
García del Castillo y López, J L 2019 Machina.NET:
A Library for Programming and Real-Time Control of
Industrial Robots. Journal of Open Research Software,
7: 27. DOI: https://doi.org/10.5334/jors.247

Journal of
open research software

SOFTWARE METAPAPER

Machina.NET: A Library for Programming and Real-Time
Control of Industrial Robots
Jose Luis García del Castillo y López1,2

1 Harvard University Graduate School of Design, US
2 Autodesk Inc., US
personal@garciadelcastillo.es

Machina is a .NET library for programming and control of industrial robots. It is designed to build applications
that interface with robotic devices in real time. The library features a high-level API of simple, device-
agnostic action verbs to issue motion requests to robots, and translates them to device-specific instructions
using low-level communication protocols and managing priority queues. It also features a set of execution-
related events to notify users of changes in the asynchronous state of the robot, fostering programming
styles that are reactive rather than prescriptive. These features promote an enactive approach to robotics,
and provide an immediate and intuitive entry point to real-time robot control, making Machina particularly
suitable for controlling systems that require concurrent responsiveness to sensory or user input. While
Machina currently supports mostly six-axis industrial robotic arms, it can be easily extended to any actuable
device that moves in three-dimensional space, such as 3D printers, CNC machines, drones, robotic toys, etc.

Machina is geared towards users in the creative fields, like designers, artists, makers and creative coders,
and promotes features such as interactivity, intuitiveness, feedback, concurrency and cross-platform
compatibility, over performance or feature-fullness. We hope this framework will help ease access for
novice users to the field of robotics.

Keywords: Robotics; Real-time; Interactive; Computation; Design; Art; Architecture; Digital Fabrication;
C#; HRI; HMI; HCI

(1) Overview
Introduction
During the last half of the 20th Century, and beginning
of the 21st, robots have permeated into many aspects of
our daily lives. Any modern product that we may consume
today has been manipulated by automated machines in
some kind of manufacturing process: cars, furniture, food,
electronics… virtually all objects that surround us have
been touched by robots. More recently, we are witnessing
an increasing presence of these machines outside
industry, in our domestic environments: from automated
vacuum cleaners in our homes to assistive devices for
impaired individuals, and very soon, delivery drones and
autonomous vehicles. Robots are following a similar path
to that of computers: from large and expensive machines
only accessible to researchers and industry, to smaller
personal versions to assist us in our daily duties. But just
like it happened with desktop computers, if robots are to
truly permeate into our daily lives, their programming and
control should be accessible to not just the highly trained,
but rather to the general user.

But first of all, what is a robot? This question is usually
the subject of endless philosophical debate, ranging
from simple definitions such as “a machine capable of

automatically carrying out a complex series of movements,
especially one which is programmable [1],” to increasingly
ontological queries on their nature: “a robot is a constructed
system that displays both physical and mental agency, but
is not alive in the biological sense [2].” In any case, most
authors agree that a robot is essentially constituted of
two parts: a physical manifestation that actuates and/or
senses its environment, and a logic system that drives its
behavior. And while the former, hardware design, involves
a whole set of challenges on its own, the project described
in this paper tries to address the challenges present in
the latter: the creation of the software mechanisms to
program and control robotic devices.

One of the first challenges in this field is the
significant lack of universality in robot control systems.
In industry, robot manufacturers usually provide highly
proprietary software environments that require the
use of custom programming languages, and it is fairly
common for vendors to offer their own authored tools
for programming and simulating their products. For
example, ABB [3] offers their licensed RobotStudio [4]
platform to program robot cells in the RAPID language
[5]; KUKA [6] provides KUKA.Sim [7] to simulate programs
written in Kuka Robot Language [8]; and Universal

https://doi.org/10.5334/jors.247
mailto:personal@garciadelcastillo.es

García del Castillo y López: Machina.NETArt. 27, page 2 of 14

Robots [9] uses the URScript [10] language to drive six-
axis robotic arms through URSim [11]. Different robot
brands requiring different programming languages is the
first entry barrier to robotics, tying the initial learning
process to the products of a particular company. However,
the kinematic similarities between six-axis robotic arms,
and the universal nature of spatial dynamics, make it
possible to abstract many of the principles behind motion
planning into higher-level interfaces, which can then be
post-processed into device-specific languages. This is the
core principle behind third-party robot programming
environments such as RoboDK [12] or Visual Components
[13]. But in any case, all these tools are still closed source
tools, with usage often restricted to the acquisition of
expensive licenses, becoming an additional entry barrier
for novice users to the field of robotics.

An additional problem with these industrial robot
programming tools is that they often require significant
domain expertise from the user. They are designed for
engineers, integrators and implementers, and assume their
users are familiar with notions such as forward and inverse
kinematics, spatial transformations, robot mechanics and
computer programming. The Robot Operating System
(ROS) [14] is notorious for the depth of possibilities it
allows, its modularity, openness and extensibility, but
also for its complexity, steep learning curve and difficulty
to set up, resulting in a reduced community of power
users formed by academics and research labs. There is
an abundance of highly specialized robot programming
tools for highly skilled individuals, although without the
proper training and time investment, robotics are hardly
accessible to more general audiences.

The recent democratization of digital fabrication tools
has sparked renewed interest in the field of robotics from
more creative communities. The increasing availability of
3D printers, laser cutters or Computer Numeric Control
(CNC) routers has given designers, architects and artists
tools for rapid prototyping, and with the growth of Fab
Labs [15] and maker culture [16], larger communities are
becoming empowered with the production means to make
almost anything [15]. The Arduino open-source platform
[17] stands as a great example of a system that integrates
a physical sensing/actuating device with a simple and
intuitive development environment, designed to introduce
novice makers to electronic prototyping. Personal
fabrication [18] projects such as RoMA [19] demonstrate
the potential of robot integration in ad hoc design-while-
making systems. Robotic fabrication in architecture has
also seen a tremendous development in the last decade,
with many architecture schools incorporating robotics
as part of their curricula, and dedicated conferences
promoting research in the field [20–23]. Projects such
as Flowing Matter [24] and the CEVISAMA pavilions [25]
explore the promising possibilities that design to robotic
fabrication workflows may open up for innovative building
structures. Additionally, art projects such as Mimic [26]
and Mimus [27] demonstrate the expressive potential that
six-axis robotic arms have beyond their mere utilitarian
implementations.

While industrial robotic arms are commonly used in
these kinds of projects, they are seldom implemented

or controlled via the software tools that their vendors
provide. There are multiple reasons for this: in addition
to the complexity and steep learning curves already
discussed, these tools offer poor integration with common
Computer Aided Design (CAD) and Manufacturing (CAM)
environments typically used by these audiences. The
recent popularity of visual programming languages for
CAD like Grasshopper3D [28] led to a bloom of robot-
oriented plug-ins, such as HAL [29], KukaPRC [30], Taco
ABB [31] or Scorpion [32], which allow for the compilation
of robot programs in native languages directly from the
CAD environment. And while these tools offer a smoother
learning curve and easier CAD to CAM workflows, they
are still in many cases vendor specific and closed source,
making it very hard to extend or customize for novice uses.

