
Abouali, A and Viegas, D X 2019 Fire ROS Calculator: A Tool
to Measure the Rate of Spread of a Propagating Wildfire in
a Laboratory Setting. Journal of Open Research Software,
7: 24. DOI: https://doi.org/10.5334/jors.221

Journal of
open research software

SOFTWARE METAPAPER

Fire ROS Calculator: A Tool to Measure the Rate of
Spread of a Propagating Wildfire in a Laboratory Setting
Abdelrahman Abouali and Domingos Xavier Viegas
ADAI/CEIF (Association for the development of Industrial Aerodynamics/Centre of Studies About Forest Fires),
University of Coimbra, PT

Corresponding author: Abdelrahman Abouali (awabuali@hotmail.com)

The Fire ROS Calculator is a software tool built using MATLAB to assist researchers from the wildfire
research area in analysing wildland fire behaviours. In particular, it measures the rate of spread (ROS) of
a fire propagating over a surface in a laboratory setting and constructs its propagation contour map. An
algorithm is used to calibrate the camera used for filming the fire spread. Various algorithms and image
processing procedures are applied to the images to obtain the ROS. The software has a graphical user
interface (GUI) and documentation stored in a GitHub repository alongside the source code.

Keywords: Rate of spread; Wildfire; Forest Fires; Fire Behaviour; camera calibration; Image Processing
Funding statement: The software resulted from the funding of the Portuguese Science Foundation for the project
“FIREWHIRL – Vorticity Effects in Forest Fires” (PTDC/EMS-ENE/2530/2014).

(1) Overview
Introduction
The rate of spread (ROS) of a fire is one of the main
parameters that describe wildland fire behavior, and it is
commonly used in research and operational. We developed
the Fire ROS Calculator software to assist researchers in
measuring the fire’s ROS on a laboratory scale with sufficient
accuracy. On this scale, it is important to realise the small
changes and transitions on the fire behavior as it might
have significant consequences on field scales. The need
for this software arises as there is no published software or
program that the authors are aware of which is dedicated
for this purpose. Most of the researchers from this area
are using locally developed macros or programs to analyse
their experiments. Also, often more than one software tool
is used to obtain final outputs such as the fire’s propagation
contour map, which makes the analysis process slow and
may produce low accuracy results. Fire ROS Calculator
solves these problems by providing several automated tools
to obtain accurate and customised outputs.

There are two main programs in the Fire ROS Calculator.
The first is the calibration program; it performs a camera
calibration process using functions from MATLAB’s Compu-
ter Vision Toolbox. The calibration algorithm implements
the camera model proposed by Jean-Yves Bouguet [1].
The model includes the Pinhole camera model [2] and a
lens distortion model [3]. The algorithm uses a calibration
object as a reference, which is a checkerboard, to calculate

the camera extrinsic and intrinsic parameters (calibration
matrix) [1]. There are detailed instructions about the
calibration process on the software’s documentation, which
are saved in the GitHub repository.

The second main program does the detection of the
fire front’s location on a sequence of images captured
from the same location. Then it converts the detected
locations (pixel coordinates) to real-world coordinates
using the produced calibration matrix. This process can
obtain the distances that the fire has travelled over the
course of time and thus the fire’s ROS. The location of
the fire front on the images can be detected manually by
the user or automatically by a program. The automatic
detection program uses an image-processing algorithm
that is built using functions from MATLAB’s Image
Processing Toolbox. Finally, the software has several tools
that allow the user to perform the whole analysis process
starting from a video or images of the fire and ending
with several commonly-used outputs like dynamical or
averaged fire’s ROS and the propagation contour map.
The automatic detection can also detect several fires and
track the evolution of their fronts with the advance in
time.

Implementation and architecture
The software tool is built from several programs, where
we will discuss the architecture of some of them. First, we
are presenting the software’s GUI. The GUI is constructed

https://doi.org/10.5334/jors.221
mailto:awabuali@hotmail.com

Abouali and Viegas: Fire ROS CalculatorArt. 24, page 2 of 8

from five tabs (Figure 1); each tab has a specific objective.
The five tabs are.

