
Bond-Lamberty, B, et al. 2019 gcamdata: An R Package for Preparation, Synthesis,
and Tracking of Input Data for the GCAM Integrated Human-Earth Systems Model.
Journal of Open Research Software, 7: 6. DOI: https://doi.org/10.5334/jors.232

Journal of
open research software

SOFTWARE METAPAPER

gcamdata: An R Package for Preparation, Synthesis,
and Tracking of Input Data for the GCAM Integrated
Human-Earth Systems Model
Ben Bond-Lamberty1, Kalyn Dorheim1, Ryna Cui1, Russell Horowitz2, Abigail Snyder1,
Katherine Calvin1, Leyang Feng1,3, Rachel Hoesly1, Jill Horing4, G. Page Kyle1, Robert
Link1, Pralit Patel1, Christopher Roney1, Aaron Staniszewski1, Sean Turner1, Min Chen1,
Felipe Feijoo1,5, Corinne Hartin1, Mohamad Hejazi1, Gokul Iyer1, Sonny Kim1, Yaling Liu6,
Cary Lynch1, Haewon McJeon1, Steven Smith1, Stephanie Waldhoff1, Marshall Wise1
and Leon Clarke1

1 Joint Global Change Research Institute at Pacific Northwest National Laboratory (JGCRI/PNNL), US
2 University of California at Los Angeles, US
3 American University, US
4 Stanford University, US
5 Pontificia Universidad Católica de Valparaíso, CL
6 Columbia University, US
Corresponding author: Ben Bond-Lamberty (bondlamberty@pnnl.gov)

The increasing data requirements of complex models demand robust, reproducible, and transparent
systems to track and prepare models’ inputs. Here we describe version 1.0 of the gcamdata R package
that processes raw inputs to produce the hundreds of XML files needed by the GCAM integrated human-
earth systems model. It features extensive functional and unit testing, data tracing and visualization, and
enforces metadata, documentation, and flexibility in its component data-processing subunits. Although this
package is specific to GCAM, many of its structural pieces and approaches should be broadly applicable
to, and reusable by, other complex model/data systems aiming to improve transparency, reproducibility,
and flexibility.

Keywords: Human-earth system modeling; data provenance; reproducibility; earth modeling; unit testing
Funding statement: Primary support for this work was provided by the U.S. Department of Energy,
Office of Science, as part of research in Multi-Sector Dynamics, Earth and Environmental System Modeling
Program. Additional support was provided by the U.S. Department of Energy Offices of Fossil Energy,
Nuclear Energy, and Energy Efficiency and Renewable Energy and the U.S. Environmental Protection Agency.

(1) Overview
Introduction
Science is becoming increasingly collaborative and data-
intensive [1], and many factors are pushing scientists to
increase data access and use ‘best practices’ in dealing with
data and code [2, 3]. There is also an increased emphasis
on transparency, data provenance, and reproducibility
from funders, governments, and scientists themselves [4,
5]. These factors have increased the need for reproducible,
programmatic approaches, both to produce large-scale
datasets and handle the increasing data demands of
modern models. Examples include the software stack

supporting globally gridded soils dataset products
[6], the CEDS database of anthropogenic emissions of
reactive gases and aerosols [7], and the Global Land Data
Assimilation System [8]. These and many other regional
to global data are used by a wide variety of earth system
models, dynamic global vegetation models, and integrated
human-earth system models [9].

Modern, integrated human-earth system models are
typically complex and require correspondingly detailed
input datasets. These models are sophisticated attempts to
encapsulate relations between environmental, social and
economic factors that are thought to drive future global

https://doi.org/10.5334/jors.232
mailto:bondlamberty@pnnl.gov

Bond-Lamberty et al: gcamdataArt. 6, page 2 of 7

change, and assess the effectiveness of technologies and
policies [10]. One integrated human-earth system model
is GCAM, a model coupling representations of global and
regional economies; energy systems; agricultural, water, and
land use systems; and global climate [11]. GCAM’s primary
external assumptions include socioeconomic drivers (e.g.,
population and GDP), technology characterizations (e.g.,
cost and efficiency), and assumptions about regulations
and policies that might influence the human systems
represented in GCAM.

