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(1) Overview
Introduction
Well designed mathematical models are excellent theoretical 
frameworks to analyse and understand the dynamics of 
a biological system. Here, the design process itself is the 
first important scientific exercise, in which biological 
knowledge is collected, organised and represented in 
a new, systematic way, that allows defining the model 
assumptions and formulating them in the language of 
mathematics. A working model then enables testing new 
hypotheses and allows for novel predictions of the system’s 
behaviour. Kinetic models allow simulating the dynamics 
of the complex biochemistry of cells. Therefore, they have 
the power to explain which processes are responsible 
for observed emergent properties and they facilitate 
predictions on how the system behaves under various 
scenarios, such as changed environmental conditions or 
modification of molecular components. Unfortunately, 
the construction of mathematical models is often already 
a challenging task, hampered by the limited availability of 
measured physiological and kinetic parameters, or even 
incomplete information regarding the network structure. It 

is therefore highly desirable to make the overall process of 
model construction as easy, transparent and reproducible 
as possible. Providing a toolbox with a wide range of 
methods that flexibly adapt to the scientific needs of the 
user, modelbase greatly simplifies the model-building 
process, by facilitating a systematic construction of kinetic 
models fully embedded in the Python programming 
language, and by providing a set of functionalities that help 
to conveniently access and analyse the results.

Despite the fact that mathematical models vary 
significantly in their complexity, from very simple and 
abstract models to extremely detailed ones, they share 
a set of universal properties. The process of building a 
kinetic model can be divided into a number of mandatory 
steps such as i) establishing the biological network 
structure (the stoichiometry), ii) defining the kinetic rate 
expressions, iii) formulation of the differential equations, 
iv) parametrisation, v) validation and, finally, vi) application 
[1]. modelbase supports researchers in every step of 
model development and application with its simple design 
aimed at being minimally restrictive. It has been written 
in Python, an open source, general-purpose, interpreted, 
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interactive, object-oriented, and high-level programming 
language. Due to a long list of its general features, such 
as clear syntax, useful built-in objects, a wealth of general-
purpose libraries, especially NumPy and SciPy, Python has 
become a widely used scientific tool [2]. Needless to say, 
the usage of Python over other, proprietary software, such 
as MATLAB or Wolfram Mathematica, decreases the risk 
of limited reproducibility and transparency, two critical 
factors while conducting research. Unfortunately, several 
powerful models of central biochemical pathways [3, 4] 
have been published before this need became apparent. 
As a consequence, some of these models are extremely 
difficult to implement to even attempt to reproduce their 
results. Therefore, modelbase provides an environment 
for relatively easy implementation of models that were 
published without source code, in a general-purpose and 
reusable format. Moreover, modelbase supports the 
export of a structural (stoichiometric) model into Systems 
Biology Markup Language (SBML) for further structural 
analysis with the appropriate software.

In recent years, several other Python-based modelling 
tools have been developed, such as ScrumPy [5] or 
PySCeS [6]. They allow performing various analyses of 
biochemical reaction networks, ranging from structural 
analyses ( null-space analysis, elementary flux modes) to 
kinetic analyses and calculation of control coefficients. To 
the best of our knowledge they do not provide dedicated 
methods for model construction inside Python, and the 
standard usage relies on loading previously assembled 
model definition files.

The modelbase package presented here provides an 
alternative toolbox, complementing the functionalities of 
existing programs for computer modelling. Its power lies 
mainly in integrating the model construction process into 
the Python programming language. It is envisaged that 
modelbase will greatly facilitate the model construction 
and analysis process as an integral part of a fully developed 
programming environment.

Motivation
In the course of our photosynthetic research, we identified 
several shortcomings that are not adequately met by 
available free and open source research software. When 
constructing a series of similar models, which share the 
same basic structure but differ in details, it is, in most 
modelling environments, necessary to copy the model 
definition file (or even pieces of code) and perform the 
desired modifications. This makes even simple tasks, 
such as changing a particular kinetic rate law, hideous 
and unnecessarily complicated, affecting the overall code 
readability. To facilitate a systematic and structured model 
definition, exploiting natural inheritance properties of 
Python objects, our intention was to fully integrate the 
model construction process into the Python programming 
language, allowing for an automated construction of 
model variants. The necessity for this fully Python-
embedded approach became further evident for isotope 
label-specific models [7], where an automatic construction 
of isotope-specific reactions from a common rate law and 
an atom transition map is desired. Such models are, for 

example, required to explain complex phenomena, such as 
the asymmetric label distribution during photosynthesis, 
first observed by Gibbs and Kandler in the 1950s [8, 9].