Moreover, industrial robots, and the environments
designed to control them, are heavily biased towards the
offline programming model. In this scenario, all motion
planning, logic and instructions are pre-defined inside
the programming environment, become post-processed
into a program in the device’s native language, separately
loaded to its controller and executed offline, without
connection to the tool from which it was created; this
is for instance the typical use case for any common 3D
printing operation. Such paradigm is well suited for
highly calibrated and predictable environments, where
precise assumptions about their state can be done a
priori. However, it is particularly inadequate for systems
with elevated degrees of uncertainty, and where robot
behavior is driven reactively by mutating conditions
around it. This is particularly the case of robotic systems
based on sensory input, environmental feedback,
material properties, interactive installations, human-
robot collaboration, etc. Projects willing to explore these
features must often develop their own ad hoc robot
control tools, usually relying on tricks and hacks, and thus
requiring significant programming experience and robot
control knowledge–yet another barrier to innovative
robotic exploration.

From an engineering perspective, we have gotten quite
good at making machines that are precise, reliable, and
fast, and that allow us to make further things with them.
However, for non-power users, they can be notoriously hard
to use and extend [33]. Therefore, while further research
will continue to improve the hardware side of industrial
robots, it could be argued that the big challenge for their
mass adoption remains the software tools available to
program them. For industrial robots to permeate further
into non-industrial contexts, the tools used to control
them should also address the qualities and needs of the
new people who will use them. Training the general
public in the skills of industrial robots is unrealistic, and
for further progress to be made in fields such as design
robotics [34] or personal fabrication [35], the next frontier
of research should be the design of appropriate robotic
software interfaces catered to their needs.

This paper presents Machina, a .NET library for
programming and real-time control of industrial robots. It
features a high-level, unitary, simple and human-relatable
Application Programming Interface (API) of actions to
describe spatial motion, which can then be post-processed

García del Castillo y López: Machina.NET Art. 27, page 3 of 14

into a program in the device’s native language. Its design
follows the principles of the Enactive Robotics model [48],
providing a more suitable cognitive model for beginners,
while providing a deeper spectrum of possibilities to
advanced users. Even though it can be used for classical
offline programming, the main emphasis of the project is
real-time communication and control of robotic devices.
The library defines classes with protocols for hardware
drivers, low-level communication, instruction buffering,
and machine state representations, which can then be
extended to the particularities of any specific machine. An
additional API of asynchronous events tied to execution
tracking allows for programming styles that are reactive to
concurrent execution by the machine at run time. While
the main focus of the library are six-axis industrial robotic
arms, it can (and hopefully will) be easily extended to
drive any mechanical device that can sense or be actuated
in three-dimensional space, such as 3D printers, CNC
machines, Arduino boards, mobile robots, drones, etc.

The target audience of this project are individuals
without engineering backgrounds who want to use
robots for creative projects outside industry, such as
designers, artists, architects, makers and creative coders.
The library is designed to be immediate and intuitive to
use, foster interactivity, provide constant feedback and
allow concurrency, with less emphasis on other qualities
such as performance or feature-fullness. The goal of this
effort is to provide an entry point for non-experts to
the field of robotics, open it up to research speculation,
experimentation and creative inquiry, and make robotics
more accessible to wider audiences.

Implementation and architecture
Hello Robot
A simple application in C# built with Machina could look
like Code Sample 1:
using System;
using Machina;

namespace Sample
{

class MachinaSample
{

static void Main(string[] args)
{

Robot arm = Robot.Create("HelloRobot",
"ABB");
arm.ControlMode("online");
arm.Connect("192.168.125.1", 7000);

arm.Message("Hello Robot!");
arm.SpeedTo(100);
arm.MoveTo(400, 300, 500);
arm.Rotate(0, 1, 0, -90);
arm.Move(0, 0, 250);
arm.Wait(2000);
arm.AxesTo(0, 0, 0, 0, 90, 0);

 Console.WriteLine("Press any key to
finish this program");
Console.ReadKey();

arm.Disconnect();
}

}
}

Code Sample 1: A simple Hello Robot program.

In this example, the sequence of actions is as follows:

•	 Define a new instance of a Robot object, giving it a
name, and defining its brand.

•	 Connect to a physical robot at given IP and Port values.
•	 Display the "Hello Robot!" message on the

device’s display.
•	 Set the internal linear speed value to 100 mm/s.
•	 Move to Cartesian XYZ coordinates (400, 300,
500) in the robot’s reference frame.

•	 Rotate -90 degrees around the unitary positive Y
vector (0, 1, 0).

•	 Move 250 mm in positive Z.
•	 Wait for 2000 milliseconds.
•	 Set the rotational values of the robot’s six axes to
(0, 0, 0, 0, 90, 0) degrees respectively.

•	 Halt program execution by requesting user input,
giving time to the robot to complete these actions.

•	 Disconnect from the controller before leaving the
program.

The result of the execution of this program on an ABB IRB
1200 robot is illustrated in Figure 1.

Syntax
Machina is designed to program machines that perform
motion in three-dimensional space. It features a high-level
API of instructions to describe kinematic transformations,
composed of simple English verbs that denote calls to
action. Its interaction model is highly influenced by the
cognitive principles behind the Logo programming
language [36] and its popular application to turtle graphics.
Some of its syntactical flavor and state-based settings are
influenced by the Processing programming language [37].

The Robot class is the main public interface with the
library. It features methods such as Move, Rotate
and Transform to request kinematic transformations,
Speed and Precision to request changes in motion
properties, or Connect and ControlMode as
management methods. A program can be created by the
simple concatenation of a sequence of actions, and running
it will result in either the buffered execution of those
actions on the connected device, or the offline compilation
of that same program into the device’s native language.

Where applicable, most of the API methods have two
syntactical flavors: the function name with the To suffix,
and the plain version. This denotes the difference between
absolute and relative action requests respectively. Relative
actions build on top of the current state of the robot,
while absolute actions set those values independently
of former states. For example, a MoveTo(400, 300,
500) call will set the position of the robot’s Tool Center
Point (TCP) to XYZ (400, 300, 500) mm, regardless
of its previous position. If followed by a relative Move(0,
0, 250) call, the resulting absolute position of the
robot would be (400, 300, 750). This applies to
TCP location, orientation, and robot axes values, but
also to internal robot motion properties such as speed,
acceleration, precision, analog out values, etc.