New Session
The user can run from this tab a program that determines
the locations of the fire front from inputted images
and transforms them into polylines with real-world
two-dimensional coordinates (X–Y). The fire front lines
(polylines) from the different time steps are constructing
together a propagation contour map where the real
displacement of the fire with the time is defined. After
the program finish, the user can obtain the outputs (like
measuring the ROS along a direction defined by the user).

Load Session
From this tab, the user may load an old saved session (i.e., a
file that contains information about the fire front locations
and other parameters) to obtain different outputs.

Match Images
This tab contains a program that can resize images to
match another input image. The tool is needed when two
different cameras are used in the calibration process. The
software’s manual has an explanation of when it could be
required to use two cameras for calibration.

Extract Frames
This tab has a tool that enables the user to extract frames
from a video with a defined time-lapse between them.

Camera Calibration
The tab contains a calibration tool, which obtains the
Pinhole camera parameters [2] and saves them in a file
to be used later in analysing any fire in which the same
camera was used to film it.

We will present the architecture of two programs; first is
the program that detects the locations of the fire fronts on
the images and transforms them to real-world dimensions,
the other is the program that calculates the fire’s ROS.
To keep the article focused, we do not present here the
architecture of the rest of the programs, as these two are the
most important ones in the software. Regarding the program
that performs the camera calibration, we are not presenting
it as well since it has a flow similar to the one presented on
the MATLAB tutorial for single camera calibration [5]. We
show the two programs, the fire front detector and the ROS
calculator, in the form of flowcharts in Figures 2 and 3 with
briefings about them on the following.

The fire front Detector
The program runs only after the user fulfilled all the inputs
on the “New Session” tab (Figure 1) which are presented
below:

•	 The Camera Parameters file, the file can be generated
for a camera using the Camera Calibration Tool on the
Camera Calibration tab.

•	 The fire images (frames), which show the fire’s propa-
gation.

Figure 1: An image showing the graphical user interface of the Fire ROS Calculator where the activated tab is the “New
Session” tab.

Abouali and Viegas: Fire ROS Calculator Art. 24, page 3 of 8

Figure 2: The flow chart of the program that detects the fire front pixel- coordinates on the images and convert them
to real-world coordinates.

Abouali and Viegas: Fire ROS CalculatorArt. 24, page 4 of 8

Figure 3: The flow chart of the program that calculates the ROS of the fire.

Abouali and Viegas: Fire ROS Calculator Art. 24, page 5 of 8

•	 The Surface Ref. Image. An image captured for the
calibration object placed over the fire’s propagation
surface. The image is used to determine the camera
position relative to the surface. There is a detailed expla-
nation of this image on the software’s documentation.

•	 The size of the checkerboard square, which is a prop-
erty of the calibration object.

•	 The time-lapse between the frames.
•	 Fuel bed shape, which is the ROI (region of interest)

for the image processing algorithms. The user can
determine it as a regular shape (rectangular or trian-
gle) or draw the shape manually.

•	 The results directory location and selecting wither
the user wants to save or not the fire images with the
obtained fire front lines drawn over them.

•	 The detection sensitivity in a case the user will use the
automatic detection mode and the number of fires
that the program should consider.

The program runs after the user clicks over one of the
detection modes, “Detect Fire Front Manually” or “Detect
Fire Front Automatically” (Figure 1). The program starts with
reading the inputs and then will do a calibration process to
determine the relative position of the camera. In the case of
the automatic detection mode, the algorithm is designed to
analyse IR images where it performs a set of image processing
processes for each frame. The algorithm can work with other
types of images, but accuracy is not guaranteed.

