
Gaston, D R et al 2014 Continuous Integration for Concurrent Computational
Framework and Application Development. Journal of Open Research Software,
2(1): e10, pp. 1-6, DOI: http://dx.doi.org/10.5334/jors.as

1 Introduction
Continuous integration [1, 2] is a software development
practice that espouses frequent re-integration of changes
into the main development branch. This idea is essential to
the rapid development of scientific software that is closely
tied to an underlying framework [3]. As the framework
and applications progress, changes to both need to be
constantly tested to ensure compatibility and correctness.
Longer periods between integration are detrimental to the
development process, and incompatibilities with complex
interdependencies are more likely to arise the longer these
periods become [4]. The MOOSE [5] project utilizes direct
continuous integration between the framework and all
applications, and this practice has precipitated the rapid
development of high quality scientific software.

More than thirty different MOOSE-based applications
are currently under development at various national labo-
ratories and universities, and each of these projects are
following the continuous integration approach and soft-
ware development methodologies discussed here. This
process, and the streamlined object-oriented interface of
MOOSE itself, have contributed to the ease with which
MOOSE-based applications can be developed. Example
applications include: BISON [6] (nuclear fuel modeling),
MARMOT [7] (microstructural evolution of nuclear fuel),
RAT [8] (chemical reactive transport in porous media),
MAMBA [9] (microstructural effects of deposition on

nuclear fuel rods), and HYRAX [10] (ZrH precipitation in
nuclear fuel cladding).

2 Shared Repository
A source code control repository is essential to the suc-
cess of any collaborative software development effort.
Although there are many source code control packages
available, only a few are appropriate for the “shared” (by
framework and application developers) style of reposi-
tory used by the MOOSE project. Subversion [subversion]
provides a compelling platform for source code control in
this scenario: it is stable, robust, and provides a simplified
workflow suitable for use by non-experts.

While Subversion is utilized for the repository hous-
ing both MOOSE and MOOSE-based applications, “power
users” working with MOOSE need access to some of the
more modern features of distributed version control sys-
tems. Because of the excellent Subversion integration pro-
vided by “git,” a fundamentally different revision control
software package1, these power users can maintain a “git
svn clone” of the MOOSE repository. This allows them to
take full advantage of git’s ability to make local commits
and rapidly switch between different branches of devel-
opment as the task at hand requires. The “branch switch-
ing” feature of git is absolutely essential to developers in
a “software integrator” role, who are responsible not only
for their own development, but also for merging the work
of others into the repository. Finally, although not specifi-
cally applicable to working with SVN clones, familiarity
with git is a prerequisite for working effectively in the bur-
geoning Github software ecosystem, which (as we discuss
in Section 6) is the future development direction of the
MOOSE project.

* Fuels Modeling and Simulation Department, Idaho National
Laboratory, Idaho Falls, ID, United States
derek.gaston@inl.gov

Corresponding author: Derek R. Gaston

ISSUES IN RESEARCH SOFTWARE

Continuous Integration for Concurrent Computational
Framework and Application Development
Derek R. Gaston*, John W. Peterson*, Cody J. Permann*, David Andrs*, Andrew E.
Slaughter* and Jason M. Miller*

Keywords: continuous integration; MOOSE; open source software; scientific software

Development of scientific software relies on specialized knowledge from a broad range of diverse disci-
plines including computer science, mathematics, engineering, and the natural sciences. Since it is rare for
a given practitioner to simultaneously be an expert in each of the aforementioned fields, teamwork and
collaboration are now the norm for scientific software development. This short paper discusses specific
software development conventions that have led to the success of the MOOSE multiphysics framework at
Idaho National Laboratory (INL), and ongoing plans to bring MOOSE to a wider community of developers
as an open source project on GitHub.

Journal of
open research software

http://dx.doi.org/10.5334/jors.as
mailto:derek.gaston@inl.gov

Gaston et al: Continuous Integration for Concurrent Computational Framework and Application DevelopmentArt. e10, page 2 of 6

A distinctive aspect of the shared MOOSE software
development strategy, one that particularly differenti-
ates it from similar projects, is the manner in which both
applications and the framework coexist within the same
source code control repository. This adds the ability to
commit “across” both the framework and applications
simultaneously, and aids in rapid development. Although
this configuration arose organically from the early days of
the project (when nearly all users were centrally located
at INL) it has persisted even now that development has
become more geographically dispersed.