A breakdown of the most relevant methods in the
Robot class can be found in Tables 1 to 3.

García del Castillo y López: Machina.NETArt. 27, page 4 of 14

Figure 1: The four main motion actions of the Hello Robot program (Code Sample 1) executed on an ABB IRB 1200
robot – MoveTo(400, 300, 500), Rotate(0, 1, 0, –90), Move(0, 0, 250) and AxesTo(0, 0,
0, 0, 90, 0).

Table 1: Main motion control actions in Machina.

Instruction Description Related Action

Move/To Change the position of the TCP maintaining its orientation. ActionTranslation

Rotate/To Change the orientation of the TCP maintaining it position. ActionRotation

Transform/To Change the position and orientation of the TCP. ActionTransformation

Axes/To Change the rotational values of the robot’s axes. ActionAxes

ExternalAxis/To Change the values of one the external axis attached to the robot. ActionExternalAxis

Wait Halt program execution for an amount of time. ActionWait

DefineTool Define Tool properties on the robot. ActionDefineTool

Attach Attach a Tool to the robot’s flange. ActionAttach

Detach Detach all tools from the robot. ActionDetach

WriteDigital Writes a value to a digital out. ActionIODigital

WriteAnalog Writes a value to an analog out. ActionIOAnalog

Extrude Turns extrusion on/off in 3D printers. ActionExtrude

Message Display a message on the device’s screen. ActionMessage

Comment Insert a custom comment on a compiled program. ActionComment

CustomCode Insert a custom line of code on a compiled program. ActionCustomCode

Do Applies an Action object to the Robot. N/A

Table 2: Main settings actions in Machina. Note that all state changes caused by these actions can be buffered and
reverted with the use of PushSettings and PopSettings.

Instruction Description Related Action

MotionMode Set the motion type for future motion Actions, like linear or
joint.

ActionMotion

Speed/To Change the TCP speed value new Actions will be executed at. ActionSpeed

Acceleration/To Change the TCP acceleration value new Actions will be executed
at.

ActionAcceleration

Precision/To Change the TCP smoothing radius value new Actions will be
executed at.

ActionPrecision

Temperature/To Change the working temperature of one of the device’s parts. ActionTemperature

ExtrusionRate/To Change the extrusion rate of filament for 3D printers. ActionExtrusionRate

PushSettings Buffers current state settings. ActionPushPop

PopSettings Reverts the settings to the previous state buffered by
PushSettings.

ActionPushPop

García del Castillo y López: Machina.NET Art. 27, page 5 of 14

Action Model
The internal programming and control model of Machina
is based on the atomic form of Action objects. Actions
are the basic units of interaction with the machine, and
follow the principles of the Enactive Robotics model for
concurrent machine control [48]. An Action is defined
as a change in some of the properties that define the
state of a robot. For example, this can mean to perform
some kind of spatial motion (Move, Rotate), change
the execution properties of forthcoming actions (Speed,
MotionMode), hold execution for a certain amount of
time (Wait), change the IO values (WriteDigital,
WriteAnalog), etc.

Tables 1 and 2 denote a loose correlation between
Robot methods and Action types. This is not
coincidental, as most API calls are basically thin wrappers
that create an Action object internally and issue a
request to the core Control class to execute that action
Figure 2. This pattern presents a clear mental model
to the user, who can easily relate the statement arm.
Move(0, 0, 250) to the meaning “ask the robot to
move up 250 mm,” and doesn’t need to care about the
internal representation of such actions. It also helps
maintain the modularity of the library and simplifies the
extension of its functionality.

Actions are platform-agnostic. They are objects which
store values for the state properties they are meant to
modify, but do not need information on their target
machine in order to exist–even if they are created through
the Robot class. This means that programs are created
internally as lists of Action objects, but that these
actions have no real meaning until they are applied to a
particular device. Depending on its nature, such a device
may or may not be able to accommodate those changes;
it is the responsibility of the developer who extends the
library for a new machine type to decide which actions
have effects on it and what their effects are. This means
that calling the bot.ExtrusionRateTo(100)
method on a non 3D printer is a valid operation, but will
have no effect on the machine when executed online
or compiled offline, beyond a warning message. This
allows to maintain the cross-compatibility of the same
API between different types of robots. However, it is
important to note that the philosophy of the library is to
provide a high-level programming language as constant
in behavior as possible across different machine types.
While developers are welcome to contribute to the project
with extensions for new machine types, only those who
maintain the library’s consistency will be accepted to the
main project.

Table 3: Main management methods in Machina. These instructions have no actions associated to them, as they are
related to setup rather than execution.

Instruction Description Related
Action

Robot.Create Create a new instance of a Robot object. N/A
ControlMode Sets the control type the robot will operate under, like offline or online. N/A
ConnectionManager Defines who is responsible for setting up the controller for connection, Machina or

the user.
N/A

Connect Connects to a remote controller. N/A
Compile Create a program in the device’s native language with all the buffered Actions. N/A

Figure 2: Overall architecture of the Machina.NET library and an extension sample for ABB robots.

García del Castillo y López: Machina.NETArt. 27, page 6 of 14

Machina can be extended with new actions by inheriting
from the main Action class, and adding corresponding
methods to the Robot class. Child actions must implement
the ToString() method with a human-readable
representation of the effect of the action; this helps the user
understand the abstractions behind them. Child actions
must also implement the ToInstruction() method to
return a string mirroring the necessary API call to create such
Action. This is extremely useful as a form of serialization,
and provides a way to marshal actions when transferring
programs between different implementations of the
Machina framework, either through different programming
languages or communication protocols. Code Samples 2
and 3 show examples of this behavior for the action in our
Hello Robot program (Code Sample 1).

Control Modes
Machina can be used for offline programming. In this
scenario, the library works by buffering all actions into a
program, which can then be compiled into the device’s
native language, manually loaded and ran on it. This is very
similar to the typical way Arduino boards are programmed
[17].

Code Sample 4 shows the Hello Robot example
rewritten to work in offline mode. In this case, program
contains a string representation of the Machina actions
post-processed into ABB’s native RAPID language (Code

Sample 5). The same program, compiled in Universal
Robots’ URScript language is shown on Code Sample 6.

Note how, by default, Machina inserts comments
throughout the program with human-readable
descriptions of the code. This helps novice users
understand the correlation between native instructions
and the original Machina actions, facilitating debugging
and serving as an entry point to native robot programming.
This behavior can be customized through the overloads in
Compile().

When working in online mode, Machina is intended to
be used in control applications running on a host on the
same network as the controlled device. In this scenario, the
device’s controller must be running an instance of a custom
Machina driver module written in the device’s language.
Depending on the device, the driver may automatically be
deployed by the application, or should be manually set up by
the user. The driver module allows the Machina application
to exchange information with the device via whichever
communication protocol the device accepts. Following the
Arduino analogy, this would be akin to interfacing with the
board via the Firmata protocol [38].

