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Machina is a .NET library for programming and control of industrial robots. It is designed to build applications 
that interface with robotic devices in real time. The library features a high-level API of simple, device-
agnostic action verbs to issue motion requests to robots, and translates them to device-specific instructions 
using low-level communication protocols and managing priority queues. It also features a set of execution-
related events to notify users of changes in the asynchronous state of the robot, fostering programming 
styles that are reactive rather than prescriptive. These features promote an enactive approach to robotics, 
and provide an immediate and intuitive entry point to real-time robot control, making Machina particularly 
suitable for controlling systems that require concurrent responsiveness to sensory or user input. While 
Machina currently supports mostly six-axis industrial robotic arms, it can be easily extended to any actuable 
device that moves in three-dimensional space, such as 3D printers, CNC machines, drones, robotic toys, etc.

Machina is geared towards users in the creative fields, like designers, artists, makers and creative coders, 
and promotes features such as interactivity, intuitiveness, feedback, concurrency and cross-platform 
compatibility, over performance or feature-fullness. We hope this framework will help ease access for 
novice users to the field of robotics.
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(1) Overview
Introduction
During the last half of the 20th Century, and beginning 
of the 21st, robots have permeated into many aspects of 
our daily lives. Any modern product that we may consume 
today has been manipulated by automated machines in 
some kind of manufacturing process: cars, furniture, food, 
electronics… virtually all objects that surround us have 
been touched by robots. More recently, we are witnessing 
an increasing presence of these machines outside 
industry, in our domestic environments: from automated 
vacuum cleaners in our homes to assistive devices for 
impaired individuals, and very soon, delivery drones and 
autonomous vehicles. Robots are following a similar path 
to that of computers: from large and expensive machines 
only accessible to researchers and industry, to smaller 
personal versions to assist us in our daily duties. But just 
like it happened with desktop computers, if robots are to 
truly permeate into our daily lives, their programming and 
control should be accessible to not just the highly trained, 
but rather to the general user.

But first of all, what is a robot? This question is usually 
the subject of endless philosophical debate, ranging 
from simple definitions such as “a machine capable of 

automatically carrying out a complex series of movements, 
especially one which is programmable [1],” to increasingly 
ontological queries on their nature: “a robot is a constructed 
system that displays both physical and mental agency, but 
is not alive in the biological sense [2].” In any case, most 
authors agree that a robot is essentially constituted of 
two parts: a physical manifestation that actuates and/or 
senses its environment, and a logic system that drives its 
behavior. And while the former, hardware design, involves 
a whole set of challenges on its own, the project described 
in this paper tries to address the challenges present in 
the latter: the creation of the software mechanisms to 
program and control robotic devices.

One of the first challenges in this field is the 
significant lack of universality in robot control systems. 
In industry, robot manufacturers usually provide highly 
proprietary software environments that require the 
use of custom programming languages, and it is fairly 
common for vendors to offer their own authored tools 
for programming and simulating their products. For 
example, ABB [3] offers their licensed RobotStudio [4] 
platform to program robot cells in the RAPID language 
[5]; KUKA [6] provides KUKA.Sim [7] to simulate programs 
written in Kuka Robot Language [8]; and Universal 
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Robots [9] uses the URScript [10] language to drive six-
axis robotic arms through URSim [11]. Different robot 
brands requiring different programming languages is the 
first entry barrier to robotics, tying the initial learning 
process to the products of a particular company. However, 
the kinematic similarities between six-axis robotic arms, 
and the universal nature of spatial dynamics, make it 
possible to abstract many of the principles behind motion 
planning into higher-level interfaces, which can then be 
post-processed into device-specific languages. This is the 
core principle behind third-party robot programming 
environments such as RoboDK [12] or Visual Components 
[13]. But in any case, all these tools are still closed source 
tools, with usage often restricted to the acquisition of 
expensive licenses, becoming an additional entry barrier 
for novice users to the field of robotics.

An additional problem with these industrial robot 
programming tools is that they often require significant 
domain expertise from the user. They are designed for 
engineers, integrators and implementers, and assume their 
users are familiar with notions such as forward and inverse 
kinematics, spatial transformations, robot mechanics and 
computer programming. The Robot Operating System 
(ROS) [14] is notorious for the depth of possibilities it 
allows, its modularity, openness and extensibility, but 
also for its complexity, steep learning curve and difficulty 
to set up, resulting in a reduced community of power 
users formed by academics and research labs. There is 
an abundance of highly specialized robot programming 
tools for highly skilled individuals, although without the 
proper training and time investment, robotics are hardly 
accessible to more general audiences.

The recent democratization of digital fabrication tools 
has sparked renewed interest in the field of robotics from 
more creative communities. The increasing availability of 
3D printers, laser cutters or Computer Numeric Control 
(CNC) routers has given designers, architects and artists 
tools for rapid prototyping, and with the growth of Fab 
Labs [15] and maker culture [16], larger communities are 
becoming empowered with the production means to make 
almost anything [15]. The Arduino open-source platform 
[17] stands as a great example of a system that integrates 
a physical sensing/actuating device with a simple and 
intuitive development environment, designed to introduce 
novice makers to electronic prototyping. Personal 
fabrication [18] projects such as RoMA [19] demonstrate 
the potential of robot integration in ad hoc design-while-
making systems. Robotic fabrication in architecture has 
also seen a tremendous development in the last decade, 
with many architecture schools incorporating robotics 
as part of their curricula, and dedicated conferences 
promoting research in the field [20–23]. Projects such 
as Flowing Matter [24] and the CEVISAMA pavilions [25] 
explore the promising possibilities that design to robotic 
fabrication workflows may open up for innovative building 
structures. Additionally, art projects such as Mimic [26] 
and Mimus [27] demonstrate the expressive potential that 
six-axis robotic arms have beyond their mere utilitarian 
implementations.

