
Ebenhöh, O, et al. 2018 Building Mathematical Models of Biological
Systems with modelbase. Journal of Open Research Software, 6:
24. DOI: https://doi.org/10.5334/jors.236

Journal of
open research software

SOFTWARE METAPAPER

Building Mathematical Models of Biological Systems
with modelbase
Oliver Ebenhöh1,2, Marvin van Aalst1, Nima P. Saadat1, Tim Nies1 and
Anna Matuszyńska1,2

1	Institute for Quantitative and Theoretical Biology, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1,
40225 Düsseldorf, DE

2	Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1,
40225 Düsseldorf, DE

Corresponding author: Anna Matuszyńska (anna.matuszynska@hhu.de)

The modelbase package is a free expandable Python package for building and analysing dynamic mathematical
models of biological systems. Originally it was designed for the simulation of metabolic systems, but it
can be used for virtually any deterministic chemical processes. modelbase provides easy construction
methods to define reactions and their rates. Based on the rates and stoichiometries, the system of
differential equations is assembled automatically. modelbase minimises the constraints imposed on the
user, allowing for easy and dynamic access to all variables, including derived ones, in a convenient manner.
A simple incorporation of algebraic equations is, for example, convenient to study systems with rapid
equilibrium or quasi steady-state approximations. Moreover, modelbase provides construction methods
that automatically build all isotope-specific versions of a particular reaction, making it a convenient tool
to analyse non-steady state isotope-labelling experiments.

Keywords: isotope labelling; mathematical modelling; metabolic networks; Python; ODEs; open science;
systems biology; theoretical biology; QSSA
Funding statement: This work was financially supported by the Deutsche Forschungsgemeinschaft
“Cluster of Excellence on Plant Sciences” CEPLAS (EXC 1028).

(1) Overview
Introduction
Well designed mathematical models are excellent theoretical
frameworks to analyse and understand the dynamics of
a biological system. Here, the design process itself is the
first important scientific exercise, in which biological
knowledge is collected, organised and represented in
a new, systematic way, that allows defining the model
assumptions and formulating them in the language of
mathematics. A working model then enables testing new
hypotheses and allows for novel predictions of the system’s
behaviour. Kinetic models allow simulating the dynamics
of the complex biochemistry of cells. Therefore, they have
the power to explain which processes are responsible
for observed emergent properties and they facilitate
predictions on how the system behaves under various
scenarios, such as changed environmental conditions or
modification of molecular components. Unfortunately,
the construction of mathematical models is often already
a challenging task, hampered by the limited availability of
measured physiological and kinetic parameters, or even
incomplete information regarding the network structure. It

is therefore highly desirable to make the overall process of
model construction as easy, transparent and reproducible
as possible. Providing a toolbox with a wide range of
methods that flexibly adapt to the scientific needs of the
user, modelbase greatly simplifies the model-building
process, by facilitating a systematic construction of kinetic
models fully embedded in the Python programming
language, and by providing a set of functionalities that help
to conveniently access and analyse the results.

Despite the fact that mathematical models vary
significantly in their complexity, from very simple and
abstract models to extremely detailed ones, they share
a set of universal properties. The process of building a
kinetic model can be divided into a number of mandatory
steps such as i) establishing the biological network
structure (the stoichiometry), ii) defining the kinetic rate
expressions, iii) formulation of the differential equations,
iv) parametrisation, v) validation and, finally, vi) application
[1]. modelbase supports researchers in every step of
model development and application with its simple design
aimed at being minimally restrictive. It has been written
in Python, an open source, general-purpose, interpreted,

https://doi.org/10.5334/jors.236
mailto:anna.matuszynska@hhu.de

Ebenhöh et al: Building Mathematical Models of Biological Systems with modelbaseArt. 24, page 2 of 11

interactive, object-oriented, and high-level programming
language. Due to a long list of its general features, such
as clear syntax, useful built-in objects, a wealth of general-
purpose libraries, especially NumPy and SciPy, Python has
become a widely used scientific tool [2]. Needless to say,
the usage of Python over other, proprietary software, such
as MATLAB or Wolfram Mathematica, decreases the risk
of limited reproducibility and transparency, two critical
factors while conducting research. Unfortunately, several
powerful models of central biochemical pathways [3, 4]
have been published before this need became apparent.
As a consequence, some of these models are extremely
difficult to implement to even attempt to reproduce their
results. Therefore, modelbase provides an environment
for relatively easy implementation of models that were
published without source code, in a general-purpose and
reusable format. Moreover, modelbase supports the
export of a structural (stoichiometric) model into Systems
Biology Markup Language (SBML) for further structural
analysis with the appropriate software.