Implementation and architecture
modelbase is a console-based application written in 
Python. It supplies methods to construct various dynamic 
mathematical models, using a bottom-up approach, to 
simulate the dynamic equations, and analyse the results. 
We deliberately separated construction methods from 
simulation and analysis, in order to reflect the experimental 
approach. In particular, a model object constructed using 
the Model class can be understood as a representation of a 
model organism or any subsystem, on which experiments 
are performed. Instances of the Simulator class in turn 
correspond to particular experiments. The software 
components of modelbase are summarised in the 
Unified Modeling Language (UML) diagram in Figure 1.

Model construction
The user has the possibility to build two types of models, 
using one of the classes defined in the module model: 
Model, for differential-equation based systems, or 
LabelModel, for isotope-labelled models.

Class Model
Every model object is defined by:

1. model parameters,
2. model variables,
3. rate equations,
4. stoichiometries.

Model parameters can be simply defined in a dictionary, 
d. To build a mathematical model the user needs first to 
import the modelbase package and instantiate a model 
object (called m):
import modelbase
m = modelbase.Model(d)

After instantiation, the keys of the parameter dictionary d 
become accessible as attributes of an object of the internal 
class modelbase.parameters.ParameterSet, 
which is stored as the model’s attribute m.par.

To add reacting entities of the described system (referred 
to as species in SBML), e.g., metabolites, we pass a list of 
compounds names to the set_cpds method:
m.set_cpds(list_of_compounds)

Each of the added compounds becomes a state variable 
of the system. The full list of all variables is stored in the 
attribute m.cpdNames.

If S denotes the vector of concentrations of the 
biochemical reactants (as defined with the method  
set_cpds), the temporal change of the concentrations 
is governed by:

 ( )N , ,
dS

v S k
dt

=  (1)

where N denotes the stoichiometric matrix and v(S, k) 
the vector of reaction rates as functions of the substrate 
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concentrations S and parameters k. The system of ordinary 
differential equations is assembled automatically after 
providing all reaction rates and their stoichiometries to 
the method m.add_reaction(). The stoichiometric 
matrix of a model can be retrieved by the method 
m.print_stoichiometries() or m.print_
stoichiometries_by_compounds(), for the 
transposed matrix. A detailed example of instantiating 
objects and solving a simple biochemical system with 
three reactions and two metabolites is provided in Box 1.

Working with algebraic modules
A particularly useful function of the class Model has been 
developed to facilitate the incorporation of algebraic 
expressions, by which dependent variables can be computed 
from independent ones. Examples include conserved 
quantities, such as the sum of adenine phosphates, which 
is often considered to be constant, and rapid-equilibrium 
or quasi steady-state approximations (QSSA), which are 

applicable for systems with time-scale separation and 
allow calculation of fast from slow variables. The function  
add_algebraicModule() accepts as arguments a 
function describing the rule how the dependent variables 
are calculated from independent ones, the name of the 
newly created module, and lists of names of the independent 
and dependent variables. After definition of an algebraic 
module, all dependent variables become directly accessible. 
The full list of independent and dependent variables can be 
accessed using the method allCpdNames().

Various analysis methods
With import modelbase.Analysis the user has 
access to advanced analysis methods on the model object. 
Currently, it provides methods to numerically calculate 
elasticities and the Jacobian, find steady states by 
attempting to solve the algebraic equations, and calculate 
concentration control coefficients. We expect the range of 
analysis methods to increase continuously in the future.

Figure 1: UML class diagram of modelbase software components. It consists of six classes, with LabelModel inheriting 
from Model and LabelSimulate inheriting from Simulate. ParameterSet and Analysis are special classes containing 
parameter sets and static methods for analysis respectively.
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Box 1: Basic model use

We use modelbase to simulate a simple chain of reactions, in which the two state variables X and Y describe the 
concentrations of the intermediates. We assume a constant influx rate v0, a reversible conversion of X to Y, described 
with mass action kinetics with forward and backward rate constants k1p and k1m, respectively, and an irreversible 
efflux of Y described by mass action kinetics with the rate constant k2.