The process starts by converting the image to grayscale
then to a binary image where it assigns a value of one

(white) to the pixels that correspond to the burned area
on the image, and zero (black) to the remaining the rest of
the pixels. The program determines the pixels as burned
or not based on its brightness and considers the historical
locations of the fire front (i.e. on the previous frames)
in an additive process, this leads to adding the detected
bright pixels on a frame to the previously detected pixels
on the previous frames to define the burned area. The
selected detection sensitivity controls the refinement
of this detection or the degree of the pixel’s brightness
that should be included within the burned area. Then
the algorithm processes the binary image to ensure that
the detected burned areas are forming a fully closed and
connected area. Finally, on the last process, it obtains the
coordinates of the fire front line (i.e. the perimeter of the
detected burned area) (Figure 4), which is formed by a
polyline.

After obtaining the fire fronts’ pixel coordinates, the
program converts them to real-world coordinates. After
finishing, the program saves a file that contains calibration
information and the detected fire front location along
with other data. This file can be loaded to the software
later in another session to get any output from the “Load
Session” tab.

The ROS Calculator
The software provides two options to calculate a ROS;
one is to calculate the Averaged ROS along a predefined
direction by the user, and the other is to calculate a
Dynamic ROS. The Averaged ROS describes the fire’s spread

Figure 4: Image showing the window where the user can evaluate the automatic detection of the fire front. On the
image, the green line is the detected fire front on an IR image and the blue line is the detection of the surface of the
fire propagation (the fuel bed).

Abouali and Viegas: Fire ROS CalculatorArt. 24, page 6 of 8

rate in a given direction averaged over time. The Dynamic
ROS describes the fire’s spread rate dynamically with the
time, which means the ROS that the fire has travelled with
between every two frames along the defined direction
by the user. Both programs to calculate averaged and
dynamic ROS have similar architecture. The Averaged ROS
program has a feature that allows calculating the ROS over
several lines (directions) and then calculate the average of
all these lines. This feature can be used to better describe
the ROS of the fire in some direction.

Two inputs are needed to run the program; first is the
direction where the ROS will be calculated, which is input
as a line that the user draws over the fire’s propagation
contour map (Figure 5). The second input is the frame
limits, which are the considered frames to calculate the
ROS between them. Defining the limits gives the user the
flexibility to calculate the ROS within some exact time
steps.

To measure the ROS, the program does the following
operations:

•	 Starts by reading the inputs, which are the frame lim-
its (first and last frame) and coordinates of the direc-
tion-line (the one drawn by the user).

•	 Then obtains the equation of the direction-line.
•	 An algorithm scans the fire front polyline on each

frame to find an intersection with the direction line(s).
•	 After defining the intersections between the

 direction-line and the fire front on each frame, the
program calculates the distances between the inter-
sections along the direction-line.

•	 If the program did not find an intersection between
the direction-line and the fire front’s polyline on a
frame, the program displays an error with the order of
the frame that the algorithm could not find an inter-
action with it. This error usually happens if the user
did not place the line properly to intersect will all the
frames within the determined frames’ range.

•	 After calculating the distances, the program calcu-
lates the ROS using the given time intervals between
the frames.

We define the average rate of spread (ROS) of a fire along
a prescribed direction as the slope of a linear fit between
the two data sets, the distances and their associated times,
following Viegas (2004) [4]. However, this simplification
to calculate the average ROS is only acceptable if there are
no consistent variations of the rate of spread (ROS) and it
implies that the fire is spreading in a quasi-steady-state,
which may not be valid in all cases [4].

Finally, the program writes the results to an Excel sheet
and saves an image showing the location of the direction
lines where ROS was calculated.

Quality control
We tested the program and validated its results by
performing three experiments in the Forest Fire Research
Laboratory of the University of Coimbra in Lousã (Portugal).
The output value of the Averaged ROS of a propagating
fire was compared to a reference measurement of the ROS
taken for the same experiment; then we calculated the
errors. Validating this output quantity, the average ROS, can

Figure 5: Image showing the window of the program that calculates the average ROS.