In recent years, several other Python-based modelling
tools have been developed, such as ScrumPy [5] or
PySCeS [6]. They allow performing various analyses of
biochemical reaction networks, ranging from structural
analyses (null-space analysis, elementary flux modes) to
kinetic analyses and calculation of control coefficients. To
the best of our knowledge they do not provide dedicated
methods for model construction inside Python, and the
standard usage relies on loading previously assembled
model definition files.

The modelbase package presented here provides an
alternative toolbox, complementing the functionalities of
existing programs for computer modelling. Its power lies
mainly in integrating the model construction process into
the Python programming language. It is envisaged that
modelbase will greatly facilitate the model construction
and analysis process as an integral part of a fully developed
programming environment.

Motivation
In the course of our photosynthetic research, we identified
several shortcomings that are not adequately met by
available free and open source research software. When
constructing a series of similar models, which share the
same basic structure but differ in details, it is, in most
modelling environments, necessary to copy the model
definition file (or even pieces of code) and perform the
desired modifications. This makes even simple tasks,
such as changing a particular kinetic rate law, hideous
and unnecessarily complicated, affecting the overall code
readability. To facilitate a systematic and structured model
definition, exploiting natural inheritance properties of
Python objects, our intention was to fully integrate the
model construction process into the Python programming
language, allowing for an automated construction of
model variants. The necessity for this fully Python-
embedded approach became further evident for isotope
label-specific models [7], where an automatic construction
of isotope-specific reactions from a common rate law and
an atom transition map is desired. Such models are, for

example, required to explain complex phenomena, such as
the asymmetric label distribution during photosynthesis,
first observed by Gibbs and Kandler in the 1950s [8, 9].

Implementation and architecture
modelbase is a console-based application written in
Python. It supplies methods to construct various dynamic
mathematical models, using a bottom-up approach, to
simulate the dynamic equations, and analyse the results.
We deliberately separated construction methods from
simulation and analysis, in order to reflect the experimental
approach. In particular, a model object constructed using
the Model class can be understood as a representation of a
model organism or any subsystem, on which experiments
are performed. Instances of the Simulator class in turn
correspond to particular experiments. The software
components of modelbase are summarised in the
Unified Modeling Language (UML) diagram in Figure 1.

Model construction
The user has the possibility to build two types of models,
using one of the classes defined in the module model:
Model, for differential-equation based systems, or
LabelModel, for isotope-labelled models.

Class Model
Every model object is defined by:

1.	 model parameters,
2.	 model variables,
3.	 rate equations,
4.	 stoichiometries.

Model parameters can be simply defined in a dictionary,
d. To build a mathematical model the user needs first to
import the modelbase package and instantiate a model
object (called m):
import modelbase
m = modelbase.Model(d)

After instantiation, the keys of the parameter dictionary d
become accessible as attributes of an object of the internal
class modelbase.parameters.ParameterSet,
which is stored as the model’s attribute m.par.

To add reacting entities of the described system (referred
to as species in SBML), e.g., metabolites, we pass a list of
compounds names to the set_cpds method:
m.set_cpds(list_of_compounds)

Each of the added compounds becomes a state variable
of the system. The full list of all variables is stored in the
attribute m.cpdNames.

If S denotes the vector of concentrations of the
biochemical reactants (as defined with the method
set_cpds), the temporal change of the concentrations
is governed by:

	 ()N , ,
dS

v S k
dt

= � (1)

where N denotes the stoichiometric matrix and v(S, k)
the vector of reaction rates as functions of the substrate

Ebenhöh et al: Building Mathematical Models of Biological Systems with modelbase Art. 24, page 3 of 11

concentrations S and parameters k. The system of ordinary
differential equations is assembled automatically after
providing all reaction rates and their stoichiometries to
the method m.add_reaction(). The stoichiometric
matrix of a model can be retrieved by the method
m.print_stoichiometries() or m.print_
stoichiometries_by_compounds(), for the
transposed matrix. A detailed example of instantiating
objects and solving a simple biochemical system with
three reactions and two metabolites is provided in Box 1.

Working with algebraic modules
A particularly useful function of the class Model has been
developed to facilitate the incorporation of algebraic
expressions, by which dependent variables can be computed
from independent ones. Examples include conserved
quantities, such as the sum of adenine phosphates, which
is often considered to be constant, and rapid-equilibrium
or quasi steady-state approximations (QSSA), which are

applicable for systems with time-scale separation and
allow calculation of fast from slow variables. The function
add_algebraicModule() accepts as arguments a
function describing the rule how the dependent variables
are calculated from independent ones, the name of the
newly created module, and lists of names of the independent
and dependent variables. After definition of an algebraic
module, all dependent variables become directly accessible.
The full list of independent and dependent variables can be
accessed using the method allCpdNames().