We import the modelbase package, numpy and matplotlib.pyplot, define a list of metabolite species and 
a dictionary with parameters

import numpy as np
import matplotlib.pyplot as plt
import modelbase
cmpds = ['X','Y']
p = {'v0':1,'k1p':0.5,'k1m':1,'k2':0.1}

We instantiate a model object of class Model

m = modelbase.Model(p)

and pass metabolites to the model (variables are always defined by names)

m.set_cpds(cmpds)

In the next step we define reaction rate functions. The rate functions always accept the model parameters as first 
argument, whilst the remaining arguments are metabolite concentrations.

v0 = lambda p: p.v0

def v1(p,x,y):
 return p.k1p*x – p.k1m*y

def v2(p,y):
 return p.k2*y

and then pass them to the model using add_reaction()

m.add_reaction('v0', v0, {'X':1})
m.add_reaction('v1', v1, {'X':-1,'Y':1}, 'X', 'Y')
m.add_reaction('v2', v2, {'Y':-1}, 'Y').

To perform the computation we generate an instance of a simulation class using the function Simulator()

s = modelbase.Simulator(m)

To integrate the system over a given period of time (T=np.linspace(0,100,1000)), with the initial 
concentrations set to 0 (y0=np.zeros(2)), we use the method timeCourse()

s.timeCourse(T, y0)

Convenient access to the results of simulation through various get*() methods enables easy graphical display.

plt.figure()
plt.plot(s.getT(),s.getY())
plt.legend(m.cpdNames)
plt.show()
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Class LabelModel for isotope-labelled models
The modelbase package includes a class to construct 
isotope-labelled versions of developed models. In 
order to simulate the dynamic distribution of isotopes, 
modelbase defines dynamic variables representing 
all possible labelling patterns for all intermediates. In 
contrast to instances of the class Model, for instances of the 
class LabelModel the number of potentially labelled atoms 
(usually carbon) needs to be defined for every compound. 
This is done with the method add_base_cpd(), which 
accepts the name and the number of labelled atoms of the 
compound. It automatically creates all 2N isotope variants 
of the compound, where N denotes the number of 
labelled atoms. Finally, the method add_carbonmap_
reaction() automatically generates all isotope-specific 
versions of a reaction. It accepts as arguments the reaction 
name, rate function, carbon map, list of substrates, list of 
products and additional variables to be passed.

To instantiate a model object for an isotope-labelled 
version of developed model simply call
m = modelbase.LabelModel(d),

where d is again a dictionary holding parameters. With 
an instance of this class a dynamic process, such as the 
dynamic incorporation of radioactive carbon during 
photosynthesis, can be easily defined and simulated, 
using the Simulator class described below. An example of 
how to use this class is provided in Box 2.

Integration methods and simulation subpackages
Methods for the numeric integration of models 
are provided by the two subclasses Simulate and 
LabelSimulate, where the latter inherits many methods 
from the first. The first is used for standard kinetic models, 
the latter for isotope-specific models. Both classes provide 
computational support for dynamic simulations and 
methods to numerically simulate the differential equation 
system and to analyse the results. To provide an automatic 
instantiation of the correct class, we provide the function 
Simulator. Calling
s = modelbase.Simulator(m)

returns an instance of either Simulate or LabelSimulate, 
depending on the class of model m, providing all methods 
to numerically simulate the differential equation system 
and to analyse the results. Simple applications to run and 
plot a time course are given in boxes 1 and 2. By default, 
the dynamic equations are numerically integrated using a 
CVODE solver for stiff and non-stiff ordinary differential 
equation (ODE) systems. The default solver uses the 
Assimulo simulation package [10], with the most central 
solver group originating from the SUNDIALS (a SUite of 
Nonlinear and DIfferential/ALgebraic equation Solvers) 
package [11]. If Assimulo is not available, standard 
integration methods from the SciPy library [12] are used. 
When needed, almost every integrator option can be 
overridden by the user by simply accessing
s.integrator

Additionally, the Simulate class includes methods to 
integrate the system until a steady-state is reached 
(sim2SteadyState()), and to estimate the period of 
smooth limit cycle oscillations (estimatePeriod()). 
The solution arrays are accessed with the methods getT() 

and getY(). The advantage of using this method over 
using Assimulo’s integrator.ysol is that getY() 
also returns the result for all the derived variables (for 
which algebraic modules have been used). In addition, the 
methods getVarByName(), getVarsByName() 
and getVarsByRegExp() allow to access the 
simulated values of one or several variables by their 
variable names or by regular expressions. Moreover, the 
method getV() gives access to the arrays of reaction 
rates and getRate() allows to access particular rates by 
the reaction name. The powerful Python plotting library 
matplotlib [13] provides numerous methods for graphical 
display of the results.