Figure 3 describes a high-level representation of a
sample communication scheme between a Machina host
application and the driver. In this example:

•	 Communication is established between host and driver
through the device’s available communication protocol.

•	 A handshake operation is performed to verify ver-
sion compatibility and to update the host with initial
machine state.

•	 Host streams action requests to the driver.
•	 Driver sends acknowledgement messages on action

completion.
•	 Driver streams motion update messages when avail-

able.

In the example, communication with ABB devices works
by running a driver module that creates a TCP server on
the device, accepting incoming socket connections. On
successful connection, the client receives string state
messages in the format >21 X Y Z QW QX QY QZ;
and >22 J1 J2 J3 J4 J5 J6; with the values for the
current Cartesian and joint poses respectively. A request to
transform linearly to a Cartesian pose can be sent as @ID
1 X Y Z QW QX QY QZ;, and upon completion of this
request, the driver will send an acknowledgment message
@ID 1; including the id value of the completed action.
If capable of, the driver may also send state messages
periodically, to keep the client updated on the motion
state of the device.

However, Machina doesn’t impose a particular
specification on how drivers for new robots should be
implemented. Due to the lack of universality in firmware
applications, and the variability of technologies available
on back-end interfaces, different devices may require
different communication protocols, connection schemes,
and/or message formatting. Developers willing to extend
Machina for new machines are welcome to choose how to
develop their own driver modules, and which technology

Code Sample 2: Actions in the Hello Robot example
stringified to a human-readable program.

Display message "Hello Robot!"
Set TCP speed to 100 mm/s
Move to [400, 300, 500] mm
Rotate –90 deg around [0, 1, 0]
Move [0, 0, 250] mm
Wait 2000 ms
Set joint rotations to [0, 0, 0, 0, 90, 0] deg

Code Sample 3: Actions in the Hello Robot example
serialized into instruction calls.

Message("Hello Robot!")
SpeedTo(100)
MoveTo(400, 300, 500)
Rotate(0, 1, 0, -90)
Move(0, 0, 250)
Wait(2000)
AxesTo(0, 0, 0, 0, 90, 0)

Code Sample 4: The Hello Robot example rewritten
for offline mode.

Robot arm = Robot.Create("HelloRobot", "ABB");

arm.ControlMode("offline");

arm.Message("Hello Robot!");
arm.SpeedTo(100);
arm.MoveTo(400, 300, 500);
arm.Rotate(0, 1, 0, -90);
arm.Move(0, 0, 250);
arm.Wait(2000);
arm.AxesTo(0, 0, 0, 0, 90, 0);

List<string> program = arm.Compile();

García del Castillo y López: Machina.NET Art. 27, page 7 of 14

stack to implement in order to interface with them. The
only requirement is to maintain the updating logic of the
robot cursors that represent the asynchronous state of the
system (see State Model section).

State Model
When using software applications to control hardware
devices, there is a tremendous mismatch between the
execution time frames of both parties: a large program

Code Sample 5: The Hello Robot program compiled to RAPID language by the code in Code Sample 4.

MODULE HelloRobot_Program
CONST speeddata vel20 := [20,20,5000,1000];
CONST speeddata vel100 := [100,20,5000,1000];
PROC main()

ConfJ \Off;
ConfL \Off;
TPWrite "Hello Robot!"; ! [Display message "Hello Robot!"]
! [Set TCP speed to 100 mm/s]
MoveL [[400, 300, 500], [0, 0, 1, 0], [0,0,0,0], [9E9,9E9,9E9,9E9,9E9,9E9]], vel100, z5,

Tool0\WObj:=WObj0; ! [Move to [400, 300, 500] mm]
MoveL [[400, 300, 500], [0.7071, 0, 0.7071, 0], [0,0,0,0], [9E9,9E9,9E9,9E9,9E9,9E9]],

vel100, z5, Tool0\WObj:=WObj0; ! [Rotate -90 deg around [0, 1, 0]]
MoveL [[400, 300, 750], [0.7071, 0, 0.7071, 0], [0,0,0,0], [9E9,9E9,9E9,9E9,9E9,9E9]],

vel100, z5, Tool0\WObj:=WObj0; ! [Move [0, 0, 250] mm]
WaitTime 2; ! [Wait 2000 ms]
MoveAbsJ [[0, 0, 0, 0, 90, 0], [9E9,9E9,9E9,9E9,9E9,9E9]], vel100, z5, Tool0\WObj:=WObj0;

! [Set joint rotations to [0, 0, 0, 0, 90, 0] deg]
ENDPROC

ENDMODULE

Code Sample 6: The same Hello Robot program in Code Sample 4 compiled to URScript.

def HelloRobot_Program():
popup("Hello Robot!", title="Machina Message", warning=False, error=False) # [Display message

"Hello Robot!"]
[Set TCP speed to 100 mm/s]
movel(p[0.4,0.3,0.5,0,3.141593,0], a=0.2, v=0.1, r=0.005) # [Move to [400, 300, 500] mm]
movel(p[0.4,0.3,0.5,0,1.570796,0], a=0.2, v=0.1, r=0.005) # [Rotate -90 deg around [0, 1, 0]]
movel(p[0.4,0.3,0.75,0,1.570796,0], a=0.2, v=0.1, r=0.005) # [Move [0, 0, 250] mm]
sleep(2) # [Wait 2000 ms]
movej([0,0,0,0,1.570796,0], a=8.726646, v=0.698132, r=0.005) # [Set joint rotations to [0, 0,

0, 0, 90, 0] deg]
end

Figure 3: Sample scheme of a Machina application-driver communication exchange.

García del Castillo y López: Machina.NETArt. 27, page 8 of 14

may execute in a handful of milliseconds on the digital
side, but may require several minutes, if not hours, to
complete on its analog counterpart. For this reason, there
is an inherent challenge in coordinating the elements of
a system whose parts work at such different time scales.

Machina approaches this problem by implementing a
system of layered machine state representations named
cursors. A Cursor is a virtual representation of the state
of the robot, defined as the values of all possible properties
a particular device may exhibit at a certain stage of the
robot’s execution timeline. These may include position,
orientation, IO values, temperature, etc., properties
which are particular to the device’s capabilities. A simple
extension of the Cursor object for a six-axis robotic arm
could implement properties such as Position vector,
an Orientation quaternion or an array of angular
values for the Axes, whereas a cursor representing a
conventional 3D printer may implement Position and
Temperature, but not require Orientation.