Currently GCAM requires over 200 Extensible Markup
Language (XML) input files, detailing everything from
future population projections to historical land allocation
to emissions factors. These files create and describe six
inter-dependent model modules: (1) agriculture and
land use; (2) energy production, transformation, and
consumption; (3) water demands; (4) socio-economic
demand drivers; (5) non-CO2 emissions; and (6) GCAM-
USA, a state-level representation of the USA region. These
modules’ inputs include information for all time periods,
including historical calibration data, characteristics of
hundreds of modeled technologies, future assumptions,
and other relevant data.

Earlier versions of the model [12] used spreadsheet-
exported inputs but as the data volume increased a
system of scripts was developed to generate and reconcile
data [13]. Spreadsheets do not scale well, however, and
in general impede reproducibility and transparency of
data flow; thus there was an acute need for a data system
that was open source and transparent, easy to install
and use, flexible and robust in its assumptions, and well
documented. There are general-purpose R packages to
support reproducible, verifiable data processing and
scientific research, including madrat (https://cran.r-
project.org/package=madrat), drake (https://cran.r-
project.org/package=drake), and workflowr (https://
cran.r-project.org/package=workflowr). Our specific
needs for extensive consistency-checking and error-
handling, in addition to providing a platform for data
and model exploration and reproducible, transparent
scientific and policy research, led to the development of
the system described here.

Implementation and architecture
As noted above, the design requirements for this software
centered around clarity, ease of use, robustness, error
checking, documentation, and flexibility. These criteria
led us to select the R statistical programming language
[14] as the programming language of choice. R has
seen increasing use across many fields of science [15],
is free and open source, and straightforward to install.
Importantly, R’s package system (along with optional tools
such as devtools1 and roxygen2)2 offers extensive support
for reproducible research [16]; for example, packages will
not pass testing and continuous integration successfully
if all user-facing functions do not have documentation, or
if the package fails any one of a wide range of standard as
well as user-defined tests.

Assuming that devtools is installed, the package can be
installed and run by:

devtools::install_github(“JGCRI/gcamdata”)
library(gcamdata)
driver() # build the GCAM input data

The gcamdata system is conceptually organized into
three levels of data: raw data (level 0) that are processed
and aggregated/disaggregated into generic intermediate
categories (level 1), which are then processed further to
fit GCAM’s specific structures and model time periods
(level 2). There are ~30 major inventory data sources
within GCAM’s level 0 data (see data documentation
at https://github.com/JGCRI/gcamdata/wiki), and
hundreds of additional data sources are used for more
specific information. Data sources consist of a blend
of top-down inventories, bottom-up estimates, and
information describing the characteristics of modeled
technologies. The gcamdata package allows for users to
update raw data, and modify assumptions and mappings,
in order to generate alternative GCAM input scenarios.
Internal consistency is enforced, i.e. modifying any
calibrated flow estimate requires consideration of all
affected sectors and processes, in order to ensure that
all modeled flows remain balanced; this is automatically
handled by the gcamdata code.

The units of code that handle these processing steps
are termed ‘chunks’ and generally consist of a single
function that takes inputs (data dependencies) and
produce outputs, which are then available for processing
by downstream chunks. On startup, chunks must declare
all their required inputs, their optional inputs (see below),
and their outputs. Two special classes of chunks also exist:
“data” chunks are responsible only for loading and parsing
specific datasets from disk, typically from a file with a
nonstandard format; and “xml” chunks that construct the
actual GCAM input files. The gcamdata code includes a
facility for automatic generation of a chunk skeleton, i.e.
the basic architecture of a chunk ready for coding; this
provides a mechanism for extension of the data system’s
architecture.