Abouali and Viegas: Fire ROS Calculator Art. 24, page 7 of 8

be considered a validation for the software as a whole as it
uses all the major programs to calculate the average ROS.
The experiments were performed in a no-wind condition
over a square flat combustion-table with an area of 1 m2.
The table was prepared with a uniform fuel bed composed
of dead pine needles (Pinus Pinaster) with a load of 0.6
kg.m-2 (dry basis) and a depth of 0.05 ± 0.01 m. A surface
fire was originated from a line along one of the table’s
edges, and we recorded the fire with an IR camera. The used
camera has the model FLIR SC660 with a resolution of 640
× 480. During the tests, we take a reference measurement
for the fire’s ROS where the testing table was prepared
with a set of lines (strings) parallel to the ignition line and
spaced by 10 cm from each other. We recorded the time
taken by the fire front to travel from a line to another. The
average ROS was calculated by fitting a linear regression
between the times and their associated distances, then
calculating the slope of the line. This methodology is the
same methodology that the program is using to calculate
the average ROS.

The program output, the average ROS was obtained be
acquiring several frames from the IR film of the fire with a
time-lapse of 30 seconds between them. We calibrated the
camera following the same mentioned procedure in the
Fire ROS Calculator’s Manual. The three tests had different
calibrations and camera positions, which we present in
Table 1; this was considered to ensure the quality of the
validation.

In this combination of tests, we used two different
camera lenses, one with wide-angle zoom and another with
a higher zoom (19 mm and 42 mm). Also, two calibration
objects of various sizes were used. We used the Manual fire
front detection option for all tests except test C, where we
analysed it using both Manual and Automatic detection
options. The average ROS of the fire was calculated using

the “Calculate Average ROS” tool in the software. We report
the results in Table 2 along with the percentage of residual
errors in comparison with the reference measurements.
We conclude from the reported results that the outputs of
the software have a error margin of ±5%.

The inputs of Test C is available on the GitHub repository
in a compressed file (Case C Materials.rar), where the user
may run the case and calculate the output ROS to validate
it with the reported reference measurement. There is a
brief explanation on how to run the case on the Fire ROS
Calculator’s Manual on the Validation and Testing section.

(2) Availability
Operating system
The available compiled version is for Windows; the user
may ask the authors for a compiled version for other OSs.
Also, if the user has MATLAB, they can run the Fire ROS
Calculator directly as a MATLAB function.

Programming language
MATLAB, minimum required MATLAB 2018a.

Additional system requirements
Preferred requirements: Memory of 4 Gb and Disk Free
Space of 2 Gb. The software can run with lower system
resources, but it will be slow.

Dependencies
The MATLAB Runtime R2018a Libraries set is needed to
run the compiled version. The installer will download it
from the internet and install it automatically if needed.

Software location
Archive

Name: Zenodo

Table 1: The performed tests’ camera and calibration parameters.

Test Camera’s altitude
from the table

Used lens Calibration Object

A 8 m 42 mm lens 2 × 1 m with 25 cm square size

B 4 m 19 mm lens 2 × 1 m with 25 cm square size

C 4 m 19 mm lens 0.45 × 0.9 m with 15 cm square size

Table 2: The average fire ROS results obtained from the software and the reference measurement for each test are
reported along with the residual errors.

Test Test A Test B Test C Test C
(Automatic
Detection)

Reference ROS (mm/s) 3.15 3.61 3.64 3.64

Quantity ROS
(mm/s)

Error
(%)

ROS
(mm/s)

Error
(%)

ROS
(mm/s)

Error
(%)

ROS
(mm/s)

Error
(%)

Line 1 3.2 2.9 3.5 2.2 3.6 0.5 3.6 1.9

Line 2 3.3 4.4 3.6 0.3 3.5 4.4 3.5 4.9

Line 3 3.2 2.9 3.8 4.4 3.5 4.7 3.6 1.7

Average 3.3 3.4 3.6 0.6 3.5 3.2 3.5 2.8

https://github.com/AAbouali/Fire_ROS_Calculator/raw/master/Case%20C%20Materials.rar