While industrial robotic arms are commonly used in 
these kinds of projects, they are seldom implemented 

or controlled via the software tools that their vendors 
provide. There are multiple reasons for this: in addition 
to the complexity and steep learning curves already 
discussed, these tools offer poor integration with common 
Computer Aided Design (CAD) and Manufacturing (CAM) 
environments typically used by these audiences. The 
recent popularity of visual programming languages for 
CAD like Grasshopper3D [28] led to a bloom of robot-
oriented plug-ins, such as HAL [29], KukaPRC [30], Taco 
ABB [31] or Scorpion [32], which allow for the compilation 
of robot programs in native languages directly from the 
CAD environment. And while these tools offer a smoother 
learning curve and easier CAD to CAM workflows, they 
are still in many cases vendor specific and closed source, 
making it very hard to extend or customize for novice uses.

Moreover, industrial robots, and the environments 
designed to control them, are heavily biased towards the 
offline programming model. In this scenario, all motion 
planning, logic and instructions are pre-defined inside 
the programming environment, become post-processed 
into a program in the device’s native language, separately 
loaded to its controller and executed offline, without 
connection to the tool from which it was created; this 
is for instance the typical use case for any common 3D 
printing operation. Such paradigm is well suited for 
highly calibrated and predictable environments, where 
precise assumptions about their state can be done a 
priori. However, it is particularly inadequate for systems 
with elevated degrees of uncertainty, and where robot 
behavior is driven reactively by mutating conditions 
around it. This is particularly the case of robotic systems 
based on sensory input, environmental feedback, 
material properties, interactive installations, human-
robot collaboration, etc. Projects willing to explore these 
features must often develop their own ad hoc robot 
control tools, usually relying on tricks and hacks, and thus 
requiring significant programming experience and robot 
control knowledge–yet another barrier to innovative 
robotic exploration.

From an engineering perspective, we have gotten quite 
good at making machines that are precise, reliable, and 
fast, and that allow us to make further things with them. 
However, for non-power users, they can be notoriously hard 
to use and extend [33]. Therefore, while further research 
will continue to improve the hardware side of industrial 
robots, it could be argued that the big challenge for their 
mass adoption remains the software tools available to 
program them. For industrial robots to permeate further 
into non-industrial contexts, the tools used to control 
them should also address the qualities and needs of the 
new people who will use them. Training the general 
public in the skills of industrial robots is unrealistic, and 
for further progress to be made in fields such as design 
robotics [34] or personal fabrication [35], the next frontier 
of research should be the design of appropriate robotic 
software interfaces catered to their needs.

This paper presents Machina, a .NET library for 
programming and real-time control of industrial robots. It 
features a high-level, unitary, simple and human-relatable 
Application Programming Interface (API) of actions to 
describe spatial motion, which can then be post-processed 
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into a program in the device’s native language. Its design 
follows the principles of the Enactive Robotics model [48], 
providing a more suitable cognitive model for beginners, 
while providing a deeper spectrum of possibilities to 
advanced users. Even though it can be used for classical 
offline programming, the main emphasis of the project is 
real-time communication and control of robotic devices. 
The library defines classes with protocols for hardware 
drivers, low-level communication, instruction buffering, 
and machine state representations, which can then be 
extended to the particularities of any specific machine. An 
additional API of asynchronous events tied to execution 
tracking allows for programming styles that are reactive to 
concurrent execution by the machine at run time. While 
the main focus of the library are six-axis industrial robotic 
arms, it can (and hopefully will) be easily extended to 
drive any mechanical device that can sense or be actuated 
in three-dimensional space, such as 3D printers, CNC 
machines, Arduino boards, mobile robots, drones, etc.

The target audience of this project are individuals 
without engineering backgrounds who want to use 
robots for creative projects outside industry, such as 
designers, artists, architects, makers and creative coders. 
The library is designed to be immediate and intuitive to 
use, foster interactivity, provide constant feedback and 
allow concurrency, with less emphasis on other qualities 
such as performance or feature-fullness. The goal of this 
effort is to provide an entry point for non-experts to 
the field of robotics, open it up to research speculation, 
experimentation and creative inquiry, and make robotics 
more accessible to wider audiences.