A ‘driver’ routine is invoked by the user to start the
data system. This function locates all the available
chunks in the package namespace, and queries them
for their dependencies and outputs, which allows
for the construction of a full data-dependency graph
(Figure 1). The driver enters its main run loop, in
which it calls all chunks with currently-available inputs
and verifies (see below) the chunks’ outputs. Outputs
are then added to the main data store or, if they will
no longer be needed, written to disk and removed from
working memory. This process continues until there are
no more chunks to run.

An important question was how to handle proprietary
data [17], specifically the International Energy Agency
(IEA) Energy Balances [18], a data product that cannot be
legally included in the open-source gcamdata package.
This problem was solved by allowing chunks to have
optional inputs, and including a cached copy of the
summarized proprietary data in the package. (Distribution
of these summarized versions of the IEA data is permitted
under the terms of the license for the data.) For example,
chunk X summarized the IEA data by GCAM regions and

https://cran.r-project.org/package=madrat
https://cran.r-project.org/package=madrat
https://cran.r-project.org/package=drake
https://cran.r-project.org/package=drake
https://cran.r-project.org/package=workflowr
https://cran.r-project.org/package=workflowr
https://github.com/JGCRI/gcamdata/wiki

Bond-Lamberty et al: gcamdata Art. 6, page 3 of 7

technologies, producing output Y, which is then used by
chunk Z. Y is cached (and included with the gcamdata
download) and thus always available for Z, even if the
source IEA data are not; when this occurs, a note is added
to the downstream metadata indicating that cached data
were used. The overall gcamdata license, the Educational
Community License (http://opensource.org/licenses/
ecl2.php), is close to the Apache license and chosen to
match that of the GCAM model.

Data objects in gcamdata are required to have descriptive
metadata attached, including title, units, description, and
dependency information. (Most of these requirements

are enforced on input data as well.) This allows us to
track data provenance [19] throughout the system, and
provide data tracing. Because all chunks declare their
inputs and outputs to the driver, a full system-wide data
map can be constructed (Figure 1) and then particular
data dependencies, upstream and/or downstream, traced
through the system (Figure 2). Because all data objects
that flow between chunks are required to have extensive
metadata (including title, units, source, and comments),
this allows for easy and informative exploration of the
data sources and dependencies of any object in the
system.

Figure 1: High level view of the code-data dependencies in the gcamdata package. This plot of the system
architecture shows nodes (“chunks”, units of code charged with processing data and producing specific outputs)
and edges (data flows between chunks). Nodes are colored by discipline, e.g., agriculture and land use-related code
is black, energy system code is blue, etc. For clarity neither the initial data inputs nor the final XML outputs (i.e. the
GCAM input files) are shown; this means that seemingly isolated nodes or groups of nodes actually contribute data
directly into the model.

http://opensource.org/licenses/ecl2.php
http://opensource.org/licenses/ecl2.php

Bond-Lamberty et al: gcamdataArt. 6, page 4 of 7

Quality control
The package includes extensive functional and unit testing
(Table 1) that verifies behavior of the data ‘chunks’,
the supporting data system functions, the driver, and
characteristics of data objects; testing considers both the
chunks (units of code) and data (relationships) [20]. The
current level of unit testing coverage is 92%. The full suite
of tests is invoked every time a user builds the R package, at
which point it is also subjected to a battery of standardized
R checks (see http://r-pkgs.had.co.nz/check.html). The

tests are part of the continuous integration [21] with the
gcamdata repository (https://github.com/jgcri/gcamdata),
meaning that they are invoked for every pull request (PR),
and the PR cannot proceed without all tests being passed.

(2) Availability
Operating system
Mac OS X 10.6. or later; Unix-like operating systems;
Windows 7 or later. See https://cran.r-project.org/doc/
FAQ/R-FAQ.html#What-machines-does-R-run-on_003f.