Systems Biology Markup Language (SBML)
modelbase supports export of a structural (stoichio-
metric) version of a created model into an XML file in the 
computer-readable SBML format. To export the model (m) 
simply use the method m.ModelbaseToSBML(file_
name). A minimal working example can be found in  
our repository (https://gitlab.com/ebenhoeh/
modelbase/blob/master/examples/sbml_
export.py). Structural and stoichiometric analyses 
are currently not implemented in modelbase, therefore 
such export allows to take advantage of other SBML 
compatible modelling environments developed for such 
tasks (e.g. PySCeS or CobraPy [14]). The import of SBML 
models into modelbase is currently not supported, 
mainly because of the complementary purpose for which 
it was developed. The modelbase framework simplifies 
construction of kinetic models, allowing to perform this 
task with minimal modelling experience. Therefore, the 
main purpose of modelbase is the model design process 
itself, rather than importing a predefined construct to 
perform complex computations. However, a full SBML 
export and import functionality is currently under 
development to allow model sharing across different 
environments and platforms.

Quality control
modelbase has been continuously developed and used 
within our lab since 2016. It has been successfully applied 
to study the complexity of photosynthesis and carbon 
assimilation in plants [7] and is being further maintained 
and developed.

(2) Availability
Operating system
modelbase is compatible with all platforms with 
working Python distribution.

Programming language
modelbase is written in the Python programming 
language, a general-purpose interpreted, interactive, 
object-oriented, and high-level programming language. 
It is available for every major operating system, including 
GNU/Linux, Mac OSX and Windows and has been tested 
with Python 3.6.

Additional system requirements
None

https://gitlab.com/ebenhoeh/modelbase/blob/master/examples/sbml_export.py
https://gitlab.com/ebenhoeh/modelbase/blob/master/examples/sbml_export.py
https://gitlab.com/ebenhoeh/modelbase/blob/master/examples/sbml_export.py
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Box 2: Isotope-labelled model

A minimal example of an isotope-label specific model simulates equilibration of isotope distribution in a system 
consisting of the two reactions of triose-phosphate isomerase and fructose-bisphosphate aldolase:

 GAP DHAP (2)   
GAP DHAP FBP+  (3)

We import the modelbase package, numpy and matplotlib.pyplot.
import numpy as np
import matplotlib.pyplot as plt
import modelbase

We define a dictionary of parameters and instantiate the model of class LabelModel
p = {'kf_TPI': 1,'Keq_TPI': 21,'kf_Ald': 2000,'Keq_Ald': 7000}
m = modelbase.LabelModel(p).

Compounds are added with an additional argument defining the numbers of carbons
m.add_base_cpd('GAP', 3)
m.add_base_cpd('DHAP', 3)
m.add_base_cpd('FBP', 6)

leading to an automatic generation of 80 = 26 + 23 + 23 isotope-specific compounds. All reactions are assumed 
to obey mass-action rate laws. Standard rate laws are defined in the modelbase.ratelaws module. Due to 
simplicity, the following steps are only shown for the forward triose-phosphate isomerase reaction. For more details 
please see the file examples/isotopeLabels.py in the modelbase package.
import modelbase.ratelaws as rl

def v1f(p,y):
 return rl.massAction(p.kf_TPI,y)

All isotope-specific rates are generated by the add_carbonmap_reaction() method, based on a list defining 
in which positions the carbons appear in the products.
m.add_carbonmap_reaction('TPIf',v1f,[2,1,0],['GAP'],['DHAP'],'GAP')

We set the initial conditions such that the total pools are in equilibrium, but carbon 1 of GAP is fully labeled
GAP0 = 2.5e-5
DHAP0 = GAP0 * m.par.Keq_TPI
y0d = {'GAP': GAP0,
 'DHAP': DHAP0,
 'FBP': GAP0 * DHAP0 * m.par.Keq_Ald}
y0 =  m.set_initconc_cpd_labelpos(y0d,labelpos={'GAP':0})

and simulate equilibration of the labels for 20 arbitrary time units
s = modelbase.LabelSimulate(m)
T = np.linspace(0,20,1000)
s.timeCourse(T,y0).