Various analysis methods
With import modelbase.Analysis the user has
access to advanced analysis methods on the model object.
Currently, it provides methods to numerically calculate
elasticities and the Jacobian, find steady states by
attempting to solve the algebraic equations, and calculate
concentration control coefficients. We expect the range of
analysis methods to increase continuously in the future.

Figure 1: UML class diagram of modelbase software components. It consists of six classes, with LabelModel inheriting
from Model and LabelSimulate inheriting from Simulate. ParameterSet and Analysis are special classes containing
parameter sets and static methods for analysis respectively.

Ebenhöh et al: Building Mathematical Models of Biological Systems with modelbaseArt. 24, page 4 of 11

Box 1: Basic model use

We use modelbase to simulate a simple chain of reactions, in which the two state variables X and Y describe the
concentrations of the intermediates. We assume a constant influx rate v0, a reversible conversion of X to Y, described
with mass action kinetics with forward and backward rate constants k1p and k1m, respectively, and an irreversible
efflux of Y described by mass action kinetics with the rate constant k2.

We import the modelbase package, numpy and matplotlib.pyplot, define a list of metabolite species and
a dictionary with parameters

import numpy as np
import matplotlib.pyplot as plt
import modelbase
cmpds = ['X','Y']
p = {'v0':1,'k1p':0.5,'k1m':1,'k2':0.1}

We instantiate a model object of class Model

m = modelbase.Model(p)

and pass metabolites to the model (variables are always defined by names)

m.set_cpds(cmpds)

In the next step we define reaction rate functions. The rate functions always accept the model parameters as first
argument, whilst the remaining arguments are metabolite concentrations.

v0 = lambda p: p.v0

def v1(p,x,y):
	 return p.k1p*x – p.k1m*y

def v2(p,y):
	 return p.k2*y

and then pass them to the model using add_reaction()

m.add_reaction('v0', v0, {'X':1})
m.add_reaction('v1', v1, {'X':-1,'Y':1}, 'X', 'Y')
m.add_reaction('v2', v2, {'Y':-1}, 'Y').

To perform the computation we generate an instance of a simulation class using the function Simulator()

s = modelbase.Simulator(m)

To integrate the system over a given period of time (T=np.linspace(0,100,1000)), with the initial
concentrations set to 0 (y0=np.zeros(2)), we use the method timeCourse()

s.timeCourse(T, y0)

Convenient access to the results of simulation through various get*() methods enables easy graphical display.

plt.figure()
plt.plot(s.getT(),s.getY())
plt.legend(m.cpdNames)
plt.show()

Ebenhöh et al: Building Mathematical Models of Biological Systems with modelbase Art. 24, page 5 of 11

Class LabelModel for isotope-labelled models
The modelbase package includes a class to construct
isotope-labelled versions of developed models. In
order to simulate the dynamic distribution of isotopes,
modelbase defines dynamic variables representing
all possible labelling patterns for all intermediates. In
contrast to instances of the class Model, for instances of the
class LabelModel the number of potentially labelled atoms
(usually carbon) needs to be defined for every compound.
This is done with the method add_base_cpd(), which
accepts the name and the number of labelled atoms of the
compound. It automatically creates all 2N isotope variants
of the compound, where N denotes the number of
labelled atoms. Finally, the method add_carbonmap_
reaction() automatically generates all isotope-specific
versions of a reaction. It accepts as arguments the reaction
name, rate function, carbon map, list of substrates, list of
products and additional variables to be passed.

To instantiate a model object for an isotope-labelled
version of developed model simply call
m = modelbase.LabelModel(d),

where d is again a dictionary holding parameters. With
an instance of this class a dynamic process, such as the
dynamic incorporation of radioactive carbon during
photosynthesis, can be easily defined and simulated,
using the Simulator class described below. An example of
how to use this class is provided in Box 2.

Integration methods and simulation subpackages
Methods for the numeric integration of models
are provided by the two subclasses Simulate and
LabelSimulate, where the latter inherits many methods
from the first. The first is used for standard kinetic models,
the latter for isotope-specific models. Both classes provide
computational support for dynamic simulations and
methods to numerically simulate the differential equation
system and to analyse the results. To provide an automatic
instantiation of the correct class, we provide the function
Simulator. Calling
s = modelbase.Simulator(m)

returns an instance of either Simulate or LabelSimulate,
depending on the class of model m, providing all methods
to numerically simulate the differential equation system
and to analyse the results. Simple applications to run and
plot a time course are given in boxes 1 and 2. By default,
the dynamic equations are numerically integrated using a
CVODE solver for stiff and non-stiff ordinary differential
equation (ODE) systems. The default solver uses the
Assimulo simulation package [10], with the most central
solver group originating from the SUNDIALS (a SUite of
Nonlinear and DIfferential/ALgebraic equation Solvers)
package [11]. If Assimulo is not available, standard
integration methods from the SciPy library [12] are used.
When needed, almost every integrator option can be
overridden by the user by simply accessing
s.integrator