Implementation and architecture
Hello Robot
A simple application in C# built with Machina could look 
like Code Sample 1:
using System;
using Machina;

namespace Sample
{

class MachinaSample
{

static void Main(string[] args)
{

Robot arm = Robot.Create("HelloRobot", 
"ABB");
arm.ControlMode("online");
arm.Connect("192.168.125.1", 7000);

arm.Message("Hello Robot!");
arm.SpeedTo(100);
arm.MoveTo(400, 300, 500);
arm.Rotate(0, 1, 0, -90);
arm.Move(0, 0, 250);
arm.Wait(2000);
arm.AxesTo(0, 0, 0, 0, 90, 0);

 Console.WriteLine("Press any key to 
finish this program");
Console.ReadKey();

arm.Disconnect();
}

}
}

Code Sample 1: A simple Hello Robot program.

In this example, the sequence of actions is as follows:

•	 Define a new instance of a Robot object, giving it a 
name, and defining its brand.

•	 Connect to a physical robot at given IP and Port values.
•	 Display the "Hello Robot!" message on the 

device’s display.
•	 Set the internal linear speed value to 100 mm/s.
•	 Move to Cartesian XYZ coordinates (400, 300, 
500) in the robot’s reference frame.

•	 Rotate -90 degrees around the unitary positive Y 
vector (0, 1, 0).

•	 Move 250 mm in positive Z.
•	 Wait for 2000 milliseconds.
•	 Set the rotational values of the robot’s six axes to  
(0, 0, 0, 0, 90, 0) degrees respectively.

•	 Halt program execution by requesting user input, 
giving time to the robot to complete these actions.

•	 Disconnect from the controller before leaving the 
program.

The result of the execution of this program on an ABB IRB 
1200 robot is illustrated in Figure 1.

Syntax
Machina is designed to program machines that perform 
motion in three-dimensional space. It features a high-level 
API of instructions to describe kinematic transformations, 
composed of simple English verbs that denote calls to 
action. Its interaction model is highly influenced by the 
cognitive principles behind the Logo programming 
language [36] and its popular application to turtle graphics. 
Some of its syntactical flavor and state-based settings are 
influenced by the Processing programming language [37].

The Robot class is the main public interface with the 
library. It features methods such as Move, Rotate 
and Transform to request kinematic transformations, 
Speed and Precision to request changes in motion 
properties, or Connect and ControlMode as 
management methods. A program can be created by the 
simple concatenation of a sequence of actions, and running 
it will result in either the buffered execution of those 
actions on the connected device, or the offline compilation 
of that same program into the device’s native language.

Where applicable, most of the API methods have two 
syntactical flavors: the function name with the To suffix, 
and the plain version. This denotes the difference between 
absolute and relative action requests respectively. Relative 
actions build on top of the current state of the robot, 
while absolute actions set those values independently 
of former states. For example, a MoveTo(400, 300, 
500) call will set the position of the robot’s Tool Center 
Point (TCP) to XYZ (400, 300, 500) mm, regardless 
of its previous position. If followed by a relative Move(0, 
0, 250) call, the resulting absolute position of the 
robot would be (400, 300, 750). This applies to 
TCP location, orientation, and robot axes values, but 
also to internal robot motion properties such as speed, 
acceleration, precision, analog out values, etc.

A breakdown of the most relevant methods in the 
Robot class can be found in Tables 1 to 3.
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Figure 1: The four main motion actions of the Hello Robot program (Code Sample 1) executed on an ABB IRB 1200 
robot – MoveTo(400, 300, 500), Rotate(0, 1, 0, –90), Move(0, 0, 250) and AxesTo(0, 0, 
0, 0, 90, 0).

Table 1: Main motion control actions in Machina.

Instruction Description Related Action

Move/To Change the position of the TCP maintaining its orientation. ActionTranslation

Rotate/To Change the orientation of the TCP maintaining it position. ActionRotation

Transform/To Change the position and orientation of the TCP. ActionTransformation

Axes/To Change the rotational values of the robot’s axes. ActionAxes

ExternalAxis/To Change the values of one the external axis attached to the robot. ActionExternalAxis

Wait Halt program execution for an amount of time. ActionWait

DefineTool Define Tool properties on the robot. ActionDefineTool

Attach Attach a Tool to the robot’s flange. ActionAttach

Detach Detach all tools from the robot. ActionDetach

WriteDigital Writes a value to a digital out. ActionIODigital

WriteAnalog Writes a value to an analog out. ActionIOAnalog

Extrude Turns extrusion on/off in 3D printers. ActionExtrude

Message Display a message on the device’s screen. ActionMessage

Comment Insert a custom comment on a compiled program. ActionComment

CustomCode Insert a custom line of code on a compiled program. ActionCustomCode

Do Applies an Action object to the Robot. N/A

Table 2: Main settings actions in Machina. Note that all state changes caused by these actions can be buffered and 
reverted with the use of PushSettings and PopSettings.

Instruction Description Related Action

MotionMode Set the motion type for future motion Actions, like linear or 
joint.

ActionMotion

Speed/To Change the TCP speed value new Actions will be executed at. ActionSpeed

Acceleration/To Change the TCP acceleration value new Actions will be executed 
at.

ActionAcceleration

Precision/To Change the TCP smoothing radius value new Actions will be 
executed at.

ActionPrecision

Temperature/To Change the working temperature of one of the device’s parts. ActionTemperature

ExtrusionRate/To Change the extrusion rate of filament for 3D printers. ActionExtrusionRate

PushSettings Buffers current state settings. ActionPushPop

PopSettings Reverts the settings to the previous state buffered by 
PushSettings.