Abouali and Viegas: Fire ROS CalculatorArt. 24, page 8 of 8

Persistent identifier: DOI: 10.5281/zenodo.3252519
Licence: GNU General Public License V3
Publisher: Abdelrahman Abouali
Version published: 2.6
Date published: 22/06/2019

Code repository
Name: GitHub
Identifier: github.com/AAbouali/Fire_ROS_Calculator
Licence: GNU General Public License V3
Date published: 14/03/2017

Language
English

(3) Reuse potential
The software is mainly dedicated to researchers from the
wildfire area, particularly, the researcher in which their
work involves experimental laboratory testing for fire
behaviors and propagation. The primary objective of the
software is to measure the fire’s ROS and construct its
propagation contour map. However, it can be used for other
objectives whenever the user aims to know the real-world
dimensions of an object from an image or track that object
movement over a surface and calculate its velocity using
the Manual detection. However, with some modification
to the image processing algorithm, the detection of the
object in each time step (frame) can be made automatically
as well. This general objective can extend the potential of
use to other applications that require converting image
pixel coordinates to real-world coordinates.

The authors are planning to extend the use of
this software to include also measuring the ROS of a
fire propagating in an outdoor setting, and they are
welcoming any contributions to this software especially

if it will include more analysis capabilities for the
wildland fire researchers.

For support, please contact the authors via the
email address given on the ORCID page: (orcid.org/
0000-0002-1839-5149).

Acknowledgements
The Authors would like to acknowledge the contributions
of ADAI’s team, namely Jorge Rafael Raposo and Nuno
Luís for their contribution to verify the results of the
software.

Competing Interests
The authors have no competing interests to declare.

References
1. Bouguet, J Y “Camera Calibration Toolbox for Matlab.”

Computational Vision at the California Institute of
Technology.

2. Zhang, Z 2000 A Flexible New Technique for Camera
Calibration. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 22(11): 1330–1334. DOI: https://
doi.org/10.1109/34.888718

3. Heikkila, J and Silven, O 1997 A Four-step Camera
Calibration Procedure with Implicit Image Correction.
IEEE International Conference on Computer Vision and
Pattern Recognition.

4. Viegas, D X 2004 Slope and Wind Effects on Fire
Propagation. International Journal of Wildland
Fire, 13(2): 143–56. DOI: https://doi.org/10.1071/
WF03046

5. MATLAB Documentations: Computer Vision System
Toolbox, Single Camera Calibration. https://www.
mathworks .com/help/vis ion/single -camera-
calibration.html.

How to cite this article: Abouali, A and Viegas, D X 2019 Fire ROS Calculator: A Tool to Measure the Rate of Spread of a
Propagating Wildfire in a Laboratory Setting. Journal of Open Research Software, 7: 24. DOI: https://doi.org/10.5334/jors.221

Submitted: 09 February 2018 Accepted: 18 July 2019 Published: 29 July 2019

Copyright: © 2019 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

OPEN ACCESSJournal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press

https://doi.org/10.5281/zenodo.3252519
https://github.com/AAbouali/Fire_ROS_Calculator
http://orcid.org/0000-0002-1839-5149
http://orcid.org/0000-0002-1839-5149
https://doi.org/10.1109/34.888718
https://doi.org/10.1109/34.888718
https://doi.org/10.1071/WF03046
https://doi.org/10.1071/WF03046
https://www.mathworks.com/help/vision/single-camera-calibration.html
https://www.mathworks.com/help/vision/single-camera-calibration.html
https://www.mathworks.com/help/vision/single-camera-calibration.html
https://doi.org/10.5334/jors.221
http://creativecommons.org/licenses/by/4.0/

	(1) Overview
	Introduction
	Implementation and architecture
	New Session
	Load Session
	Match Images
	Extract Frames
	Camera Calibration
	The fire front Detector
	The ROS Calculator

	Quality control

	(2) Availability
	Operating system
	Programming language
	Additional system requirements
	Dependencies
	Software location
	Archive
	Code repository

	Language

	(3) Reuse potential
	Acknowledgements
	Competing Interests
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Table 1
	Table 2