Additionally, the Simulate class includes methods to
integrate the system until a steady-state is reached
(sim2SteadyState()), and to estimate the period of
smooth limit cycle oscillations (estimatePeriod()).
The solution arrays are accessed with the methods getT()

and getY(). The advantage of using this method over
using Assimulo’s integrator.ysol is that getY()
also returns the result for all the derived variables (for
which algebraic modules have been used). In addition, the
methods getVarByName(), getVarsByName()
and getVarsByRegExp() allow to access the
simulated values of one or several variables by their
variable names or by regular expressions. Moreover, the
method getV() gives access to the arrays of reaction
rates and getRate() allows to access particular rates by
the reaction name. The powerful Python plotting library
matplotlib [13] provides numerous methods for graphical
display of the results.

Systems Biology Markup Language (SBML)
modelbase supports export of a structural (stoichio-
metric) version of a created model into an XML file in the
computer-readable SBML format. To export the model (m)
simply use the method m.ModelbaseToSBML(file_
name). A minimal working example can be found in
our repository (https://gitlab.com/ebenhoeh/
modelbase/blob/master/examples/sbml_
export.py). Structural and stoichiometric analyses
are currently not implemented in modelbase, therefore
such export allows to take advantage of other SBML
compatible modelling environments developed for such
tasks (e.g. PySCeS or CobraPy [14]). The import of SBML
models into modelbase is currently not supported,
mainly because of the complementary purpose for which
it was developed. The modelbase framework simplifies
construction of kinetic models, allowing to perform this
task with minimal modelling experience. Therefore, the
main purpose of modelbase is the model design process
itself, rather than importing a predefined construct to
perform complex computations. However, a full SBML
export and import functionality is currently under
development to allow model sharing across different
environments and platforms.

Quality control
modelbase has been continuously developed and used
within our lab since 2016. It has been successfully applied
to study the complexity of photosynthesis and carbon
assimilation in plants [7] and is being further maintained
and developed.

(2) Availability
Operating system
modelbase is compatible with all platforms with
working Python distribution.

Programming language
modelbase is written in the Python programming
language, a general-purpose interpreted, interactive,
object-oriented, and high-level programming language.
It is available for every major operating system, including
GNU/Linux, Mac OSX and Windows and has been tested
with Python 3.6.

Additional system requirements
None

https://gitlab.com/ebenhoeh/modelbase/blob/master/examples/sbml_export.py
https://gitlab.com/ebenhoeh/modelbase/blob/master/examples/sbml_export.py
https://gitlab.com/ebenhoeh/modelbase/blob/master/examples/sbml_export.py

Ebenhöh et al: Building Mathematical Models of Biological Systems with modelbaseArt. 24, page 6 of 11

Box 2: Isotope-labelled model

A minimal example of an isotope-label specific model simulates equilibration of isotope distribution in a system
consisting of the two reactions of triose-phosphate isomerase and fructose-bisphosphate aldolase:

	 GAP DHAP	 (2)			
GAP DHAP FBP+ 	 (3)

We import the modelbase package, numpy and matplotlib.pyplot.
import numpy as np
import matplotlib.pyplot as plt
import modelbase

We define a dictionary of parameters and instantiate the model of class LabelModel
p =�{'kf_TPI': 1,'Keq_TPI': 21,'kf_Ald': 2000,'Keq_Ald': 7000}
m = modelbase.LabelModel(p).

Compounds are added with an additional argument defining the numbers of carbons
m.add_base_cpd('GAP', 3)
m.add_base_cpd('DHAP', 3)
m.add_base_cpd('FBP', 6)

leading to an automatic generation of 80 = 26 + 23 + 23 isotope-specific compounds. All reactions are assumed
to obey mass-action rate laws. Standard rate laws are defined in the modelbase.ratelaws module. Due to
simplicity, the following steps are only shown for the forward triose-phosphate isomerase reaction. For more details
please see the file examples/isotopeLabels.py in the modelbase package.
import modelbase.ratelaws as rl

def v1f(p,y):
	 return rl.massAction(p.kf_TPI,y)

All isotope-specific rates are generated by the add_carbonmap_reaction() method, based on a list defining
in which positions the carbons appear in the products.
m.add_carbonmap_reaction('TPIf',v1f,[2,1,0],['GAP'],['DHAP'],'GAP')

We set the initial conditions such that the total pools are in equilibrium, but carbon 1 of GAP is fully labeled
GAP0 = 2.5e-5
DHAP0 = GAP0 * m.par.Keq_TPI
y0d = {'GAP': GAP0,
	 'DHAP': DHAP0,
	 'FBP': GAP0 * DHAP0 * m.par.Keq_Ald}
y0 = �m.set_initconc_cpd_labelpos(y0d,labelpos={'GAP':0})

and simulate equilibration of the labels for 20 arbitrary time units
s = modelbase.LabelSimulate(m)
T = np.linspace(0,20,1000)
s.timeCourse(T,y0).