ActionPushPop
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Action Model
The internal programming and control model of Machina 
is based on the atomic form of Action objects. Actions 
are the basic units of interaction with the machine, and 
follow the principles of the Enactive Robotics model for 
concurrent machine control [48]. An Action is defined 
as a change in some of the properties that define the 
state of a robot. For example, this can mean to perform 
some kind of spatial motion (Move, Rotate), change 
the execution properties of forthcoming actions (Speed, 
MotionMode), hold execution for a certain amount of 
time (Wait), change the IO values (WriteDigital, 
WriteAnalog), etc.

Tables 1 and 2 denote a loose correlation between 
Robot methods and Action types. This is not 
coincidental, as most API calls are basically thin wrappers 
that create an Action object internally and issue a 
request to the core Control class to execute that action 
Figure 2. This pattern presents a clear mental model 
to the user, who can easily relate the statement arm.
Move(0, 0, 250) to the meaning “ask the robot to 
move up 250 mm,” and doesn’t need to care about the 
internal representation of such actions. It also helps 
maintain the modularity of the library and simplifies the 
extension of its functionality.

Actions are platform-agnostic. They are objects which 
store values for the state properties they are meant to 
modify, but do not need information on their target 
machine in order to exist–even if they are created through 
the Robot class. This means that programs are created 
internally as lists of Action objects, but that these 
actions have no real meaning until they are applied to a 
particular device. Depending on its nature, such a device 
may or may not be able to accommodate those changes; 
it is the responsibility of the developer who extends the 
library for a new machine type to decide which actions 
have effects on it and what their effects are. This means 
that calling the bot.ExtrusionRateTo(100) 
method on a non 3D printer is a valid operation, but will 
have no effect on the machine when executed online 
or compiled offline, beyond a warning message. This 
allows to maintain the cross-compatibility of the same 
API between different types of robots. However, it is 
important to note that the philosophy of the library is to 
provide a high-level programming language as constant 
in behavior as possible across different machine types. 
While developers are welcome to contribute to the project 
with extensions for new machine types, only those who 
maintain the library’s consistency will be accepted to the 
main project.

Table 3: Main management methods in Machina. These instructions have no actions associated to them, as they are 
related to setup rather than execution.

Instruction Description Related 
Action

Robot.Create Create a new instance of a Robot object. N/A
ControlMode Sets the control type the robot will operate under, like offline or online. N/A
ConnectionManager Defines who is responsible for setting up the controller for connection, Machina or 

the user.
N/A

Connect Connects to a remote controller. N/A
Compile Create a program in the device’s native language with all the buffered Actions. N/A

Figure 2: Overall architecture of the Machina.NET library and an extension sample for ABB robots.
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Machina can be extended with new actions by inheriting 
from the main Action class, and adding corresponding 
methods to the Robot class. Child actions must implement 
the ToString() method with a human-readable 
representation of the effect of the action; this helps the user 
understand the abstractions behind them. Child actions 
must also implement the ToInstruction() method to 
return a string mirroring the necessary API call to create such 
Action. This is extremely useful as a form of serialization, 
and provides a way to marshal actions when transferring 
programs between different implementations of the 
Machina framework, either through different programming 
languages or communication protocols. Code Samples 2 
and 3 show examples of this behavior for the action in our 
Hello Robot program (Code Sample 1).

Control Modes
Machina can be used for offline programming. In this 
scenario, the library works by buffering all actions into a 
program, which can then be compiled into the device’s 
native language, manually loaded and ran on it. This is very 
similar to the typical way Arduino boards are programmed 
[17].

Code Sample 4 shows the Hello Robot example 
rewritten to work in offline mode. In this case, program 
contains a string representation of the Machina actions 
post-processed into ABB’s native RAPID language (Code 

Sample 5). The same program, compiled in Universal 
Robots’ URScript language is shown on Code Sample 6.

Note how, by default, Machina inserts comments 
throughout the program with human-readable 
descriptions of the code. This helps novice users 
understand the correlation between native instructions 
and the original Machina actions, facilitating debugging 
and serving as an entry point to native robot programming. 
This behavior can be customized through the overloads in 
Compile().

When working in online mode, Machina is intended to 
be used in control applications running on a host on the 
same network as the controlled device. In this scenario, the 
device’s controller must be running an instance of a custom 
Machina driver module written in the device’s language. 
Depending on the device, the driver may automatically be 
deployed by the application, or should be manually set up by 
the user. The driver module allows the Machina application 
to exchange information with the device via whichever 
communication protocol the device accepts. Following the 
Arduino analogy, this would be akin to interfacing with the 
board via the Firmata protocol [38].

Figure 3 describes a high-level representation of a 
sample communication scheme between a Machina host 
application and the driver. In this example:

•	 Communication is established between host and driver 
through the device’s available communication protocol.

•	 A handshake operation is performed to verify ver-
sion compatibility and to update the host with initial 
machine state.

•	 Host streams action requests to the driver.
•	 Driver sends acknowledgement messages on action 

completion.
•	 Driver streams motion update messages when avail-

able.