Figure 2: An example of tracing data flow. Here the user has requested a data trace on a particular data object
“L100.FAO_ag_Exp_t” (FAO agricultural exports by country, item, and year). The package prints detailed information
about this object and its upstream and downstream dependencies, and graphs these relationships to show data flow
(arrows). Raw data inputs are at the top, and the final XML product that flows into the GCAM model is at the bottom.
Explanatory notes describe each step.

http://r-pkgs.had.co.nz/check.html
https://github.com/jgcri/gcamdata
https://cran.r-project.org/doc/FAQ/R-FAQ.html#What-machines-does-R-run-on_003f
https://cran.r-project.org/doc/FAQ/R-FAQ.html#What-machines-does-R-run-on_003f

Bond-Lamberty et al: gcamdata Art. 6, page 5 of 7

Programming language
R (version 3.1 or later).

Additional system requirements
The package uses and processes some large datasets,
but efficiently prunes in-memory objects when they are
no longer needed. Its memory usage during a run peaks
at ~800 MB; the on-disk input data, many of which are
compressed, are ~73 MB. The XML files written by the
system are ~2.3 GB.

Dependencies
Required dependencies include the R packages assertthat
(>=0.2), dplyr (>=0.7.0), magrittr (>=1.5), tibble (>=1.1),
tidyr (>=0.7.1), readr (>=1.0.0), and data.table (>=1.10.4).

Optional dependencies include the R packages igraph
(>=1.0.1), mockr (>=0.1), testthat (>=1.0.2), and R.utils
(>=2.6.0), as well as Python version 3.

List of contributors
Package design and development was led by Ben Bond-
Lamberty. Kalyn Dorheim was the verification lead, and
with Ryna Cui, Russell Horowitz, and Abigail Snyder wrote
the bulk of the code. Katherine Calvin, Leyang Feng,
Rachel Hoesly, Jill Horing, Page Kyle, Robert Link, Pralit
Patel, Chris Roney, Aaron Staniszewski, and Sean Turner
contributed significantly to coding and/or design. Further
contributions were made by Min Chen, Felipe Feijoo
Palacios, Corinne Hartin, Mohamad Hejazi, Gokul Iyer,
Sonny Kim, Yaling Liu, Cary Lynch, Haewon McJeon, Steve
Smith, Stephanie Woldhoff, Marshall Wise. Katherine
Calvin, Corinne Hartin, Gokul Iyer, Haewon McJeon, and
Leon Clarke managed the various developments teams.
Page Kyle developed the original R scripts that grew into
gcamdata and made significant contributions in writing
this manuscript.

Software location
Archive

Name: Zenodo
�Persistent� identifier: Version v1.0, DOI: https://doi.
org/10.5281/zenodo.1249932
 Licence: Educational Community License, Version 2.0
(ECL-2.0). See https://github.com/JGCRI/gcamdata/
blob/master/LICENSE
Publisher: Pacific Northwest National Laboratory
Version published: 1.0
Date published: 19/05/2018

Code repository
Name: gcamdata
Identifier: https://github.com/JGCRI/gcamdata/
 Licence: Educational Community License, Version 2.0
(ECL-2.0). See https://github.com/JGCRI/gcamdata/
blob/master/LICENSE
Date published: 19/05/2018

Language
English

(3) Reuse potential
The gcamdata package maintains good separation
between GCAM-specific code and infrastructure code, and
reusing the infrastructure as a platform for building data
preparation code for other scientific models would be
straightforward; in particular, many of the intermediate
processing steps and even particular data products are
also required by other multi-sectoral models [22].

More generally, many of the package’s concepts, structural
design, and specific code elements may be broadly
interesting to, and reusable by, other model/data teams
interested in improving the transparency, reproducibility,
and flexibility of their systems. Many parts of the gcamdata

Table 1: Automatic package-level checks performed on the gcamdata data-handling functions (termed “chunks”) and
their outputs.