A major benefit of this arrangement is the flexibility
it provides developers in the context of making applica-
tion programming interface (API)-altering changes. Most
other scientific software frameworks go to great lengths
to preserve (or gracefully deprecate) APIs because they
cannot possibly know the extent to which other devel-
opers depend on those APIs. Frequently changing APIs
can lead to fragmentation of the user base, and the loss
of users to competitor projects. API preservation of this
sort inevitably leads to more complicated codebases
with more branch statements and compile-time direc-
tives, and exacerbates the problem of backwards com-
patibility support.

In the MOOSE ecosystem, making API changes imposes
an up-front cost on the primary developer: it is his or her
responsibility to make certain all the affected applica-
tions are simultaneously updated to use the new API, and
hence pass all the tests, before committing the change.
The upside of this approach is that the development team
is no longer faced with the backwards compatibility sup-
port issue, which can persist for long periods of time, even
up to the lifetime of the project. Obviously, the single
repository approach has some logistical difficulties (user
accounts, permissions), issues “scaling” to large numbers
of dependent applications, and is inconvenient when new
applications require large numbers of specialized support
libraries. Nevertheless, it has served the MOOSE develop-
ment team effectively for several years. In Section 6, we
briefly detail some of the ways this model will adapt as the
MOOSE project goes open source.

Another interesting aspect of the MOOSE project’s
shared source code control approach is the simultaneous
existence of “development” and “stable” areas within the
same repository. Note that “areas” here means separate
directories within the same repository and not, for exam-
ple, separate development branches within a single revi-
sion control system. In practice, anyone who clones the
MOOSE repository gets two copies of MOOSE and, at their
discretion, can build applications against either the stable
or development version.

Building applications against the stable version of
MOOSE allows a user to be more insulated from hourly
changes that have not yet passed the full regression test
suite (see Section 4) on all supported compiler/architec-
ture combinations. On the other hand, building applica-
tions against the development version of MOOSE means
always using the most recently committed MOOSE revi-
sion, which may be temporarily (typically only a few min-
utes to an hour) slightly ahead of the stable version.

Since there is usually a minimal delay between the time
when the development version is updated and the time
when it merges into the stable version, there is typically
not a great deal of practical difference in simply using one
version or the other. The most important difference is that
no human developers are allowed to directly commit any-
thing in the stable area—only a special user, controlled by
the continuous integration system, is allowed to commit
there, and this only occurs after the tests have successfully
passed. The complete development cycle is depicted in
Fig. 1. The dual devel/stable areas in the repository also
have another important, partially psychological, effect:
the low barrier to entry required to begin “hacking” on
MOOSE (just change directories, no need to download
something new or “check out” a different branch) can
encourage new developers to take partial ownership in
the joint framework development process.

3 Cascading Build System
MOOSE’s build system is based on a sophisticated and
hierarchical set of GNU Makefiles. Executing the “make”
command from any point in the repository (e.g., within
an application) will automatically cause all of its required
components to be compiled and linked. Additionally,
nested dependencies are automatically resolved for appli-
cations that depend on each other. For example, as shown
in Fig. 2, the Mammoth application relies on four sub-
applications (which have their own, additional dependen-
cies) and everything depends on MOOSE. The Mammoth
application need only prescribe the top-level of depend-
encies; all subsequent applications are compiled and
linked automatically.

Reverse building (building all applications which depend
on a particular application or library) is also supported.
Executing the command “make up” on any application
or library will build the application itself and all applica-
tions that depend upon it. Referring to Fig. 2, executing
the “make up” command in the FOX application will build
FOX as well as BISON and Mammoth. This ability is further
expanded to include running the tests for each applica-
tion: the command “make testup” builds the applications
and executes each application’s test suites (see Section 4).

The cascading build system has a significant effect
on the way MOOSE-based applications are developed.
Simplifying the manner in which the applications and
libraries depend on one another removes psychological
barriers associated with reusing the work of others. This
capability, together with MOOSE’s highly object-oriented
and extensible architecture, leads to an extensive amount
of code reuse among the applications, significantly
decreasing the amount of time necessary to implement
new physics models and obtain simulation results.