In the example, communication with ABB devices works 
by running a driver module that creates a TCP server on 
the device, accepting incoming socket connections. On 
successful connection, the client receives string state 
messages in the format >21 X Y Z QW QX QY QZ; 
and >22 J1 J2 J3 J4 J5 J6; with the values for the 
current Cartesian and joint poses respectively. A request to 
transform linearly to a Cartesian pose can be sent as @ID 
1 X Y Z QW QX QY QZ;, and upon completion of this 
request, the driver will send an acknowledgment message 
@ID 1; including the id value of the completed action. 
If capable of, the driver may also send state messages 
periodically, to keep the client updated on the motion 
state of the device.

However, Machina doesn’t impose a particular 
specification on how drivers for new robots should be 
implemented. Due to the lack of universality in firmware 
applications, and the variability of technologies available 
on back-end interfaces, different devices may require 
different communication protocols, connection schemes, 
and/or message formatting. Developers willing to extend 
Machina for new machines are welcome to choose how to 
develop their own driver modules, and which technology 

Code Sample 2: Actions in the Hello Robot example 
stringified to a human-readable program.

Display message "Hello Robot!"
Set TCP speed to 100 mm/s
Move to [400, 300, 500] mm
Rotate –90 deg around [0, 1, 0]
Move [0, 0, 250] mm
Wait 2000 ms
Set joint rotations to [0, 0, 0, 0, 90, 0] deg

Code Sample 3: Actions in the Hello Robot example 
serialized into instruction calls.

Message("Hello Robot!")
SpeedTo(100)
MoveTo(400, 300, 500)
Rotate(0, 1, 0, -90)
Move(0, 0, 250)
Wait(2000)
AxesTo(0, 0, 0, 0, 90, 0)

Code Sample 4: The Hello Robot example rewritten 
for offline mode.

Robot arm = Robot.Create("HelloRobot", "ABB");

arm.ControlMode("offline");

arm.Message("Hello Robot!");
arm.SpeedTo(100);
arm.MoveTo(400, 300, 500);
arm.Rotate(0, 1, 0, -90);
arm.Move(0, 0, 250);
arm.Wait(2000);
arm.AxesTo(0, 0, 0, 0, 90, 0);

List<string> program = arm.Compile();



García del Castillo y López: Machina.NET Art. 27, page 7 of 14

stack to implement in order to interface with them. The 
only requirement is to maintain the updating logic of the 
robot cursors that represent the asynchronous state of the 
system (see State Model section).

State Model
When using software applications to control hardware 
devices, there is a tremendous mismatch between the 
execution time frames of both parties: a large program 

Code Sample 5: The Hello Robot program compiled to RAPID language by the code in Code Sample 4.

MODULE HelloRobot_Program
CONST speeddata vel20 := [20,20,5000,1000];
CONST speeddata vel100 := [100,20,5000,1000];
PROC main()

ConfJ \Off;
ConfL \Off;
TPWrite "Hello Robot!"; ! [Display message "Hello Robot!"]
! [Set TCP speed to 100 mm/s]
MoveL [[400, 300, 500], [0, 0, 1, 0], [0,0,0,0], [9E9,9E9,9E9,9E9,9E9,9E9]], vel100, z5, 

Tool0\WObj:=WObj0; ! [Move to [400, 300, 500] mm]
MoveL [[400, 300, 500], [0.7071, 0, 0.7071, 0], [0,0,0,0], [9E9,9E9,9E9,9E9,9E9,9E9]], 

vel100, z5, Tool0\WObj:=WObj0; ! [Rotate -90 deg around [0, 1, 0]]
MoveL [[400, 300, 750], [0.7071, 0, 0.7071, 0], [0,0,0,0], [9E9,9E9,9E9,9E9,9E9,9E9]], 

vel100, z5, Tool0\WObj:=WObj0; ! [Move [0, 0, 250] mm]
WaitTime 2; ! [Wait 2000 ms]
MoveAbsJ [[0, 0, 0, 0, 90, 0], [9E9,9E9,9E9,9E9,9E9,9E9]], vel100, z5, Tool0\WObj:=WObj0; 

! [Set joint rotations to [0, 0, 0, 0, 90, 0] deg]
ENDPROC

ENDMODULE

Code Sample 6: The same Hello Robot program in Code Sample 4 compiled to URScript.

def HelloRobot_Program():
popup("Hello Robot!", title="Machina Message", warning=False, error=False) # [Display message 

"Hello Robot!"]
# [Set TCP speed to 100 mm/s]
movel(p[0.4,0.3,0.5,0,3.141593,0], a=0.2, v=0.1, r=0.005) # [Move to [400, 300, 500] mm]
movel(p[0.4,0.3,0.5,0,1.570796,0], a=0.2, v=0.1, r=0.005) # [Rotate -90 deg around [0, 1, 0]]
movel(p[0.4,0.3,0.75,0,1.570796,0], a=0.2, v=0.1, r=0.005) # [Move [0, 0, 250] mm]
sleep(2) # [Wait 2000 ms]
movej([0,0,0,0,1.570796,0], a=8.726646, v=0.698132, r=0.005) # [Set joint rotations to [0, 0, 

0, 0, 90, 0] deg]
end

Figure 3: Sample scheme of a Machina application-driver communication exchange.
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may execute in a handful of milliseconds on the digital 
side, but may require several minutes, if not hours, to 
complete on its analog counterpart. For this reason, there 
is an inherent challenge in coordinating the elements of 
a system whose parts work at such different time scales.