Category Test

Behavior Chunk responds to required messages from driver (DECLARE_INPUTS, DECLARE_OUTPUTS, MAKE)

Chunk doesn’t make forbidden calls (e.g., slow or deprecated R routines)

Chunk handles changes in model time settings

Chunk (package-level) constants are correctly formatted

Data Chunk declares a (possibly empty) list of input that can all be found, either as the product of another chunk or
as a file input

Chunk declares a valid list of outputs

Chunk uses only its declared inputs

Chunk produces exactly its declared outputs

All file inputs have metadata headers and are encoded (e.g., standard line endings) correctly

All chunk outputs have title, description, units, comments, and precursor information attached

All declared precursors are in the chunk input list, and each chunk input is the precursor of at least one output

Chunk outputs match known good output set

https://doi.org/10.5281/zenodo.1249932
https://doi.org/10.5281/zenodo.1249932
https://github.com/JGCRI/gcamdata/blob/master/LICENSE
https://github.com/JGCRI/gcamdata/blob/master/LICENSE
https://github.com/JGCRI/gcamdata/
https://github.com/JGCRI/gcamdata/blob/master/LICENSE
https://github.com/JGCRI/gcamdata/blob/master/LICENSE

Bond-Lamberty et al: gcamdataArt. 6, page 6 of 7

package could be repurposed for any data system that
involves multiple, potentially interacting, data processing
steps. Given the wide diversity of human-earth system
models and frameworks in use, and the resulting problems
associated with separating model and scenario variability
[23], standardizing on an open-source data processing
platform would be valuable for the many communities in
human-earth system modeling.

Key areas of interest and potential reuse include:

•	 An object-oriented approach to data processing, with
chunks (units of code responsible for a specific data-
processing step) called when needed by a controlling
driver routine.

•	 Chunks are auto-discovered, so it is easy to add new
ones. An empty chunk template is included in the
gcamdata code.

•	 Data objects are passed between chunks. All data
objects (including those from input files) must have
attached metadata, and this is enforced by extensive
checking by the driver.

•	 Enforcement of file encoding and structure. For exam-
ple, our developers variously use Windows, Mac, and
Unix, all of which have different line ending conven-
tions, but gcamdata enforces a single standard.

•	 Chunks declare their inputs and outputs to a driver
through a fixed Application Programming Interface.
The resulting chunk and data dependency informa-
tion allows for extensive visualization, data tracing,
etc.

•	 A great deal of unit/functional testing. This is stand-
ard in the software design world [20], but much less
so in scientific programming [24], and to our knowl-
edge extremely rare in systems designed to process or
produce datasets.

Notes
 1 https://cran.r-project.org/package=devtools.
 2 https://cran.r-project.org/web/packages/roxygen2/

vignettes/roxygen2.html.

Acknowledgements
The management and financial expertise of Ibimina
Nweke and Kali Wood provided crucial support during
gcamdata development. The package makes crucial use of
land-use and land cover change data developed by Alan Di
Vittorio of Lawrence Berkeley National Laboratory.

Competing Interests
The authors have no competing interests to declare.

References
1. Adams, J 2012 Collaborations: The rise of research

networks. Nature, 490: 335–336. DOI: https://doi.
org/10.1038/490335a

2. Wilson, G, Aruliah, D A, Brown, C T, et al. 2014
Best practices for scientific computing. PLoS Biol, 12:
e1001745. DOI: https://doi.org/10.1371/journal.
pbio.1001745

3. Thornton, P E, Cook, R B, Braswell, B H, et al.
2005 Archiving numerical models of biogeochemical

dynamics. EOS, 86: 431–432. DOI: https://doi.
org/10.1029/2005EO440003

4. Ince, D C, Hatton, L and Graham-Cumming, J
2012 The case for open computer programs. Nature,
482: 485–488. DOI: https://doi.org/10.1038/
nature10836

5. Peng, R D 2011 Reproducible research in
computational science. Science, 334: 1226–1227. DOI:
https://doi.org/10.1126/science.1213847

