
White, L, et al. 2019 DataDeps.jl: Repeatable Data Setup
for Reproducible Data Science. Journal of Open Research
Software, 7: 33. DOI: https://doi.org/10.5334/jors.244

Journal of
open research software

SOFTWARE METAPAPER

DataDeps.jl: Repeatable Data Setup for Reproducible
Data Science
Lyndon White, Roberto Togneri, Wei Liu and Mohammed Bennamoun
The University of Western Australia, Crawley, Western Australia, AU
Corresponding author: Lyndon White (lyndon.white@research.uwa.edu.au)

We present DataDeps.jl: a julia package for the reproducible handling of static datasets to enhance
the repeatability of scripts used in the data and computational sciences. It is used to automate the
data setup part of running software which accompanies a paper to replicate a result. This step is
commonly done manually, which expends time and allows for confusion. This functionality is also useful for
other packages which require data to function (e.g. a trained machine learning based model). DataDeps.jl
simplifies extending research software by automatically managing the dependencies and makes it easier
to run another author’s code, thus enhancing the reproducibility of data science research.

Keywords: data management; reproducible science; continuous integration; software practices;
dependency management; open source software; JuliaLang

1 Introduction
In the movement for reproducible sciences there have
been two key requests upon authors: 1. Make your
research code public, 2. Make your data public [3]. In
practice this alone is not enough to ensure that results can
be replicated. To get another author’s code running on a
your own computing environment is often non-trivial.
One aspect of this is data setup: how to acquire the data,
and how to connect it to the code.

DataDeps.jl simplifies the data setup step for software
written in Julia [1]. DataDeps.jl follows the unix
philosophy of doing one job well. It allows the code
to depend on data, and have that data automatically
downloaded as required. It increases replicability of
any scientific code that uses static data (e.g. benchmark
datasets). It provides simple methods to orchestrate the
data setup: making it easy to create software that works
on a new system without any user effort. While it has
been argued that the direct replicability of executing
the author’s code is a poor substitute for independent
reproduction [2], we maintain that being able to run the
original code is important for checking, for understanding,
for extension, and for future comparisons.

Vandewalle et al. [5] distinguishes six degrees of
replicability for scientific code. The two highest levels
require that “The results can be easily reproduced by
an independent researcher with at most 15 min of user
effort”. One can expend much of that time just on setting
up the data. This involves reading the instructions,
locating the download link, transferring it to the right
location, extracting an archive, and identifying how
to inform the script as to where the data is located.

These tasks are automatable and therefore should be
automated, as per the practice “Let the computer do the
work” [7].

DataDeps.jl handles the data dependencies, while Pkg1
and BinDeps.jl,2 (etc.) handle the software dependencies.
This makes automated testing possible, e.g., using services
such as TravisCI3 or AppVeyor.4 Automated testing is
already ubiquitous amongst julia users, but rarely for
parts where data is involved. A particular advantage over
manual data setup, is that automation allow scheduled
tests for URL decay [8]. If the full deployment process can
be automated, given resources, research can be fully and
automatically replicated on a clean continuous integration
environment.

1.1 Three common issues about research data
DataDeps.jl is designed around solving common issues
researchers have with their file-based data. The three key
problems that it is particularly intended to address are:

Storage location: Where do I put it? Should it be on
the local disk (small) or the network file-store (slow)?
If I move it, am I going to have to reconfigure things?
Redistribution: I don’t own this data, am I allowed to
redistribute it? How will I give credit, and ensure the
users know who the original creator was?
Replication: How can I be sure that someone
running my code has the same data? What if they
download the wrong data, or extract it incorrectly?
What if it gets corrupted or has been modified and I
am unaware?

White et al: DataDeps.jlArt. 33, page 2 of 4

2 DataDeps.jl
2.1 Ecosystem
DataDeps.jl is part of a package ecosystem as shown in
Figure 1. It can be used directly by research software,
to access the data they depend upon for e.g. evaluations.
Packages such as MLDatasets.jl5 provide more convenient
accesses with suitable preprocessing for commonly used
datasets. These packages currently use DataDeps.jl as
a back-end. Research code also might use DataDeps.jl
indirectly by making use of packages, such as WordNet.
jl6 which currently uses DataDeps.jl to ensure it has
the data it depends on to function (see Section 4.1); or
Embeddings.jl which uses it to load pretrained machine-
learning models. Packages and research code alike
depend on data, and DataDeps.jl exists to fill that need.

2.2 Functionality
Once the dependency is declared, data can accessed by
name using a datadep string written datadep“Name”.
This can treated just like a filepath string, however it is
actually a string macro. At compile time it is replaced with
a block of code which performs the operation shown in
Figure 2. This operation always returns an absolute path
string to the data, even that means the data must be
download and placed at that path first.

DataDeps.jl solves the issues in Section 1.1 as follows:

Storage location: A data dependency is referred
to by name, which is resolved to a path on disk by
searching a number of locations. The locations search
is configurable.
Redistribution: DataDeps.jl downloads the package
from its original source so it is not redistributed. A
prompt is shown to the user before download, which

can be set to display information such as the orignal
author and any papers to cite etc.
Replication: When a dependency is declared, the
creator specified the URL to fetch from and post fetch
processing to be done (e.g. extraction). This removed
the chance for human error. To ensure the data is
exactly as it was originally checksum is used.