Machina approaches this problem by implementing a 
system of layered machine state representations named 
cursors. A Cursor is a virtual representation of the state 
of the robot, defined as the values of all possible properties 
a particular device may exhibit at a certain stage of the 
robot’s execution timeline. These may include position, 
orientation, IO values, temperature, etc., properties 
which are particular to the device’s capabilities. A simple 
extension of the Cursor object for a six-axis robotic arm 
could implement properties such as Position vector, 
an Orientation quaternion or an array of angular 
values for the Axes, whereas a cursor representing a 
conventional 3D printer may implement Position and 
Temperature, but not require Orientation.

Since Actions are platform-agnostic, their effect 
depends on the state of the device at the time of execution. 
An Action is said to be applied to a Cursor when the 
cursor representing that state changes its properties 
based on the nature of the Action. An example of this 
would be the Position of the cursor changing from 
(400, 300, 500) to (400, 300, 750) after a 
Move(0, 0, 250) action has been applied to it. This 
model is particularly helpful when controlling machines 
that do not natively accept motion instructions in relative 
form, since the absolute values for low-level instructions 
are always available application-side through the Cursor 

representation of the robot. It is also useful when 
switching between actions defined in Cartesian and joint 
coordinates, as the state can be maintained in parallel on 
both spaces, with translations between them updated 
through forward and inverse kinematic equations.

The asynchronous differences between the host 
application run time and the robot operation timeline are 
tracked through a set of cursors representing the different 
stages of program execution. To better understand this 
architecture, it will be useful to break down the different 
stages in the execution cycle of an Action Figure 4:

•	 An Action is issued when a request to execute that 
action has been invoked. This happens typically on 
most Robot API methods such as MoveTo(400, 
300, 500). Issued actions are immediately applied 
to the IssueCursor, which therefore maintains a 
representation of the future state of the robot after 
program completion, and is the base state on top of 
which new issued actions are applied.

•	 Upon issue, Machina queues actions into a first in, 
first out buffer, an manages the queue according 
to control mode and robot execution. An Action 
is released when it leaves the buffer, and a request 
to execute that action is sent to the controller. In 
offline mode, all actions are released at once upon 
Compile(). In online mode, Machina stages the 
release of actions to the controller in discrete blocks 
based on the amount of pending actions on it. 
Depending on the characteristics of the device, its 
microcontroller may not have enough resources to 

Figure 4: Life cycle of a Machina Action. MoveL represents a move instruction in the device native’s language executed 
by the driver.
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simultaneously handle communication, instruction 
parsing and smooth execution of large programs 
[39]. Blocks of blockSize actions are automatically 
released to the controller whenever less than pend-
ingCount actions are pending to be executed, with 
blockSize and pendingCount being customiz-
able. This prevents the device from overflowing with 
data transfers and memory requirements, and allows 
for the possibility of on-the-fly modifying or cancel-
ling long programs that have been completely issued 
but only partially released to the controller. It also 
facilitates programming styles that are more reac-
tive to the robot execution state. Released actions are 
immediately applied to the ReleaseCursor, which 
therefore maintains a representation of the state of 
the robot after execution of all the actions that have 
been sent to it.

•	 Once on the device controller, an Action is exe-
cuted whenever the changes it represents have been 
fulfilled by the driver module, and hence the state of 
the real device reflects those changes. Or, in simpler 
terms, whenever the robot has completed running 
that Action. On successful execution, the host will 
receive an acknowledgment message from the driver 
with information about the action that was just 
executed. Executed actions are immediately applied 
to the ExecutionCursor, which therefore main-
tains a representation of the state of the real device 
right after the last completed action. It is noteworthy 
that in some instances, and specially with motion 
actions, program execution on the robot may move 
on beyond the current instruction even before the 
robot has fully reached its target position. This is 
usually the case when the controller tries to smooth 
the motion trajectory between forthcoming targets. 
In this cases, the action is considered executed as 
well.

•	 Optionally, some devices have the capacity to run 
multiple threads and send periodic updates on the 
state of the robot during execution. In this case, such 
states can be applied to the MotionCursor, which 

therefore maintains the closest representation to 
real-time tracking of the state of execution, including 
intermediate states between actions.

Figure 5 is an example diagram of the different cursor 
representations of the execution timeline in our initial 
Hello Robot program. Assuming that the initial 
position of the robot is (400, 200, 500), and that 
Machina is set to stream to the controller in blocks of six 
actions, this would be the state of the cursors after three 
seconds of execution:

•	 The host application executes in a few millisec-
onds, and is currently halted waiting for user input. 
Because all actions in the program have been issued, 
the IssueCursor is currently at the last action 
AxesTo(0,0,0,0,90,0).

•	 The Machina buffer releases actions to the robot control-
ler in blocks of six. The state of the ReleaseCursor is 
updated up until Wait(2000).

•	 As the robot moves at a linear speed of 100 mm/s, 
three seconds into the program run time the robot 
has yet to complete execution of Move(0,0,250). 
Therefore, the ExecutionCursor is still on the 
previous action, Rotate(0,1,0,-90).