Since Actions are platform-agnostic, their effect
depends on the state of the device at the time of execution.
An Action is said to be applied to a Cursor when the
cursor representing that state changes its properties
based on the nature of the Action. An example of this
would be the Position of the cursor changing from
(400, 300, 500) to (400, 300, 750) after a
Move(0, 0, 250) action has been applied to it. This
model is particularly helpful when controlling machines
that do not natively accept motion instructions in relative
form, since the absolute values for low-level instructions
are always available application-side through the Cursor

representation of the robot. It is also useful when
switching between actions defined in Cartesian and joint
coordinates, as the state can be maintained in parallel on
both spaces, with translations between them updated
through forward and inverse kinematic equations.

The asynchronous differences between the host
application run time and the robot operation timeline are
tracked through a set of cursors representing the different
stages of program execution. To better understand this
architecture, it will be useful to break down the different
stages in the execution cycle of an Action Figure 4:

•	 An Action is issued when a request to execute that
action has been invoked. This happens typically on
most Robot API methods such as MoveTo(400,
300, 500). Issued actions are immediately applied
to the IssueCursor, which therefore maintains a
representation of the future state of the robot after
program completion, and is the base state on top of
which new issued actions are applied.

•	 Upon issue, Machina queues actions into a first in,
first out buffer, an manages the queue according
to control mode and robot execution. An Action
is released when it leaves the buffer, and a request
to execute that action is sent to the controller. In
offline mode, all actions are released at once upon
Compile(). In online mode, Machina stages the
release of actions to the controller in discrete blocks
based on the amount of pending actions on it.
Depending on the characteristics of the device, its
microcontroller may not have enough resources to

Figure 4: Life cycle of a Machina Action. MoveL represents a move instruction in the device native’s language executed
by the driver.

García del Castillo y López: Machina.NET Art. 27, page 9 of 14

simultaneously handle communication, instruction
parsing and smooth execution of large programs
[39]. Blocks of blockSize actions are automatically
released to the controller whenever less than pend-
ingCount actions are pending to be executed, with
blockSize and pendingCount being customiz-
able. This prevents the device from overflowing with
data transfers and memory requirements, and allows
for the possibility of on-the-fly modifying or cancel-
ling long programs that have been completely issued
but only partially released to the controller. It also
facilitates programming styles that are more reac-
tive to the robot execution state. Released actions are
immediately applied to the ReleaseCursor, which
therefore maintains a representation of the state of
the robot after execution of all the actions that have
been sent to it.

•	 Once on the device controller, an Action is exe-
cuted whenever the changes it represents have been
fulfilled by the driver module, and hence the state of
the real device reflects those changes. Or, in simpler
terms, whenever the robot has completed running
that Action. On successful execution, the host will
receive an acknowledgment message from the driver
with information about the action that was just
executed. Executed actions are immediately applied
to the ExecutionCursor, which therefore main-
tains a representation of the state of the real device
right after the last completed action. It is noteworthy
that in some instances, and specially with motion
actions, program execution on the robot may move
on beyond the current instruction even before the
robot has fully reached its target position. This is
usually the case when the controller tries to smooth
the motion trajectory between forthcoming targets.
In this cases, the action is considered executed as
well.

•	 Optionally, some devices have the capacity to run
multiple threads and send periodic updates on the
state of the robot during execution. In this case, such
states can be applied to the MotionCursor, which

therefore maintains the closest representation to
real-time tracking of the state of execution, including
intermediate states between actions.

Figure 5 is an example diagram of the different cursor
representations of the execution timeline in our initial
Hello Robot program. Assuming that the initial
position of the robot is (400, 200, 500), and that
Machina is set to stream to the controller in blocks of six
actions, this would be the state of the cursors after three
seconds of execution:

•	 The host application executes in a few millisec-
onds, and is currently halted waiting for user input.
Because all actions in the program have been issued,
the IssueCursor is currently at the last action
AxesTo(0,0,0,0,90,0).

•	 The Machina buffer releases actions to the robot control-
ler in blocks of six. The state of the ReleaseCursor is
updated up until Wait(2000).

•	 As the robot moves at a linear speed of 100 mm/s,
three seconds into the program run time the robot
has yet to complete execution of Move(0,0,250).
Therefore, the ExecutionCursor is still on the
previous action, Rotate(0,1,0,-90).

•	 If possible, the device updates Machina with the state
of motion at small time intervals. Three seconds into
the program, the MotionCursor would be approxi-
mately at position (400, 300, 600).

Feedback
Machina tries to foster programming styles that are
reactive to, rather than prescriptive about, the robot
execution state, with interactivity, system input and
on-the-fly decision making being at the forefront of real-
time robotic applications.

The library exposes a collection of Events linked to
changes in the Cursors. These notify the subscribers
of the nature of the changes and other useful
information. ActionIssued, ActionReleased and
ActionExecuted are raised throughout the different

Figure 5: Layered machine states. This diagram shows the different stages of asynchronous execution and Cursor
representations for the Hello Robot program.

García del Castillo y López: Machina.NETArt. 27, page 10 of 14

stages of the action execution cycle (see State Model),
while MotionUpdate is raised anytime real-time
information on the state of the robot is received from the
controller.

Code Sample 7 shows a small program that starts by
issuing motion in a horizontal square 50 × 50 mm loop.
Whenever the robot has finished executing an action,
ActionExecuted is raised. If no actions are pending to
be executed, then a new loop is issued, hence creating an
infinite loop that can only be interrupted by user input.

Other Features
Machina is designed as an introductory platform to real-
time robotics for non-experts; in a way, it is like the 21st
century Logo turtle of industrial robots. As such, many of
the design decisions made during its development were
oriented towards fostering simplicity, intuitiveness, safety
and getting applications working right away with minimal
setup.

The complete .NET library, as well as other related
projects, is fully open source [47]. The aim of this is to open
up the field of robotics to curious individuals and power
users, either for educational, participation or customization
purposes. Furthermore, special consideration is given to
thoroughly commenting the source code, to facilitate
usage and extensibility of the library.

Additionally, the library has no significant dependencies.
It features a full set of custom geometry and robot-related

data types, and only references members from the .NET
framework. Currently, the only exception is a dependency on
the Robot Communication Runtime by ABB Robotics [40],
used to interface with ABB controllers and automatically
run driver modules in the controller. This dependency is
scheduled for deprecation in the nearby future.

Machina.NET is the core library of the Robot Ex
Machina project [49], an ecosystem of libraries and
applications designed around the same core Enactive
Robotics principles [48], and designed to provide access to
real-time robot programming and control from a variety of
different platforms. The name is a made-up pseudo Latin
expression meaning robot from the machine, and it evokes
this project’s spirit of infusing agency and responsiveness
into otherwise passive machines.