We plot the result using the getLabelAtPos() method (see examples/isotopeLabels.py).

Ebenhöh et al: Building Mathematical Models of Biological Systems with modelbase Art. 24, page 7 of 11

Dependencies
Dependencies are provided in the setup.py file and
include:

•	 numpy == 1.14.3
•	 scipy == 1.1.0
•	 numdifftools == 0.9.20
•	 assimulo == 2.9
•	 pandas == 0.22.0
•	 python-libsbml == 5.17.0

Support for the differential equation solver sundials
(CVODE) through the python package assimulo requires
moreover:

•	 Sundials-2.6.0 (for 64bits machines, install Sundials
using -fPIC)

•	 Cython 0.18
•	 C compiler
•	 Fortran compiler

The detailed instruction how to install the prerequisites is
included in the repository in our installation guide.

List of contributors
In alphabetic order: Marvin van Aalst, Oliver Ebenhöh,
Anna Matuszyńska, Nima P. Saadat.

Software location
Archive

Name: Python Package Index (PyPI)
�Persistent identifier: https://pypi.org/project/
modelbase/
Licence: GPL3
Publisher: Oliver Ebenhöh
Version published: 0.2.5
Date published: 09/10/18

Code repository
Name: GitLab
�Persistent identifier: https://gitlab.com/ebenhoeh/
modelbase
Licence: GNU General Public License v3.0
Date published: 09/10/18

Language
modelbase was entirely developed in English.

(3) Reuse potential
The strength of our package lies in its flexibility to be
applied to simulate and analyse various distinct biological
systems. It can be as efficiently used for the development
of new models, as for the reconstruction of existing ones.
Here, we demonstrate its power by reimplementing three
mathematical models that have been previously published
without providing the source code (Table 1). This includes
i) a model of the photosynthetic electron transport chain
(PETC) used to model photoprotective mechanisms in
plants and green algae, originating from our lab and
initially developed in MATLAB [15]; ii) a model of the
Calvin-Benson-Bassham (CBB) Cycle by Poolman et al. [16],
developed to study the dynamics of the carbon assimilation
and iii) a model of the Pentose phosphate pathway
(PPP), adapted by Berthon et al. [17] to investigate label
distribution dynamics in isotope labelling experiments.

Modelling the PETC to study photoprotective
mechanisms
Part of our research focuses on understanding the
dynamics of various photoprotective mechanisms
present in photosynthetic organisms [18, 15, 19]. The
foundation of our further work constitutes the model
of the photosynthetic electron transport chain in green
algae Chlamydomonas reinhardtii published in 2014 [15].
We have reimplemented the original work in Python
and reproduced the results published in the main text
(Figure 2), providing a photosynthetic electron transport
chain core model, compatible with other modelbase-
adapted modules, to further our studies on the dynamics
of light reactions of photosynthesis.

CBB Cycle and the dynamics of carbon assimilation
Using modelbase, we have reimplemented a model
of the CBB Cycle by Poolman et al. [16]. The model is a
variant of the Pettersson and Ryde-Pettersson [3] model,
where the strict rapid equilibrium assumption is relaxed
and fast reactions are modelled by simple mass action
kinetics. Its main purpose is to study short to medium time
scale responses to changes in extra-stromal phosphate
concentration and incident light. The concentrations
of NADPH, NADP+, CO2 and H+ are considered constant,
leaving the 13 CBB cycle intermediates, ATP, ADP and
inorganic phosphate as dynamic variables. The model
further incorporates a simplified starch production using
glucose 6-phosphate and glucose-1-phosphate and a

Table 1: Mathematical models originally published without the source-code, reconstructed in our lab using the
modelbase package. The source code and examples are available from the GitHub repository of our lab https://
github.com/QTB-HHU/.

Process Original
publication

GitHub.com/
QTB-HHU/

Developer

Photosynthetic Electron
Transport Chain

[15] ./petc-modelbase A.M.

Calvin-Benson-Bassham Cycle [16] ./cbb-modelbase M.v.A.