We plot the result using the getLabelAtPos() method (see examples/isotopeLabels.py).
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Dependencies 
Dependencies are provided in the setup.py file and 
include:

•	 numpy == 1.14.3
•	 scipy == 1.1.0
•	 numdifftools == 0.9.20
•	 assimulo == 2.9
•	 pandas == 0.22.0
•	 python-libsbml == 5.17.0

Support for the differential equation solver sundials 
(CVODE) through the python package assimulo requires 
moreover:

•	 Sundials-2.6.0 (for 64bits machines, install Sundials 
using -fPIC)

•	 Cython 0.18
•	 C compiler
•	 Fortran compiler

The detailed instruction how to install the prerequisites is 
included in the repository in our installation guide.

List of contributors
In alphabetic order: Marvin van Aalst, Oliver Ebenhöh, 
Anna Matuszyńska, Nima P. Saadat.

Software location
Archive

Name: Python Package Index (PyPI)
�Persistent� identifier: https://pypi.org/project/
modelbase/
Licence: GPL3
Publisher: Oliver Ebenhöh
Version published: 0.2.5
Date published: 09/10/18

Code repository
Name: GitLab
�Persistent� identifier: https://gitlab.com/ebenhoeh/
modelbase
Licence: GNU General Public License v3.0
Date published: 09/10/18

Language
modelbase was entirely developed in English.

(3) Reuse potential
The strength of our package lies in its flexibility to be 
applied to simulate and analyse various distinct biological 
systems. It can be as efficiently used for the development 
of new models, as for the reconstruction of existing ones. 
Here, we demonstrate its power by reimplementing three 
mathematical models that have been previously published 
without providing the source code (Table 1). This includes 
i) a model of the photosynthetic electron transport chain 
(PETC) used to model photoprotective mechanisms in 
plants and green algae, originating from our lab and 
initially developed in MATLAB [15]; ii) a model of the 
Calvin-Benson-Bassham (CBB) Cycle by Poolman et al. [16], 
developed to study the dynamics of the carbon assimilation 
and iii) a model of the Pentose phosphate pathway 
(PPP), adapted by Berthon et al. [17] to investigate label 
distribution dynamics in isotope labelling experiments.

Modelling the PETC to study photoprotective 
mechanisms
Part of our research focuses on understanding the 
dynamics of various photoprotective mechanisms 
present in photosynthetic organisms [18, 15, 19]. The 
foundation of our further work constitutes the model 
of the photosynthetic electron transport chain in green 
algae Chlamydomonas reinhardtii published in 2014 [15]. 
We have reimplemented the original work in Python 
and reproduced the results published in the main text 
(Figure 2), providing a photosynthetic electron transport 
chain core model, compatible with other modelbase-
adapted modules, to further our studies on the dynamics 
of light reactions of photosynthesis.

CBB Cycle and the dynamics of carbon assimilation
Using modelbase, we have reimplemented a model 
of the CBB Cycle by Poolman et al. [16]. The model is a 
variant of the Pettersson and Ryde-Pettersson [3] model, 
where the strict rapid equilibrium assumption is relaxed 
and fast reactions are modelled by simple mass action 
kinetics. Its main purpose is to study short to medium time 
scale responses to changes in extra-stromal phosphate 
concentration and incident light. The concentrations 
of NADPH, NADP+, CO2 and H+ are considered constant, 
leaving the 13 CBB cycle intermediates, ATP, ADP and 
inorganic phosphate as dynamic variables. The model 
further incorporates a simplified starch production using 
glucose 6-phosphate and glucose-1-phosphate and a 

Table 1: Mathematical models originally published without the source-code, reconstructed in our lab using the 
modelbase package. The source code and examples are available from the GitHub repository of our lab https://
github.com/QTB-HHU/.