Future Work
The Machina project is currently under active
development, and significant efforts are being made to
improve its functionality across wider range of devices,
and make it safer and more robust to use. In particular,
current development is focusing mainly on the following
aspects:

•	 KUKA robots: the library currently supports on/offline
control of ABB and Universal Robots, and can generate
offline code for KUKA robots. However, due to the
author’s lack of access to the latter for testing, online

Code Sample 7: Whenever the robot has no pending actions left to execute, a new block of actions is issued, generating
an infinite motion program.

using System;
using Machina;

namespace Sample
{

class MachinaSample
{

static void Main(string[] args)
{

Robot arm = Robot.Create("InfiniteLoop", "ABB");
arm.ActionExecuted += {sender, eArgs} =>

{
if (eArgs.Pending == 0) Loop(sender as Robot);
};

arm.ControlMode("stream");
arm.Connect("192.168.125.1", 7000);

Loop(arm);

Console.WriteLine("Press any key to finish this program");
Console.ReadKey();

arm.Disconnect();
}

static void Loop(Robot bot) {
bot.Move(50, 0, 0);
bot.Move(0, 50, 0);
bot.Move(-50, 0, 0);
bot.Move(0, -50, 0);

}
}

}

García del Castillo y López: Machina.NET Art. 27, page 11 of 14

control of KUKA robots is still not available as a fea-
ture. Developers willing to extend this functionality
to the project are welcome to contact the author or
submit pull requests to the project.

•	 Library of robot models: the library is purposeful
generic, with compilers and low-level communication
working at the brand level, without the need to incor-
porate model-specific data. This allows the library
to seamlessly connect and control any robot model
of a particular vendor. However, this lack of model
specifications such as dimensions, joint limitations
and mesh geometry makes it impossible to introduce
more advanced functionality such as forward/inverse
kinematics, out-of-reach computations, singularities,
collision detection or visual simulations. While the
process of documenting commercial robot models is
rather tedious, it could open up important avenues
for increased robustness and safety. The future of the
library may involve a hybrid model where basic func-
tionality is available for a “generic” robot from a par-
ticular vendor, while the above-mentioned advance
features might be available if the particular model is
available in the robots’ library.

•	 Forward/inverse kinematics solvers: for the reasons
explained above, the library currently incorporates
no FK/IK solvers, and relies on the robot controller
to choose the best configuration for the arm at run
time. On top of the limitations explained above, this
lack prevents switching between relative and absolute
instructions when changing from joint to cartesian
space actions, and vice versa. Further work should go
into providing suitable FK/IK solvers for the robot
models available, in order to overcome these limita-
tions.

•	 Enhanced safety: as a consequence of the former, the
library does not have the capacity to prevent the user
from issuing actions that would result in out-of-reach
locations, traverse singularities, or collide with known
objects. This could potentially pose a safety threat
to humans, especially given the novice nature of the
users the library is trying to target. The incorporation
of robot model libraries and FK/IK would enable
safety computations, and the possibility of adding
options like StrictMode to ensure additional safety
measures and robot halting upon known errors.

Safety
It is very important to note that industrial robots can pose
a serious safety threat to humans working around them.
Robotic actuators are very powerful machines but, for the
most part, extremely unaware of their environment; they
may not be aware when hitting an object, and continue
execution uninterrupted with fatal consequences.
Therefore, special attention must be given to the safety of
the humans working or interacting with robots, especially
if the audience of this project is users who are new to
robotics.

In particular, individuals working with real-time robot
control should pay special attention to the following
measures:

•	 Be adequately trained to use that particular device.
•	 Be in good physical and mental condition.
•	 Operate the robot under the utmost safety measures.
•	 Follow the facility’s and facility staff’s safety protocols.
•	 Make sure the robot has the appropriate guarding in

place, including, but not reduced to, e-stops, physical
barriers, light curtains, etc.

These guidelines are offered as recommendations, but
ultimately, users should follow the protocols in place by
their robot/shop managers.

Machina.NET is under active development, and while
it will yield warning and error messages on ill-defined
actions, due to the current limitations it may not prevent
users from executing them. The software is provided
“as is,” without warranty of any kind, and the author/s
should not be liable for any claim or damage arising from
its use.

Quality control
Machina has been tested mainly by groups of architecture
students and computational design researchers in
academic environments. Many of these testers include
residents at the Autodesk’s BUILD Space in Boston, and
participants at teaching-oriented events co-led by the
author, such as:

•	 “Material Systems: Digital Design and Fabrication,”
[41] a course on robotic fabrication of ceramic systems
at the Harvard University Graduate School of Design,
Fall 2017 in Cambridge, MA (USA).

•	 “MindExMachina,” [42] a workshop on robotics and
machine learning at the SmartGeometry conference,
May 2018 in Toronto (Canada).

•	 “Tight Squeeze: Automated Assembly of Spatial
Structures in Constrained Sites,” [43] a workshop
on robotic construction at the Robots in Architec-
ture conference, September 2018 in Zurich (Swit-
zerland).

•	 “Talk to a Wall,” [44] a workshop on robotic paint-
ing with interactive user input and machine learning
at the Association for Computer Aided Design in
Architecture conference, October 2018 in Mexico City
(Mexico).

User observation, feedback, bug reports and feature
requests have been crucial in the development of the
library and the current level of stability.

The project incorporates a full set of unit tests
developed in Visual Studio’s UnitTestFramework.
These tests focus mainly on validity checks for the
Geometry data types, especially for the conversions
between them.

(2) Availability
Operating system
Machina has been tested on Windows 7, 8.1 and 10.

Programming language
C# and the .NET framework v4.6.1.

García del Castillo y López: Machina.NETArt. 27, page 12 of 14

Compatibility
As of current version, Machina is compatible with the
following devices:

Device Offline Online

ABB Robots Yes Yes

Universal Robots Yes Yes

KUKA Robots Yes No

Zmorph 3D Printer Yes No

Additional system requirements
For online mode, a host computer running a
Machina-powered application should be able to establish
successful connection with a physical device running a
driver module. Simulation tools such as RobotStudio [4]
can be used to test Machina with virtual devices.

Dependencies
See “Other Features”.

List of contributors
Machina was created and is maintained by Jose Luis García
del Castillo y López.

Software location
Archive and Code Repository

Name: Machina.NET
 Persistent identifier: https://doi.org/10.5281/zenodo
.2579370
 URL: https://github.com/RobotExMachina/Machina.
NET
Licence: MIT
Publisher: Zenodo
Version published: 0.8.9
Date published: 27 February 2019

Language
English.

(3) Reuse potential
Machina can be used by makers, designers, artists
and engineers to create applications that maximize
the potential of controlling robots in real-time. Early
implementations show the potential of incorporating live
feedback in classical one-directional processes, such as 3D
printing. The Spatial Print Trajectory project [45, 46] used
Machina to stream the print toolpaths of a spatial lattice of
3D printed clay, drive a distance sensor attached to the end
effector to measure local deformations on the fresh mixture,
and generate the toolpath of the next layer compensating
for them. Similar ideas could be implemented for human-
robot collaboration in construction, personal fabrication
projects, interactive art installations, etc. The author
believes that this novel paradigm will open new avenues of
research and creative exploration for any individual trying
to make things with robots.