•	 If possible, the device updates Machina with the state 
of motion at small time intervals. Three seconds into 
the program, the MotionCursor would be approxi-
mately at position (400, 300, 600).

Feedback
Machina tries to foster programming styles that are 
reactive to, rather than prescriptive about, the robot 
execution state, with interactivity, system input and 
on-the-fly decision making being at the forefront of real-
time robotic applications.

The library exposes a collection of Events linked to 
changes in the Cursors. These notify the subscribers 
of the nature of the changes and other useful 
information. ActionIssued, ActionReleased and 
ActionExecuted are raised throughout the different 

Figure 5: Layered machine states. This diagram shows the different stages of asynchronous execution and Cursor 
representations for the Hello Robot program.



García del Castillo y López: Machina.NETArt. 27, page 10 of 14 

stages of the action execution cycle (see State Model), 
while MotionUpdate is raised anytime real-time 
information on the state of the robot is received from the 
controller.

Code Sample 7 shows a small program that starts by 
issuing motion in a horizontal square 50 × 50 mm loop. 
Whenever the robot has finished executing an action, 
ActionExecuted is raised. If no actions are pending to 
be executed, then a new loop is issued, hence creating an 
infinite loop that can only be interrupted by user input.

Other Features
Machina is designed as an introductory platform to real-
time robotics for non-experts; in a way, it is like the 21st 
century Logo turtle of industrial robots. As such, many of 
the design decisions made during its development were 
oriented towards fostering simplicity, intuitiveness, safety 
and getting applications working right away with minimal 
setup.

The complete .NET library, as well as other related 
projects, is fully open source [47]. The aim of this is to open 
up the field of robotics to curious individuals and power 
users, either for educational, participation or customization 
purposes. Furthermore, special consideration is given to 
thoroughly commenting the source code, to facilitate 
usage and extensibility of the library.

Additionally, the library has no significant dependencies. 
It features a full set of custom geometry and robot-related 

data types, and only references members from the .NET 
framework. Currently, the only exception is a dependency on 
the Robot Communication Runtime by ABB Robotics [40], 
used to interface with ABB controllers and automatically 
run driver modules in the controller. This dependency is 
scheduled for deprecation in the nearby future.

Machina.NET is the core library of the Robot Ex 
Machina project [49], an ecosystem of libraries and 
applications designed around the same core Enactive 
Robotics principles [48], and designed to provide access to 
real-time robot programming and control from a variety of 
different platforms. The name is a made-up pseudo Latin 
expression meaning robot from the machine, and it evokes 
this project’s spirit of infusing agency and responsiveness 
into otherwise passive machines.

Future Work 
The Machina project is currently under active 
development, and significant efforts are being made to 
improve its functionality across wider range of devices, 
and make it safer and more robust to use. In particular, 
current development is focusing mainly on the following 
aspects:

•	 KUKA robots: the library currently supports on/offline 
control of ABB and Universal Robots, and can generate 
offline code for KUKA robots. However, due to the 
author’s lack of access to the latter for testing, online 

Code Sample 7: Whenever the robot has no pending actions left to execute, a new block of actions is issued, generating 
an infinite motion program.

using System;
using Machina;

namespace Sample
{

class MachinaSample
{

static void Main(string[] args)
{

Robot arm = Robot.Create("InfiniteLoop", "ABB");
arm.ActionExecuted += {sender, eArgs} =>

{
if (eArgs.Pending == 0) Loop(sender as Robot);
};

arm.ControlMode("stream");
arm.Connect("192.168.125.1", 7000);

Loop(arm);

Console.WriteLine("Press any key to finish this program");
Console.ReadKey();

arm.Disconnect();
}

static void Loop(Robot bot) {
bot.Move(50, 0, 0);
bot.Move(0, 50, 0);
bot.Move(-50, 0, 0);
bot.Move(0, -50, 0);

}
}

}
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control of KUKA robots is still not available as a fea-
ture. Developers willing to extend this functionality 
to the project are welcome to contact the author or 
submit pull requests to the project. 

•	 Library of robot models: the library is purposeful 
generic, with compilers and low-level communication 
working at the brand level, without the need to incor-
porate model-specific data. This allows the library 
to seamlessly connect and control any robot model 
of a particular vendor. However, this lack of model 
specifications such as dimensions, joint limitations 
and mesh geometry makes it impossible to introduce 
more advanced functionality such as forward/inverse 
kinematics, out-of-reach computations, singularities, 
collision detection or visual simulations. While the 
process of documenting commercial robot models is 
rather tedious, it could open up important avenues 
for increased robustness and safety. The future of the 
library may involve a hybrid model where basic func-
tionality is available for a “generic” robot from a par-
ticular vendor, while the above-mentioned advance 
features might be available if the particular model is 
available in the robots’ library. 

•	 Forward/inverse kinematics solvers: for the reasons 
explained above, the library currently incorporates 
no FK/IK solvers, and relies on the robot controller 
to choose the best configuration for the arm at run 
time. On top of the limitations explained above, this 
lack prevents switching between relative and absolute 
instructions when changing from joint to cartesian 
space actions, and vice versa. Further work should go 
into providing suitable FK/IK solvers for the robot 
models available, in order to overcome these limita-
tions. 