6. Hengl, T, Mendes de Jesus, J, MacMillan, R A, et al.
2014 SoilGrids1km — global soil information based
on automated mapping. PLoS One, 9: e114788. DOI:
https://doi.org/10.1371/journal.pone.0105992

7. Hoesly, R M, Smith, S J, Feng, L, et al. 2018 Historical
(1750–2014) anthropogenic emissions of reactive
gases and aerosols from the Community Emissions
Data System (CEDS). Geoscientific Model Development,
11: 369–408. DOI: https://doi.org/10.5194/gmd-11-
369-2018

8. Rodell, M, Houser, P R, Jambor, U, et al. 2004
The Global Land Data Assimilation System. Bull
Am Meteorol Soc, 85: 381–394. DOI: https://doi.
org/10.1175/BAMS-85-3-381

9. van Vuuren, D P, Bayer, L B, Chuwah, C, et al. 2012
A comprehensive view on climate change: Coupling
of earth system and integrated assessment models.
Environ Res Lett, 7. DOI: https://doi.org/10.1088/1748-
9326/7/2/024012

10. van Vuuren, D P, Lowe, J A, Stehfest, E, et al. 2011
How well do integrated assessment models simulate
climate change? Clim Change, 104: 255–285. DOI:
https://doi.org/10.1007/s10584-009-9764-2

11. Calvin, K, Bond-Lamberty, B, Clarke, L, et al.
(2017/1) The SSP4: A world of deepening inequality.
Glob Environ Change, 42: 284–296. DOI: https://doi.
org/10.1016/j.gloenvcha.2016.06.010

12. Kim, S H, Edmonds, J A, Lurz, J, et al. 2006 The
ObjECTS framework for integrated assessment: Hybrid
modeling of transportation. Energy J, 27: 63–91.
DOI: https://doi.org/10.5547/ISSN0195-6574-EJ-
VolSI2006-NoSI2-4

13. Kyle, G P, Luckow, P, Calvin, K V, et al. 2011 GCAM
3.0 Agriculture and Land Use: Data Sources and
Methods. College Park, MD: Pacific Northwest National
Laboratory. DOI: https://doi.org/10.2172/1036082

14. R Development Core Team 2017 R: A language and
environment for statistical computing. Version 3.3.3.

15. Tippmann, S 2014 Programming tools: Adventures
with R. Nature, 517: 109–110. DOI: https://doi.
org/10.1038/517109a

16. Marwick, B, Boettiger, C and Mullen, L 2017
Packaging data analytical work reproducibly using R
(and friends). PeerJ Preprints.

17. Heidorn, P B 2008 Shedding Light on the Dark Data
in the Long Tail of Science. Libr Trends, 57: 280–299.
DOI: https://doi.org/10.1353/lib.0.0036

18. IEA 2012 Energy Balances of non-OECD Countries
2012. International Energy Agency.

19. Buneman, P, Khanna, S and Tan, W-C 2000
Data Provenance: Some Basic Issues. In: FST TCS
2000: Foundations of Software Technology and

https://cran.r-project.org/package=devtools
https://cran.r-project.org/web/packages/roxygen2/vignettes/roxygen2.html
https://cran.r-project.org/web/packages/roxygen2/vignettes/roxygen2.html
https://doi.org/10.1038/490335a
https://doi.org/10.1038/490335a
https://doi.org/10.1371/journal.pbio.1001745
https://doi.org/10.1371/journal.pbio.1001745
https://doi.org/10.1029/2005EO440003
https://doi.org/10.1029/2005EO440003
https://doi.org/10.1038/nature10836
https://doi.org/10.1038/nature10836
https://doi.org/10.1126/science.1213847
https://doi.org/10.1371/journal.pone.0105992
https://doi.org/10.5194/gmd-11-369-2018
https://doi.org/10.5194/gmd-11-369-2018
https://doi.org/10.1175/BAMS-85-3-381
https://doi.org/10.1175/BAMS-85-3-381
https://doi.org/10.1088/1748-9326/7/2/024012
https://doi.org/10.1088/1748-9326/7/2/024012
https://doi.org/10.1007/s10584-009-9764-2
https://doi.org/10.1016/j.gloenvcha.2016.06.010
https://doi.org/10.1016/j.gloenvcha.2016.06.010
https://doi.org/10.5547/ISSN0195-6574-EJ-VolSI2006-NoSI2-4
https://doi.org/10.5547/ISSN0195-6574-EJ-VolSI2006-NoSI2-4
https://doi.org/10.2172/1036082
https://doi.org/10.1038/517109a
https://doi.org/10.1038/517109a
https://doi.org/10.1353/lib.0.0036