Machina is designed for extensibility. The action model
ensures that programs can be created in a platform-agnostic

way and, by extending the classes that carry device-specific
functionality, applied to new robot types beyond the ones
available in the library. Documentation on how to do this
is maintained in the main repository’s wiki, as well as basic
use manuals and walkthroughs. Bugs and feature requests
can be reported through the repository’s issue tracker.

Acknowledgements
I would like to thank Autodesk Inc., the Generative Design
Group, the BUILD Space, and in special to Matt Jezyk for
his continuous support of this project.

Special gratitude also goes to all the early adopters of
Machina whose valuable feedback, input, and very often
patience, made this project worthy of sharing with the rest
of the world. A special mention to Nono Martínez Alonso
for being part of this journey since its very early days.

My acknowledgements to Jonathan Grinham, Saurabh
Mhatre, Scott Mitchell and Nate Peters for their time and
suggestions at the early stages of this paper.

Competing Interests
The author has no competing interests to declare.

References
1. “Robot, n.1.1.” OED Online. Oxford University Press,

June 2018. Web. 23 August 2018.
2. Richards, N M and Smart, W D 2013 How should the

law think about robots? DOI: https://doi.org/10.2139/
ssrn.2263363

3. http://www.abb.com.
4. https://new.abb.com/products/robotics/robotstudio.
5. ABB Robotics 2013 Technical Reference Manual,

RAPID Instructions, Function and Data Types.
6. https://www.kuka.com.
7. https://www.kuka.com/en-us/products/robotics-

systems/software/simulation-planning-optimization/
kuka_sim.

8. KUKA Roboter GmbH 2003 Software KR C2/KR C3
Expert Programming.

9. https://www.universal-robots.com/.
10. Universal Robots 2018 The URScript Programming

Language, Version 3.5.3.
11. https://www.universal-robots.com/download.
12. https://robodk.com/.
13. https://www.visualcomponents.com/.
14. Quigley, M, Conley, K, Gerkey, B, Faust, J, Foote, T,

Leibs, J, Wheeler, R and Ng, A Y 2009 “ROS: An Open-
source Robot Operating System.” In ICRA Workshop on
Open Source Software, vol. 3 (3.2).

15. Gershenfeld, N 2008 Fab: the coming revolution on
your desktop–from personal computers to personal
fabrication. Basic Books.

16. Chris, A 2012 Makers: the new industrial revolution.
New York: Crown Business.

17. Mellis, D, Banzi, M, Cuartielles, D and Igoe, T
2007 April. Arduino: An open electronic prototyping
platform. In Proc. Chi (Vol. 2007).

18. Baudisch, P and Mueller, S 2017 Personal fabrication.
Foundations and Trends in Human–Computer

https://doi.org/10.5281/zenodo.2579370
https://doi.org/10.5281/zenodo.2579370
https://github.com/RobotExMachina/Machina.NET
https://github.com/RobotExMachina/Machina.NET
https://doi.org/10.2139/ssrn.2263363
https://doi.org/10.2139/ssrn.2263363
http://www.abb.com
https://new.abb.com/products/robotics/robotstudio
https://www.kuka.com
https://www.kuka.com/en-us/products/robotics-systems/software/simulation-planning-optimization/kuka_sim
https://www.kuka.com/en-us/products/robotics-systems/software/simulation-planning-optimization/kuka_sim
https://www.kuka.com/en-us/products/robotics-systems/software/simulation-planning-optimization/kuka_sim
https://www.universal-robots.com/
https://www.universal-robots.com/download
https://robodk.com/
https://www.visualcomponents.com/

García del Castillo y López: Machina.NET Art. 27, page 13 of 14

Interaction, 10(3–4): 165–293. DOI: https://doi.
org/10.1561/1100000055

19. Peng, H, Briggs, J, Wang, C Y, Guo, K, Kider, J,
Mueller, S, Baudisch, P and Guimbretière, F 2018
April RoMA: Interactive Fabrication with Augmented
Reality and a Robotic 3D Printer. In Proceedings of the
2018 CHI Conference on Human Factors in Computing
Systems (p. 579). ACM.

20. Brell-Cokcan, S and Braumann, J (eds.) 2013 Rob|Arch
2012: Robotic Fabrication in Architecture, Art and
Design. Springer. DOI: https://doi.org/10.1007/978-
3-7091-1465-0

21. Willette, A, Brell-Cokcan, S and Braumann, J 2014
Robotic Fabrication in Architecture, Art and Design
2014. Springer.

22. Reinhardt, D, Saunders, R and Burry, J (eds.) 2016
Robotic Fabrication in Architecture, Art and Design
2016. Springer. DOI: https://doi.org/10.1007/978-3-
319-26378-6

23. Willman, J, Block, P, Hutter, M, Byrne, K and Schork,
T (eds.) 2018 Robotic Fabrication in Architecture,
Art and Design 2018. Springer. DOI: https://doi.
org/10.1007/978-3-319-92294-2

24. Andreani, S, Garcia del Castillo y López, J L,
Jyoti, A, King, N and Bechthold, M 2012 Flowing
matter: Robotic fabrication of complex ceramic
systems. In ISARC. Proceedings of the International
Symposium on Automation and Robotics in Construction
(Vol. 29, p. 1). Vilnius Gediminas Technical
University, Department of Construction Economics &
Property.

25. Seibold, Z, Hinz, K, García del Castillo y López, J L,
Martínez Alonso, N and Bechthold, M 2018 Ceramic
Morphologies, Precision and Control in Paste-Based
Additive Manufacturing. In Proceedings of the 38th
Annual Conference of the Association for Computer-
Aided Design in Architecture (ACADIA). Universidad
Iberoamericana.

26. http://design-io.com/projects/Mimic/.
27. Gannon, M 2018 Human-Centered Interfaces for

Autonomous Fabrication Machines (Ph.D. Dissertation,
Carnegie Mellon University).

28. https://www.grasshopper3d.com/.
29. Schwartz, T 2013 HAL. In Rob|Arch 2012 (pp. 92–101).

Vienna: Springer. DOI: https://doi.org/10.1007/978-
3-7091-1465-0_8

30. Braumann, J and Brell-Cokcan, S 2011 “Parametric
Robot Control, Integrated CAD/CAM for Architectural
Design.” In Proceedings of the 31th Annual Conference
of the Association for Computer Aided Design in
Architecture. 242–51.