Pentose Phosphate Pathway [4, 17] ./ppp-modelbase T.N.

https://pypi.org/project/modelbase/
https://pypi.org/project/modelbase/
https://gitlab.com/ebenhoeh/modelbase
https://gitlab.com/ebenhoeh/modelbase
https://github.com/QTB-HHU/
https://github.com/QTB-HHU/
https://github.com/QTB-HHU/
https://github.com/QTB-HHU/
https://github.com/QTB-HHU/petc-modelbase
https://github.com/QTB-HHU/cbb-modelbase
https://github.com/QTB-HHU/ppp-modelbase

Ebenhöh et al: Building Mathematical Models of Biological Systems with modelbaseArt. 24, page 8 of 11

simple ATP recovery reaction. We used the modelbase
implementation of the Poolman model to simulate
the steady state concentrations of the metabolites
depending on the extra-stromal phosphate concentration
(Figure 3), reproducing original work by Pettersson and
Ryde-Pettersson [3]. We have observed that the system is
not stable any more for [Pext] > 1.5, a feature not discussed
in the Poolman paper [16].

The compatible mathematical representation of the
two photosynthetic subsystems, the ATP-producing
light reactions and the ATP-consuming CBB cycle, is a
prerequisite to merge those two models. Technically, in
the modelbase framework, this is a straight forward
process. Scientifically, it turned out to be not a trivial task
(unpublished work).

PPP and isotope labelling experiments
We envisage that especially our LabelModel extension will
find a wide application in metabolic network analysis.
Radioactive and stable isotope labelling experiments
constitute a powerful methodology for estimating
metabolic fluxes and have a long history of application in
biological research [20]. Here, we showcase the potential
of modelbase for the isotope-labelled experiments by
reimplementing the model of the F-type non-oxidative
PPP in erythrocytes originally proposed by McIntyre et al.
[4]. This was later adapted by Berthon et al. for label
experiments and in silico replication of 13C nuclear magnetic
resonance (NMR) studies [17]. We have reproduced the
results obtained by the authors, including the time course
of diverse Glucose-6-phosphate isotopomers (Figure 4).

Figure 2: Reproduction of the Figures from [15]. Simulated fluorescence trace obtained through Pulse Amplitude
Modulation (PAM) under light induced (left) and anoxia induced (right) conditions. The dynamics of the fluorescence
decrease corresponds to the activation of a specific photoprotective mechanism called state transitions, while the
increase in the signal after the inducer (light or anoxia) is switched off relates to the relaxation of the mechanism.

Figure 3: Metabolite steady state concentrations dependent on the extra-stromal phosphate concentration simulated
with the Poolman implementation of the Pettersson and Ryde-Pettersson model of the CBB cycle [16].

Ebenhöh et al: Building Mathematical Models of Biological Systems with modelbase Art. 24, page 9 of 11

Figure 4: Formation of diverse Glc6P isotopomers in a haemolysate, obtained by solving the adapted model by Berthon
et al. [17] reimplemented using modelbase.

Ebenhöh et al: Building Mathematical Models of Biological Systems with modelbaseArt. 24, page 10 of 11

Other possible applications
Among many other applications, modelbase provides
tools to reproduce the ‘photosynthetic Gibbs effect’.
Gibbs and Kandler described it in 1956 and 1957 [8,
9], when they observed the atypical and asymmetrical
incorporation of radioactive 14CO2 in hexoses. An example
of label incorporation by the CBB cycle intermediates is
presented schematically in Figure 5.

Finally, our package provides a solid foundation for
additional extensions to the framework architecture, its
classes and modelling routines. To encourage its use and to
facilitate the first steps to apply the modelbase package,
we have prepared an interactive tutorial using a Jupyter
Notebook [21], which showcases basic implementation of
modelbase and each of its classes in easy to follow and
thoroughly explained examples (see https://gitlab.com/
ebenhoeh/modelbase/blob/master/Tutorial.ipynb).

Abbreviations
CBB Calvin-Benson-Bassham; NMR Nuclear Magnetic
Resonance; ODE Ordinary Differential Equations; PAM Pulse
Amplitude Modulation; PPP Pentose Phosphate Pathway;
QSSA Quasi Steady-State Approximation; SBML Systems
Biology Markup Language; UML Unified Modeling Language.

Acknowledgements
We would like to thank the students working on their
Bachelor and Masters projects in our lab, who applied and
tested this software while investigating their scientific
problems.

Competing Interests
The authors have no competing interests to declare.

Author Informations
•	 Initiated the project, developed the code and pro-

vided teaching examples.
•	 Developed further the code, prepared the documen-

tation and battery of tests and reimplemented the
Calvin-Benson-Bassham Cycle model as an example of
modelbase utility.

•	 Provided export support for SBML models.

•	 Reimplemented the Pentose-Phosphate-Pathway
model as an example of modelbase utility.

•	 Developed further the code, prepared the Jupyter
Notebook with the tutorial, provided an example of
modelbase utility and wrote the first draft of the
manuscript.

All authors have read the manuscript and contributed to
its final version.

