C and 200°C, respectively.

In an effort to ensure the same starting vector would 
be useful across a wide variety of different samples, we 
employ an extra optimisation step before fitting the 
model. The deconvolve function first optimises the given 
starting value vector with 300 restarts of the NLOPTR_LN_
BOBYQA algorithm [20] with the nloptr [12] package. In 
this way, we can set the given starting value vector so 
that it works properly on a wide range of samples, and at 
the same time the starting values we ultimately give to 
the model are as close as possible to the global maxima 
for a given dataset.

To fit the non-linear mixture model, we send the 
optimised starting value vector to the nlsLM() function in 
the minpack.lm [7] package, which uses the Levenberg-
Marquardt algorithm to minimise residual sum of squares.

The default starting values and two-stage optimisation 
worked well for our thermogravimetric decay dataset of 
29 plant species, encompassing herbaceous, graminoid, 
as well as woody species. Although this result is 
encouraging it is not altogether surprising because 
these data were pyrolysed using the same TGA-FTIR 
instrument. For this reason, the package was also tested 
on thermogravimetric data processed from a different 
instrument, as well as plants from marine ecosystems. 
Default settings produced well-fit curves for leaf samples 
from the seagrass species Thalassia testudinum, and 
rhizome and root samples from the seagrass species 
Zostera marina [Figure 4; data for both from 25].

Despite the broad range of testing of mixchar, users 
may still find they need to explore the literature for 
reasonable estimates of starting values for their study 
species. Default settings did not, for example, redundant 
did not identify the fourth peak in the deconvolution of 
macroalgae species Ecklonia radiata blades [Figure 5a; 
25]. In this case, we can use the option to specify our 
own starting values, with the start_vec, lower_vec, and 
upper_vec arguments, in order to better guide the model 
(Figure 5b).

Figure 3 Parametric study of the Fraser-Suzuki function for deconvolution of derivative thermogravimetric biomass curves: Effect of 
modifying (a) height; (b) skew; (c) position; and (d) width.
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# code given for reference only

start_vec <- c(0.002, -0.15, 250, 50, # for hemicellulose 1
 0.003, -0.15, 310, 50, # for hemicellulose 2
 0.006, -0.15, 350, 30, # for cellulose
 0.001, -0.15, 410, 200) # for lignin

# change the upper bounds to ensure the starting vector values are within
# the allowed range
ub <- c(2, 0.2, 260, 80,
 2, 0.2, 330, 90,
 2, 0.2, 380, 50,
 2, 0.2, 430, 250)

e.radiata_decon <- deconvolve(e.radiata,
 n_peaks = 4,
 start_vec = start_vec,
 upper_vec = ub,
 lower_temp = 150,
 upper_temp = 600)

Figure 4 Mass loss and component estimation using default settings for test samples: (a) Thalassia testudinum leaves; (b) Zostera 
marina rhizome; and (c) Zostera marina root.
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Component weights
After we fit our curve parameters, we can pass each 
component’s parameter estimates to a single Fraser-
Suzuki function and integrate under the peak to calculate 
the weight of the component in the overall sample (Eq. 
6). To estimate the uncertainty of the weight predictions, 
deconvolve will calculate the 95% interval of the 
weight estimates across a random sample of parameter 
estimates, drawn in proportion to their likelihood. We 
assume a truncated multivariate normal distribution, 
since the parameters are constrained to positive values, 
using the modelling package tmvtnorm [26].
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We interpret that the peak located around 250–270°C 
corresponds to primary hemicelluloses (HC), around 
310–330°C to cellulose (CL), and around 330–350°C to 
lignin (LG). If present, the fourth peak located below 
200°C corresponds to the most simple hemicelluloses 
(HC-1). The second dataset included in the package, 
marsilea, provides an example of a four-peak 
deconvolution. A worked example can be found in the 
package vignettes.