Process Original 
publication

GitHub.com/
QTB-HHU/

Developer

Photosynthetic Electron 
Transport Chain 

[15] ./petc-modelbase A.M.

Calvin-Benson-Bassham Cycle [16] ./cbb-modelbase M.v.A.

Pentose Phosphate Pathway [4, 17] ./ppp-modelbase T.N.

https://pypi.org/project/modelbase/
https://pypi.org/project/modelbase/
https://gitlab.com/ebenhoeh/modelbase
https://gitlab.com/ebenhoeh/modelbase
https://github.com/QTB-HHU/
https://github.com/QTB-HHU/
https://github.com/QTB-HHU/
https://github.com/QTB-HHU/
https://github.com/QTB-HHU/petc-modelbase
https://github.com/QTB-HHU/cbb-modelbase
https://github.com/QTB-HHU/ppp-modelbase
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simple ATP recovery reaction. We used the modelbase 
implementation of the Poolman model to simulate 
the steady state concentrations of the metabolites 
depending on the extra-stromal phosphate concentration 
(Figure 3), reproducing original work by Pettersson and 
Ryde-Pettersson [3]. We have observed that the system is 
not stable any more for [Pext] > 1.5, a feature not discussed 
in the Poolman paper [16].

The compatible mathematical representation of the 
two photosynthetic subsystems, the ATP-producing 
light reactions and the ATP-consuming CBB cycle, is a 
prerequisite to merge those two models. Technically, in 
the modelbase framework, this is a straight forward 
process. Scientifically, it turned out to be not a trivial task 
(unpublished work).

PPP and isotope labelling experiments
We envisage that especially our LabelModel extension will 
find a wide application in metabolic network analysis. 
Radioactive and stable isotope labelling experiments 
constitute a powerful methodology for estimating 
metabolic fluxes and have a long history of application in 
biological research [20]. Here, we showcase the potential 
of modelbase for the isotope-labelled experiments by 
reimplementing the model of the F-type non-oxidative 
PPP in erythrocytes originally proposed by McIntyre et al. 
[4]. This was later adapted by Berthon et al. for label 
experiments and in silico replication of 13C nuclear magnetic 
resonance (NMR) studies [17]. We have reproduced the 
results obtained by the authors, including the time course 
of diverse Glucose-6-phosphate isotopomers (Figure 4).

Figure 2: Reproduction of the Figures from [15]. Simulated fluorescence trace obtained through Pulse Amplitude 
Modulation (PAM) under light induced (left) and anoxia induced (right) conditions. The dynamics of the fluorescence 
decrease corresponds to the activation of a specific photoprotective mechanism called state transitions, while the 
increase in the signal after the inducer (light or anoxia) is switched off relates to the relaxation of the mechanism.

Figure 3: Metabolite steady state concentrations dependent on the extra-stromal phosphate concentration simulated 
with the Poolman implementation of the Pettersson and Ryde-Pettersson model of the CBB cycle [16].
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Figure 4: Formation of diverse Glc6P isotopomers in a haemolysate, obtained by solving the adapted model by Berthon 
et al. [17] reimplemented using modelbase.
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Other possible applications
Among many other applications, modelbase provides 
tools to reproduce the ‘photosynthetic Gibbs effect’. 
Gibbs and Kandler described it in 1956 and 1957 [8, 
9], when they observed the atypical and asymmetrical 
incorporation of radioactive 14CO2 in hexoses. An example 
of label incorporation by the CBB cycle intermediates is 
presented schematically in Figure 5.

Finally, our package provides a solid foundation for 
additional extensions to the framework architecture, its 
classes and modelling routines. To encourage its use and to 
facilitate the first steps to apply the modelbase package, 
we have prepared an interactive tutorial using a Jupyter 
Notebook [21], which showcases basic implementation of 
modelbase and each of its classes in easy to follow and 
thoroughly explained examples (see https://gitlab.com/
ebenhoeh/modelbase/blob/master/Tutorial.ipynb).

Abbreviations
CBB Calvin-Benson-Bassham; NMR Nuclear Magnetic 
Resonance; ODE Ordinary Differential Equations; PAM Pulse 
Amplitude Modulation; PPP Pentose Phosphate Pathway; 
QSSA Quasi Steady-State Approximation; SBML Systems 
Biology Markup Language; UML Unified Modeling Language.
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