31. https://www.food4rhino.com/app/taco-abb.
32. Elashry, K and Glynn, R 2014 An Approach To

Automated Construction Using Adaptive Programing.
In Robotic Fabrication in Architecture, Art and Design
2014 (pp. 51–66). Cham: Springer. DOI: https://doi.
org/10.1007/978-3-319-04663-1_4

33. Peek, N N M 2016 Making Machines that Make:
Object-Oriented Hardware Meets Object-Oriented

Software (Ph.D. Dissertation, Massachusetts Institute
of Technology).

34. Bechthold, M 2010 The return of the future: a second
go at robotic construction. Architectural Design,
80(4): 116–121. DOI: https://doi.org/10.1002/
ad.1115

35. Landay, J A 2009 Technical perspective Design
tools for the rest of us. Communications of
the ACM, 52(12): 80–80. DOI: https://doi.
org/10.1145/1610252.1610274

36. Papert, S 1980 Mindstorms: Children, computers, and
powerful ideas. Basic Books, Inc.

37. Reas, C and Fry, B 2007 Processing: a Programming
Handbook for Visual Designers and Artists. MIT Press.

38. Steiner, H C 2009. Firmata: Towards Making
Microcontrollers Act Like Extensions of the Computer.
In NIME (pp. 125–130).

39. Wijnen, B, Anzalone, G C, Haselhuhn, A S, Sanders,
P G and Pearce, J M 2016 Free and open-source
control software for 3-D motion and processing.
Journal of Open Research Software, 4(1). DOI: https://
doi.org/10.5334/jors.78

40. ht tps ://robots tudio .azureedge .net/ ins ta l l/
RobotWare_Tools_And_Utilities_6.07.01.zip. Accessed
23 August 2018.

41. https://www.gsd.harvard.edu/course/material-
systems-digital-design-and-fabrication-fall-2017/.
Accessed 23 August 2018.

42. https://www.smartgeometry.org/mind-ex-machina/.
Accessed 23 August 2018.

43. http://www.robarch2018.org/t ight-squeeze-
automated-assembly-spatial-structures-constrained-
sites/. Accessed 23 August 2018.

44. http://2018.acadia.org/workshops.html. Accessed 23
August 2018.

45. AlOthman, S, Im, H C, Jung, F and Bechthold, M
2018 Spatial Print Trajectory: Controlling Material
Behavior with Print Speed, Feed Rate, and Complex
Print Path. In Robotic Fabrication in Architecture, Art
and Design (Rob|Arch). Springer. DOI: https://doi.
org/10.1007/978-3-319-92294-2_13

46. Im, H C, AlOthman, S and García del Castillo y López,
J L 2018 Responsive Spatial Print: Clay 3D Printing of
Spatial Lattices Using Real-Time Model Recalibration.
In Proceedings of the 38th Annual Conference of the
Association for Computer-Aided Design in Architecture
(ACADIA). Universidad Iberoamericana.

47. https://github.com/RobotExMachina. Accessed 23
August 2018.

48. Garcia del Castillo y López, J L 2019 Enactive
Robotics: An Action-State Model for Concurrent
Machine Control (D.Des. Dissertation, Harvard University).
http://nrs.harvard.edu/urn-3:HUL.InstRepos:41021631.

49. García del Castillo y López, J L 2019 Robot
Ex Machina: A Framework for Real-Time Robot
Programming and Control. In Ubiquity and Autonomy,
Proceedings of the 39th Annual Conference of the
Association for Computer-Aided Design in Architecture
(ACADIA). University of Texas.

https://doi.org/10.1561/1100000055
https://doi.org/10.1561/1100000055
https://doi.org/10.1007/978-3-7091-1465-0
https://doi.org/10.1007/978-3-7091-1465-0
https://doi.org/10.1007/978-3-319-26378-6
https://doi.org/10.1007/978-3-319-26378-6
https://doi.org/10.1007/978-3-319-92294-2
https://doi.org/10.1007/978-3-319-92294-2
http://design-io.com/projects/Mimic/
https://www.grasshopper3d.com/
https://doi.org/10.1007/978-3-7091-1465-0_8
https://doi.org/10.1007/978-3-7091-1465-0_8
https://www.food4rhino.com/app/taco-abb
https://doi.org/10.1007/978-3-319-04663-1_4
https://doi.org/10.1007/978-3-319-04663-1_4
https://doi.org/10.1002/ad.1115
https://doi.org/10.1002/ad.1115
https://doi.org/10.1145/1610252.1610274
https://doi.org/10.1145/1610252.1610274
https://doi.org/10.5334/jors.78
https://doi.org/10.5334/jors.78
https://robotstudio.azureedge.net/install/RobotWare_Tools_And_Utilities_6.07.01.zip
https://robotstudio.azureedge.net/install/RobotWare_Tools_And_Utilities_6.07.01.zip
https://www.gsd.harvard.edu/course/material-systems-digital-design-and-fabrication-fall-2017/
https://www.gsd.harvard.edu/course/material-systems-digital-design-and-fabrication-fall-2017/
https://www.smartgeometry.org/mind-ex-machina/
http://www.robarch2018.org/tight-squeeze-automated-assembly-spatial-structures-constrained-sites/
http://www.robarch2018.org/tight-squeeze-automated-assembly-spatial-structures-constrained-sites/
http://www.robarch2018.org/tight-squeeze-automated-assembly-spatial-structures-constrained-sites/
http://2018.acadia.org/workshops.html
https://doi.org/10.1007/978-3-319-92294-2_13
https://doi.org/10.1007/978-3-319-92294-2_13
https://github.com/RobotExMachina
http://nrs.harvard.edu/urn-3:HUL.InstRepos:41021631

García del Castillo y López: Machina.NETArt. 27, page 14 of 14

How to cite this article: García del Castillo y López, J L 2019 Machina.NET: A Library for Programming and Real-Time
Control of Industrial Robots. Journal of Open Research Software, 7: 27. DOI: https://doi.org/10.5334/jors.247

Submitted: 19 September 2018 Accepted: 05 July 2019 Published: 13 August 2019

Copyright: © 2019 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

OPEN ACCESSJournal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press

https://doi.org/10.5334/jors.247
http://creativecommons.org/licenses/by/4.0/

	(1) Overview
	Introduction
	Implementation and architecture
	Hello Robot
	Syntax
	Action Model
	Control Modes
	State Model
	Feedback
	Other Features
	Future Work
	Safety

	Quality control

	(2) Availability
	Operating system
	Programming language
	Compatibility
	Additional system requirements
	Dependencies
	List of contributors
	Software location
	Archive and Code Repository

	Language

	(3) Reuse potential
	Acknowledgements
	Competing Interests
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Table 1
	Table 2
	Table 3
	Code Sample 1
	Code Sample 2
	Code Sample 3
	Code Sample 4
	Code Sample 5
	Code Sample 6
	Code Sample 7