Package outputs
The output of the deconvolve function is a list of five 
items:

1. the dataset that results from the process  
function, useful for testing other modelling 
approaches or plotting options, and accessed with 
rate_data():

DTG_data <- rate_data (output_juncus)
head(DTG_data)

## temp_C derive mass_T
## 5325 120.514 9.570652e-05 17.91630
## 5384 121.501 9.885901e-05 17.91445
## 5445 122.515 1.003878e-04 17.91252
## 5505 123.514 9.133606e-05 17.91079
## 5565 124.513 6.493836e-05 17.90956
## 5625 125.509 8.578618e-05 17.90794

2. the temperature values at which the data were 
cropped for analysis, accessed with temp_bounds():

temp_bounds(output_juncus)

## [1] 120 700

Figure 5 Component estimation for Ecklonia radiata blades with default (a) and specified starting values (b).
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3. the output of the mixture model. Peak 1 is hemicellulose; peak 2 is cellulose; and peak 3 is lignin. If present, the optional 
fourth peak located at the lowest temperature interval will be listed as peak 0. Accessed with model_fit():

model_fit(output_juncus)

## Nonlinear regression model
## model: deriv ~ fs_mixture (temp_C, height_1, skew_1, position_1,
## width_1, height_2, skew_2, position_2, width_2, height_3,
## skew_3, position_3, width_3)
## data: dataframe
## height_1    skew_1    position_1  width_1   height_2   skew_2
## 3.944e-03    1.258e-01  2.662e+02  5.106e+01  5.793e-03  1.344e-02
## position_2   width_2   height_3   skew_3    position_3  width_3
## 3.173e+02    2.866e+01  1.163e-03  1.085e-01   3.300e+02   2.500e+02
## residual sum-of-squares: 9.299e-06
##
## Number of iterations to convergence: 23
## Achieved convergence tolerance: 1.49e-08

4. the number of peaks:

output_juncus$n_peaks

## [1] 3

5. and the mean, 2.5% and 97.5% estimates, median, and standard deviation of the weight of each component that 
can be accessed with component_weights():

component_weights(output_juncus)

## HC CL LG value_type
## 1 21.5600422 17.6748693 30.6629891 mean
## 2 20.4327310 16.6433643 29.5201899 2.5%
## 3 21.5980403 17.6367428 30.6535159 50%
## 4 22.7575067 18.6700545 31.8302178 97.5%
## 5 0.5978226 0.5128315 0.5914671 5%

Figure 6 Deconvolution of Juncus amabilis example dataset. Mass loss data overlaid with output of deconvolution. Rate of mass loss 
scaled by initial mass of sample.
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Plotting
Plotting the output of the deconvolve function 
shows the underlying DTG data, the overall mixture 
model curve, as well as the component peaks of the 
deconvolution (Figure 6). The default plot is in black 
and white, but a colour version that uses colour-blind 
friendly viridis colours [9] is available by specifying 
bw = FALSE.



9Windecker et al. Journal of Open Research DOI: 10.5334/jors.249

The Fraser-Suzuki family of functions are exported 
(Table 1) to allow users to create their own plots from 
the model outputs in conjunction with the parameter 
estimates, accessed as follows:

juncus_parameters <- model_parameters(output_
juncus)
juncus_parameters

## parameter_name parameter_value
## 1  height_1 3.944240e-03
## 2  skew_1 1.258171e-01
## 3 position_1 2.661764e+02
## 4 width_1 5.105925e+01
## 5  height_2 5.792848e-03
## 6 skew_2 1.344097e-02
## 7 position_2 3.172997e+02
## 8 width_2 2.866180e+01
## 9 height_3 1.162606e-03
## 10 skew_3 1.085210e-01
## 11 position_3 3.300000e+02
## 12 width_3 2.500000e+02

QUALITY CONTROL
All the functions of mixchar were tested to see if they 
pro duce the desired output. The workflow was tested 
on thermogravimetric data from two different TGA-FTIR 
instruments, and on samples outside those used to build 
the package.

The structure of the package successfully passed 
the CRAN R CMD check with no errors or warnings, or 

notes and the results from this check can be found on 
CRAN.