DataDeps.jl is primarily focused on public, static data.
For researchers who are using private data, or collecting
that data while developing the scripts, a manual
option is provided; which only includes the Storage
Location functionality. They can still refer to it using
the datadep“Name”, but it will not be automatically
downloaded. During publication the researcher can
upload their data to an archival repository and update
the registration.

2.3 Similar Tools
Package managers and build tools can be used to create
adhoc solutions, but these solution will often be harder
to use and fail to address one or more of the concerns in
Section 1.1. Data warehousing tools, and live data APIs;
work well with continuous streams of data; but they are
not suitable for simple static datasets that available as a
collection of files.

Quilt7 is a more similar tool. In contrast to DataDeps.
jl, Quilt uses one centralised data-store, to which users
upload the data, and they can then download and use the
data as a software package. It does not directly attempt
to handle any Storage Location, or Redistribution
issues. Quilt does offer some advantages over DataDeps.jl:
excellent convenience methods for some (currently only
tabular) file formats, and also handling data versioning.

Figure 1: The current package ecosystem depending on DataDeps.jl.

DataDeps.jl

Dataset packages

MLDatasets.jl

CorpusLoaders.jl

etc.

Packages
needing data

WordNet.jl

Embeddings.jl

etc.
Research Scripts/Software

raw
dat

a

functionality

raw data

proc
esse

d/lo
aded

data

raw
d
ata

Figure 2: The process that is executed when a data dependency is accessed by name.

datadep"Name"

Evaluated

0.
Search

Load Path

1.
Display
message

2.
Perform

fetch method
(download)

3.
Validate
using

checksum

4.
Perform

post fetch method
e.g. unpack

Local Path
Returned

da
ta
de
p

No
t F
ou
nd

remote paths

Accept

local paths local paths

Succeeded
/Ignored

Found

local path

Failed-Retry

Abort

D
ecline

Abort

Failed

White et al: DataDeps.jl Art. 33, page 3 of 4

At present DataDeps.jl does not handle versioning, being
focused on static data.

2.4 Quality Control
Using AppVeyor and Travis CI testing is automatically
performed using the latest stable release of Julia,
for the Linux, Windows, and Mac environments. The
DataDeps.jl tests include unit tests of key components,
as well as comprehensive system/integration tests
of different configurations of data dependencies.
These latter tests also form high quality examples to
supplement the documentation for users to looking to
see how to use the package. The user can trigger these
tests to ensure everything is working on their local
machine by the standard julia mechanism: running
Pkg.test(“DataDeps”) respectively.

The primary mechanism for user feedback is via
Github issues on the repository. Bugs and feature
requests, even purely by the author, are tracked using
the Github issues.

3 Availability
3.1 Operating system
DataDeps.jl is verified to work on Windows 7+, Linux,
Mac OSX.

3.2 Programming language
Julia v0.6, and v0.7 (1.0 support forthcoming).

3.3 Dependencies
DataDeps.jl’s dependencies are managed by the
julia package manager. It depends on SHA.jl for the
default generation and checking of checksums; on
Reexport.jl to reexport SHA.jl’s methods; and on
HTTP.jl for determining filenames based on the HTTP
header information.

List of contributors
• Lyndon White (The University of Western Australia)

Primary Author
• Christof Stocker (Unaffiliated), Contributor, signifi-

cant design discussions
• Sebastin Santy (Birla Institute of Technology and

Science), Google Summer of Code Student working
on DataDepsGenerators.jl

3.4 Software location
Name: oxinabox/DataDeps.jl
 Persistent identifier: https://github.com/oxinabox/
DataDeps.jl/
Licence: MIT
Date published: 28/11/2017
Documentation Language: English
Programming Language: Julia
Code repository: GitHub

4 Reuse potential
DataDeps.jl exists only to be reused, it is a “backend”
library. The cases in which is should be reused are well
discussed above. It is of benefit to any application,

research tool, or scientific script that has a dependency
on data for it’s functioning or for generation of its result.

DataDeps.jl is extendible via the normal julia methods
of subtyping, and composition. Additional kinds of
AbstractDataDep can be created, for example to
add an additional validation step, while still reusing the
behaviour defined. Such new types can be created in
their own packages, or contributed to the open source
DataDeps.jl package.

Julia is a relatively new language with a rapidly growing
ecosystem of packages. It is seeing a lot of up take in many
fields of computation sciences, data science and other
technical computing. By establishing tools like DataDeps.
jl now, which support the easy reuse of code, we hope to
promote greater resolvability of packages being created
later. Thus in turn leading to more reproducible data and
computational science in the future.