•	 Enhanced safety: as a consequence of the former, the 
library does not have the capacity to prevent the user 
from issuing actions that would result in out-of-reach 
locations, traverse singularities, or collide with known 
objects. This could potentially pose a safety threat 
to humans, especially given the novice nature of the 
users the library is trying to target. The incorporation 
of robot model libraries and FK/IK would enable 
safety computations, and the possibility of adding 
options like StrictMode to ensure additional safety 
measures and robot halting upon known errors. 

Safety
It is very important to note that industrial robots can pose 
a serious safety threat to humans working around them. 
Robotic actuators are very powerful machines but, for the 
most part, extremely unaware of their environment; they 
may not be aware when hitting an object, and continue 
execution uninterrupted with fatal consequences. 
Therefore, special attention must be given to the safety of 
the humans working or interacting with robots, especially 
if the audience of this project is users who are new to 
robotics. 

In particular, individuals working with real-time robot 
control should pay special attention to the following 
measures:

•	 Be adequately trained to use that particular device.
•	 Be in good physical and mental condition.
•	 Operate the robot under the utmost safety measures. 
•	 Follow the facility’s and facility staff’s safety protocols.
•	 Make sure the robot has the appropriate guarding in 

place, including, but not reduced to, e-stops, physical 
barriers, light curtains, etc.

These guidelines are offered as recommendations, but 
ultimately, users should follow the protocols in place by 
their robot/shop managers. 

Machina.NET is under active development, and while 
it will yield warning and error messages on ill-defined 
actions, due to the current limitations it may not prevent 
users from executing them. The software is provided 
“as is,” without warranty of any kind, and the author/s 
should not be liable for any claim or damage arising from 
its use. 

Quality control 
Machina has been tested mainly by groups of architecture 
students and computational design researchers in 
academic environments. Many of these testers include 
residents at the Autodesk’s BUILD Space in Boston, and 
participants at teaching-oriented events co-led by the 
author, such as:

•	 “Material Systems: Digital Design and Fabrication,” 
[41] a course on robotic fabrication of ceramic systems 
at the Harvard University Graduate School of Design, 
Fall 2017 in Cambridge, MA (USA).

•	 “MindExMachina,” [42] a workshop on robotics and 
machine learning at the SmartGeometry conference, 
May 2018 in Toronto (Canada).

•	 “Tight Squeeze: Automated Assembly of Spatial 
Structures in Constrained Sites,” [43] a workshop 
on robotic construction at the Robots in Architec-
ture conference, September 2018 in Zurich (Swit-
zerland).

•	 “Talk to a Wall,” [44] a workshop on robotic paint-
ing with interactive user input and machine learning 
at the Association for Computer Aided Design in 
Architecture conference, October 2018 in Mexico City 
(Mexico).

User observation, feedback, bug reports and feature 
requests have been crucial in the development of the 
library and the current level of stability.

The project incorporates a full set of unit tests 
developed in Visual Studio’s UnitTestFramework. 
These tests focus mainly on validity checks for the 
Geometry data types, especially for the conversions 
between them.

(2) Availability 
Operating system
Machina has been tested on Windows 7, 8.1 and 10.

Programming language
C# and the .NET framework v4.6.1.
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Compatibility
As of current version, Machina is compatible with the 
following devices:

Device Offline Online

ABB Robots Yes Yes

Universal Robots Yes Yes

KUKA Robots Yes No

Zmorph 3D Printer Yes No

Additional system requirements
For online mode, a host computer running a 
Machina-powered application should be able to establish 
successful connection with a physical device running a 
driver module. Simulation tools such as RobotStudio [4] 
can be used to test Machina with virtual devices.

Dependencies
See “Other Features”.

List of contributors
Machina was created and is maintained by Jose Luis García 
del Castillo y López.

Software location
Archive and Code Repository

Name: Machina.NET
 Persistent identifier: https://doi.org/10.5281/zenodo 
.2579370
 URL: https://github.com/RobotExMachina/Machina.
NET
Licence: MIT
Publisher: Zenodo
Version published: 0.8.9
Date published: 27 February 2019

Language
English.

(3) Reuse potential 
Machina can be used by makers, designers, artists 
and engineers to create applications that maximize 
the potential of controlling robots in real-time. Early 
implementations show the potential of incorporating live 
feedback in classical one-directional processes, such as 3D 
printing. The Spatial Print Trajectory project [45, 46] used 
Machina to stream the print toolpaths of a spatial lattice of 
3D printed clay, drive a distance sensor attached to the end 
effector to measure local deformations on the fresh mixture, 
and generate the toolpath of the next layer compensating 
for them. Similar ideas could be implemented for human-
robot collaboration in construction, personal fabrication 
projects, interactive art installations, etc. The author 
believes that this novel paradigm will open new avenues of 
research and creative exploration for any individual trying 
to make things with robots.

Machina is designed for extensibility. The action model 
ensures that programs can be created in a platform-agnostic 

way and, by extending the classes that carry device-specific 
functionality, applied to new robot types beyond the ones 
available in the library. Documentation on how to do this 
is maintained in the main repository’s wiki, as well as basic 
use manuals and walkthroughs. Bugs and feature requests 
can be reported through the repository’s issue tracker.
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