(2) AVAILABILITY
OPERATING SYSTEM
The package was tested on Windows, Mac OS X, and Linux.

PROGRAMMING LANGUAGE
R version 3.2.0 or higher.

ADDITIONAL SYSTEM REQUIREMENTS
An internet connection is required to install the mixchar 
package.

DEPENDENCIES
R packages: graphics, minpack.lm, nloptr, stats, 
tmvtnorm, zoo.

LIST OF CONTRIBUTORS
This package was created by Saras Windecker and Nick 
Golding.

SOFTWARE LOCATION
Archive

Name: CRAN
 Persistent identifier: https://CRAN.R-project.org/package 

=mixchar

 Licence: MIT and open license as found on https://

cran.r-project.org/web/packages/mixchar/LICENSE

FUNCTION FAMILY  FUNCTION NAME  DESCRIPTION

Data  juncus Example thermogravimetric data for Juncus amabilis

Data marsilea Example thermogravimetric data for Marsilea drumondii

Basic use process() Calculates the derivative rate of mass loss of thermogravimetric data

Basic use deconvolve() Deconvolves derivative rate of mass loss data

Accessor function temp_bounds() Access temperature bounds used to crop data for mixture model

Accessor function rate_data() Access processed dataframe including mass loss, rate of mass loss, and temperature

Accessor function model_fit() Access fit of nonlinear mixture model

Accessor function component_weights() Access mean, upper, and lower bounds for component weight estimates

Accessor function model_parameters() Access parameter estimates

Fraser-Suzuki function fs_function() Fraser-Suzuki equation for a single peak

Fraser-Suzuki function fs_mixture() Fraser-Suzuki mixture model equation

Fraser-Suzuki function fs_model() Non-linear model implementation of Fraser-Suzuki mixture model

S3 method print(<process>) Default print method for process object (derived from process())

S3 method plot(<process>) Default plot method for process object (derived from process())

S3 method print(<deconvolve>) Default print method for decon object (derived from deconvolve())

S3 method plot(<deconvolve>) Default plot method for process object (derived from deconvolve())

Table 1 Exported functions.

https://CRAN.R-project.org/package=mixchar
https://CRAN.R-project.org/package=mixchar
https://cran.r-project.org/web/packages/mixchar/LICENSE
https://cran.r-project.org/web/packages/mixchar/LICENSE
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Publisher: Saras Windecker
Version published: 0.1.0
Date published: 16/08/2018

Code repository
Name: Github
https://github.com/smwindecker/mixchar/

Persistent identifier: DOI: 10.5281/zenodo.1343849

Licence: MIT and open license as found on
 https://github.com/smwindecker/mixchar/releases/tag/

v0.1.0.
Date published: 11/08/2018

LANGUAGE
R

(3) REUSE POTENTIAL

This package was designed with both the user and 
developer in mind. There are several vignettes available 
with the package and on the package website (https://

smwindecker.github.io/mixchar/) facilitating exploration of 
package functionality. We expect that this package will 
be useful to researchers already using thermogravimetric 
analysis for biomass component estimation, as well 
as to functional ecologists seeking to test out this 
approach as an alternative to wet chemistry methods. 
For all users, this method improves on most current 
software available to them, as it is fully open-source and 
transparent.

Finite mixture models are used to cluster continuous 
multivariate data. Statistical inference of mixture 
models is notoriously difficult because of their flexibility 
[14]. This is especially true for the Fraser-Suzuki function, 
which has an additional parameter compared to a 
Gaussian distribution. Many combinations of peaks can 
create the same overall derivative thermogravimetric 
curve, and so informed starting values are necessary 
as they can substantially affect fit. To use mixchar well, 
we need in some cases to modify the default starting 
values.

For those who wish to contribute to the package, it 
is hosted on Github. Contributors can log issues, for 
example concerning alternative data formats, via the 
issues tracker (https://github.com/smwindecker/mixchar/

issues) or submit a pull request to add functionality to the 
package.
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