References
1.	 Almquist, J, Cvijovic, M, Hatzimanikatis, V,

Nielsen, J and Jirstrand, M 2014 Kinetic models in
industrial biotechnology – Improving cell factory
performance. Metabolic Engineering, 24: 38–60. DOI:
https://doi.org/10.1016/j.ymben.2014.03.007

2.	 Oliphant, T E 2007 Python for scientific computing.
Computing in Science and Engineering, 9(3): 10–20.
DOI: https://doi.org/10.1109/MCSE.2007.58

3.	 Pettersson, G and Ryde-Pettersson, U 1988 A
mathematical model of the Calvin photosynthesis
cycle. Eur. J. Biochem, 175(3): 661–672. DOI: https://
doi.org/10.1111/j.1432-1033.1988.tb14242.x

4.	 McIntyre, L M, Thorburn, D R, Bubb, W A and
Kuchel, P W 1989 Comparison of computer
simulations of the F-type and L-type non- oxidative
hexose monophosphate shunts with 31P-NMR
experimental data from human erythrocytes. Eur
J Biochem, 180(2): 399–420. DOI: https://doi.
org/10.1111/j.1432-1033.1989.tb14662.x

5.	 Poolman, M G 2006 ScrumPy: Metabolic modelling
with Python. IEE Proc.-Syst. Biol, 153(5): 375–378. DOI:
https://doi.org/10.1049/ip-syb:20060010

6.	 Olivier, B G, Rohwer, J M and Hofmeyr, J H S 2005
Modelling cellular systems with PySCeS. Bioinformatics,
21(4): 560–561. DOI: https://doi.org/10.1093/
bioinformatics/bti046

7.	 Ebenhöh, O and Spelberg, S 2018 The importance
of the photosynthetic Gibbs effect in the elucidation
of the Calvin-Benson-Bassham cycle. Biochemical
Society Transactions. DOI: https://doi.org/10.1042/
BST20170245

Figure 5: Schematic representation of label incorporation by the CBB cycle intermediates.

https://gitlab.com/ebenhoeh/modelbase/blob/master/Tutorial.ipynb
https://gitlab.com/ebenhoeh/modelbase/blob/master/Tutorial.ipynb
https://doi.org/10.1016/j.ymben.2014.03.007
https://doi.org/10.1109/MCSE.2007.58
https://doi.org/10.1111/j.1432-1033.1988.tb14242.x
https://doi.org/10.1111/j.1432-1033.1988.tb14242.x
https://doi.org/10.1111/j.1432-1033.1989.tb14662.x
https://doi.org/10.1111/j.1432-1033.1989.tb14662.x
https://doi.org/10.1049/ip-syb:20060010
https://doi.org/10.1093/bioinformatics/bti046
https://doi.org/10.1093/bioinformatics/bti046
https://doi.org/10.1042/BST20170245
https://doi.org/10.1042/BST20170245

Ebenhöh et al: Building Mathematical Models of Biological Systems with modelbase Art. 24, page 11 of 11

8.	 Kandler, O and Gibbs, M 1956 Asymmetric
Distribution of C14 in the Glucose Phosphates Formed
During Photosynthesis. Plant physiology, 31(5): 411.
DOI: https://doi.org/10.1104/pp.31.5.411

9.	 Gibbs, M and Kandler, O 1957 Asymmetric distribution
of C14 in sugars formed during photosynthesis. Proc.
Natl. Acd. Sci. U.S.A., 43: 446–451. DOI: https://doi.
org/10.1073/pnas.43.6.446

10.	Andersson, C, Claus, F and Akesson, J 2015
ScienceDirect Assimulo: A unified framework for ODE
solvers. Mathematics and Computers in Simulation,
116: 26–43. DOI: https://doi.org/10.1016/j.
matcom.2015.04.007

11.	Hindmarsh, A C, Brown, P N, Grant, K E, Lee,
S L, Serban, R, Shumaker, D E and Woodward, C S
2005 SUNDIALS: Suite of Nonlinear and Differential/
Algebraic Equation Solvers. ACM Transactions
on Mathematical Software, 31(3): 363–396. DOI:
https://doi.org/10.1145/1089014.1089020

12.	Jones, E, Oliphant, T, Peterson, P, et al. 2001 Scipy:
Open source scientific tools for python.

13.	Hunter, J D 2007 Matplotlib: A 2D graphics environment.
Computing In Science and Engineering, 9(3): 90–95. DOI:
https://doi.org/10.1109/MCSE.2007.55

14.	Ebrahim, A, Lerman, J A, Palsson, B O and Hyduke,
D R 2013 COBRApy: COnstraints-Based Reconstruction
and Analysis for Python. BMC Systems Biology, 7(1): 1.
DOI: https://doi.org/10.1186/1752-0509-7-74