Bond-Lamberty et al: gcamdata Art. 6, page 7 of 7

Theoretical Computer Science, 87–93. Berlin,
Heidelberg: Springer. DOI: https://doi.
org/10.1007/3-540-44450-5_6

20. Zhao, J 2003 Data-flow-based unit testing of aspect-
oriented programs. In: Proceedings 27th Annual
International Computer Software and Applications
Conference, 188–197. COMPAC 2003. DOI: https://doi.
org/10.1109/CMPSAC.2003.1245340

21. Humble, J and Farley, D 2010 Continuous Delivery:
Reliable Software Releases through Build, Test, and
Deployment Automation. Pearson Education.

22. van Vuuren, D P, Edmonds, J, Kainuma, M, et al.
2011 The representative concentration pathways:
An overview. Clim Change, 109: 5. DOI: https://doi.
org/10.1007/s10584-011-0148-z

23. Krey, V 2014 Global energy-climate scenarios and
models: A review. WIREs Energy Environ, 3: 363–383.
DOI: https://doi.org/10.1002/wene.98

24. Wang, D, Xu, Y, Thornton, P, et al. 2014 A functional
test platform for the Community Land Model.
Environmental Modelling & Software, 55: 25–31. DOI:
https://doi.org/10.1016/j.envsoft.2014.01.015

How to cite this article: Bond-Lamberty, B, Dorheim, K, Cui, R, Horowitz, R, Snyder, A, Calvin, K, Feng, L, Hoesly, R, Horing, J,
Kyle, G P, Link, R, Patel, P, Roney, C, Staniszewski, A, Turner, S, Chen, M, Feijoo, F, Hartin, C, Hejazi, M, Iyer, G, Kim, S, Liu, Y, Lynch,
C, McJeon, H, Smith, S, Waldhoff, S, Wise, M and Clarke, L 2019 gcamdata: An R Package for Preparation, Synthesis, and Tracking
of Input Data for the GCAM Integrated Human-Earth Systems Model. Journal of Open Research Software, 7: 6. DOI: https://doi.
org/10.5334/jors.232

Submitted: 02 June 2018 Accepted: 18 February 2019 Published: 14 March 2019

Copyright: © 2019 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

OPEN ACCESSJournal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press.

https://doi.org/10.1007/3-540-44450-5_6
https://doi.org/10.1007/3-540-44450-5_6
https://doi.org/10.1109/CMPSAC.2003.1245340
https://doi.org/10.1109/CMPSAC.2003.1245340
https://doi.org/10.1007/s10584-011-0148-z
https://doi.org/10.1007/s10584-011-0148-z
https://doi.org/10.1002/wene.98
https://doi.org/10.1016/j.envsoft.2014.01.015
https://doi.org/10.5334/jors.232
https://doi.org/10.5334/jors.232
http://creativecommons.org/licenses/by/4.0/

	(1) Overview
	Introduction
	Implementation and architecture
	Quality control

	(2) Availability
	Operating system
	Programming language
	Additional system requirements
	Dependencies
	List of contributors
	Software location
	Archive
	Code repository

	Language

	(3) Reuse potential
	Notes
	Acknowledgements
	Competing Interests
	References
	Figure 1
	Figure 2
	Table 1