4.1 Case Studies
Research Paper: White et al. [6] We criticize our own
prior work here, so as to avoid casting aspersions on
others. We consider it’s limitations and how it would have
been improved had it used DataDeps.jl. Two version of the
script were provided8 one with just the source code, and
the other also including 3GB of data. It’s license goes to
pains to explain which files it covers and which it does
not (the data), and to explain the ownership of the data.
DataDeps.jl would avoid the need to include the data, and
would make the ownership clear during setup. Further
sharing the source code alone would have been enough,
the data would have been downloaded when (and only if)
it is required. The scripts themselves have relative paths
hard-coded. If the data is moved (e.g. to a larger disk) they
will break. Using DataDeps.jl to refer to the data by name
would solve this.

Research Tool: WordNet.jl WordNet.jl is the Julia
binding for the WordNet tool [4]. As of PR #89 it now
uses DataDeps.jl. It depends on having the WordNet
database. Previously, after installing the software using
the package manager, the user had to manually download
and set this up. The WordNet.jl author previously had
concerns about handling the data. Including it would
inflate the repository size, and result in the data being
installed to an unreasonable location. They were also
worried that redistributing would violate the copyright.
The manual instructions for downloading and extracting
the data included multiple points of possible confusion.
The gzipped tarball must be correctly extracted. The user
must know to pass in the grand-parent directory of the
database files. Using DataDeps.jl all these issues have
now been solved.

5 Concluding Remarks
DataDeps.jl aims to help solve reproducibility issues
in data driven research by automating the data setup
step. It is hoped that by supporting good practices,
with tools like DataDeps.jl, now for the still young Julia
programming language better scientific code can be
written in the future.

White et al: DataDeps.jlArt. 33, page 4 of 4

Notes
 1 https://github.com/JuliaLang/Pkg.jl.
 2 https://github.com/JuliaLang/BinDeps.jl.
 3 https://travis-ci.org/.
 4 https://ci.appveyor.com/.
 5 https://github.com/JuliaML/MLDatasets.jl.
 6 https://github.com/JuliaText/WordNet.jl.
 7 https://github.com/quiltdata/quilt.
 8 Source code and data provided at http://white.ucc.

asn.au/publications/White2016BOWgen/.
 9 https://github.com/JuliaText/WordNet.jl/pull/8.

Acknowledgements
Thank particularly to Christof Stocker, the creator
of MLDatasets.jl (and numerous other packages), in
particular for his bug reports, feature requests and code
reviews; and for the initial discussion leading to the
creation of this tool.

Competing Interests
The authors have no competing interests to declare.

References
1. Bezanson, J, Edelman, A, Karpinski, S, Shah, VB

2014 Julia: A fresh approach to numerical computing.
URL http://arxiv.org/abs/1411.1607.

2. Drummond, C 2009 Replicability is not
reproducibility: nor is it good science. Proceedings
of the Evaluation Methods for Machine Learning
Workshop at the 26th ICML. URL http://www.site.
uottawa.ca/ICML09WS/papers/w2.pdf.

3. Goodman, A, Pepe, A, Blocker, A W, Borgman, C L,
Cranmer, K, Crosas, M, Stefano, R D, Gil, Y, Groth,
P, Hedstrom, M, Hogg, D W, Kashyap, V, Mahabal,
A, Siemiginowska, A and Slavkovic, A 2014 Ten
simple rules for the care and feeding of scientific data.
PLOS Computational Biology, 10(4): 1–5. DOI: https://
doi.org/10.1371/journal.pcbi.1003542

4. Miller, G A 1995 Wordnet: a lexical database for
english. Communications of the ACM, 38(11): 39–41.
DOI: https://doi.org/10.1145/219717.219748

5. Vandewalle, P, Kovacevic, J and Vetterli, M
May 2009 Reproducible research in signal processing.
IEEE Signal Processing Magazine, 26(3): 37–47.
ISSN 1053-5888. DOI: https://doi.org/10.1109/
MSP.2009.932122

6. White, L, Togneri, R Liu, W and Bennamoun, M
2016 Generating bags of words from the sums of their
word embeddings. In 17th International Conference
on Intelligent Text Processing and Computational
Linguistics (CICLing).

7. Wilson, G, Aruliah, D A, Brown, C T, Hong, N P
C, Davis, M, Guy, R T, Haddock, S H D, Huff, K D,
Mitchell, I M, Plumbley, M D, Waugh, B, White,
E P and Wilson, P 2014 Best practices for scientific
computing. PLOS Biology, 12(1): 1–7. DOI: https://doi.
org/10.1371/journal.pbio.1001745

8. Wren, J D 2008 Url decay in medline: a
4-year follow-up study. Bioinformatics, 24(11):
1381–1385. URL https://academic.oup.com/
bioinformatics/article/24/11/1381/191025. DOI:
https://doi.org/10.1093/bioinformatics/btn127

How to cite this article: White, L, Togneri, R, Liu, W and Bennamoun, M 2019 DataDeps.jl: Repeatable Data Setup for
Reproducible Data Science. Journal of Open Research Software, 7: 33. DOI: https://doi.org/10.5334/jors.244

Submitted: 06 August 2018 Accepted: 03 October 2019 Published: 29 October 2019

Copyright: © 2019 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

OPEN ACCESSJournal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press