15.	Ebenhöh, O, Fucile, G, Finazzi, G G, Rochaix, J-D
and Goldschmidt-Clermont, M 2014 Short-term
acclimation of the photosynthetic electron transfer
chain to changing light: A mathematical model.
Philosophical Transactions B, 369(1640). DOI: https://
doi.org/10.1098/rstb.2013.0223

16.	Poolman, M G, Fell, D A and Thomas, S 2000
Modelling photosynthesis and its control. Journal
of Experimental Botany, 51(90001): 319–328. DOI:
https://doi.org/10.1093/jexbot/51.suppl_1.319

17.	Berthon, H A, Bubb, W A and Kuchel, P W 1993 13C
n.m.r. isotopomer and computer-simulation studies
of the non-oxidative pentose phosphate pathway of
human erythrocytes. Biochem J, 296: 379–387. DOI:
https://doi.org/10.1042/bj2960379

18.	Ebenhöh, O, Houwaart, T, Lokstein, H, Schlede,
S and Tirok, K 2011 A minimal mathematical
model of nonphotochemical quenching of
chlorophyll fluorescence. Biosystems, 103(2): 196–
204. DOI: https://doi.org/10.1016/j.biosystems.2010.​
10.011

19.	Matuszyńska, A B, Heidari, S, Jahns, P and
Ebenhöh, O 2016 A mathematical model of non-
photochemical quenching to study short-term light
memory in plants. Biochimica et Biophysica Acta
(BBA) – Bioenergetics, 1857(12): 1–7. DOI: https://doi.
org/10.1016/j.bbabio.2016.09.003

20.	Crown, S B, Ahn, W and Antoniewicz, M R 2012
Rational design of 13C-labeling experiments for
metabolic ux analysis in mammalian cells. BMC Systems
Biology, 6(1): 43. DOI: https://doi.org/10.1186/1752-
0509-6-43

21.	Kluyver, T, Ragan-Kelley, B, Perez, F, Granger, B,
Bussonnier, M, Frederic, J, Kelley, K, Hamrick, J,
Grout, J, Corlay, S, Ivanov, P, Avila, D, Abdalla, S
and Willing, C 2016 Jupyter Notebooks — a publishing
format for reproducible computational workows. In:
Schmidt, B and Loizides, F (eds.), Positioning and Power
in Academic Publishing: Players, Agents and Agendas,
87–90. IOS Press.

How to cite this article: Ebenhöh, O, van Aalst, M, Saadat, N P, Nies, T and Matuszyńska, A 2018 Building Mathematical Models
of Biological Systems with modelbase. Journal of Open Research Software, 6: 24. DOI: https://doi.org/10.5334/jors.236

Submitted: 27 June 2018 Accepted: 16 October 2018 Published: 16 November 2018

Copyright: © 2018 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press. OPEN ACCESS

https://doi.org/10.1104/pp.31.5.411
https://doi.org/10.1073/pnas.43.6.446
https://doi.org/10.1073/pnas.43.6.446
https://doi.org/10.1016/j.matcom.2015.04.007
https://doi.org/10.1016/j.matcom.2015.04.007
https://doi.org/10.1145/1089014.1089020
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1186/1752-0509-7-74
https://doi.org/10.1098/rstb.2013.0223
https://doi.org/10.1098/rstb.2013.0223
https://doi.org/10.1093/jexbot/51.suppl_1.319
https://doi.org/10.1042/bj2960379
https://doi.org/10.1016/j.biosystems.2010. 10.011
https://doi.org/10.1016/j.biosystems.2010. 10.011
https://doi.org/10.1016/j.bbabio.2016.09.003
https://doi.org/10.1016/j.bbabio.2016.09.003
https://doi.org/10.1186/1752-0509-6-43
https://doi.org/10.1186/1752-0509-6-43
https://doi.org/10.5334/jors.236
http://creativecommons.org/licenses/by/4.0/

	(1) Overview
	Introduction
	Motivation
	Implementation and architecture
	Model construction
	Class Model
	Working with algebraic modules
	Various analysis methods
	Class LabelModel for isotope-labelled models
	Integration methods and simulation subpackages
	Systems Biology Markup Language (SBML)
	Quality control

	(2) Availability
	Operating system
	Programming language
	Additional system requirements
	Dependencies
	List of contributors
	Software location
	Archive
	Code repository

	Language

	(3) Reuse potential
	Modelling the PETC to study photoprotective mechanisms
	CBB Cycle and the dynamics of carbon assimilation
	PPP and isotope labelling experiments
	Other possible applications

	Abbreviations
	Acknowledgements
	Competing Interests
	Author Informations
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Box 1
	Box 2
	Table 1