4 Automated Testing
With hundreds of developers working on dozens of appli-
cations, and a dedicated team modifying the framework
daily, the software in the repository is in a constant state of
flux. A comprehensive testing system prevents the frame-
work and applications from getting out of sync due to bugs
and software incompatibilities. The testing system or “test

Gaston et al: Continuous Integration for Concurrent Computational Framework and Application Development Art. e10, page 3 of 6

harness” is a custom Python application that provides an
object-oriented, plugin-based architecture, similar to that
of MOOSE itself, for designing test types. Individual tests
are defined using an input file syntax, similar to MOOSE-
based applications, that specifies what the test should
do, the inputs, and the postconditions for determining
test success or failure. Each application or library within
the MOOSE system defines its own set of tests, ensuring
reproducibility of trusted results even as potentially large
amounts of code are changed in the repository. The test

suite of each MOOSE-based application is run automati-
cally each time a commit is made to the framework or to
another application upon which it depends.

Three main categories of tests are supported: regres-
sion tests, “expected error” tests and unit tests. Regression
tests are, by far, the most common form of test used in the
MOOSE project. A regression test specifies both a simula-
tion to perform, and a verified correct (“gold”) solution to
compare against. The gold solution might be a field vari-
able or a post-processed quantity such as the total heat

Figure 1: Flowchart depicting the MOOSE project’s automatic build and testing system. After a developer commits a
change, MOOSE and all the applications are built and tested. If any test fails, the system exits and reports failure. Oth-
erwise, once all tests have succeeded, “stable” MOOSE is automatically updated, making it available to users.

Figure 2: Flowchart of automated dependency build system for MOOSE and applications.

Gaston et al: Continuous Integration for Concurrent Computational Framework and Application DevelopmentArt. e10, page 4 of 6

flux through a boundary. All future executions of the test
will compare their output with the gold solution, and
deviations (to within some test-defined tolerance) will be
reported as failures. Regression tests, while not a silver
bullet, are essential for ensuring reproducibility of results
while the framework and applications are under constant
development.

Many errors can arise in scientific simulations: input
parameters can be out of bounds, material models may
be evaluated outside their region of validity, solvers can
fail to converge, the system can run out of memory, there
may be erratic filesystem behavior, etc. Because of this,
scientific applications are riddled with error checking rou-
tines. Typically, these error conditions go untested (the
code runs successfully) and therefore the error checks
themselves are prone to failure, i.e. they may no longer
faithfully report the error they were meant to. Within
the MOOSE testing system, this is handled with so-called
“expect error” tests. Simulations designed to produce spe-
cific errors are executed, and the testing system verifies
that the correct error message is reported. If the code exits
successfully or terminates for any reason other than the
“expected” reason, it is considered to have failed.

Unit tests focus on a single C++ class, and verify that spe-
cific aspects of the API for said class perform their functions
properly. MOOSE unit tests are implemented within the
CPPUnit2 testing framework, which automates much of the
process of setting up, testing, and “tearing down” the class
being unit tested. Comprehensive unit testing in finite ele-
ment software is difficult to achieve due to the many inter-
related pieces of data that comprise each calculation. Due
to this limitation, only sufficiently simple classes which
can be effectively separated from most of their external
dependencies are currently unit tested within MOOSE.

The test harness contains several other features that
further encourage test-driven development. During devel-
opment, it is possible to quickly run specific subsets of
tests which match a regular expression provided by the
user. Larger tests can even be launched and monitored on
a PBS-managed cluster; the results are automatically gath-
ered and summarized by the testing system. The testing
system can also be invoked in parallel (by specifying num-
ber of MPI processes or threads), with specific command
line options, or through external memory checking tools
such as valgrind [valgrind]. Finally, testing is integrated
with the build system through the “make testup” com-
mand, allowing developers to check the build and tests
for all dependent applications with a single command.

Obviously, testing is only beneficial when the tests
themselves are well-designed, comprehensive, reliable,
and are consistently run when any new code is committed
to the repository. While it is the practice of some software
development projects to disallow all commits which fail
to pass the test suite, this type of policy is often needlessly
obstructionist and detrimental in today’s environment of
rapid development cycles. As mentioned previously, the
MOOSE repository is set up with separate “devel” and “sta-
ble” directories, the latter being updated automatically
when all tests pass in the former (see Fig. 1). The Trac site

(described in Section 5) is integral to allowing developers
to monitor the progress of their commits to the develop-
ment area, diagnose the causes of failed tests, and make
new commits to address the issue. During this process,
application developers can continue to use (and update)
their stable copy of MOOSE without interruption.

5 Documentation and Wiki
To facilitate the collaborative development process, the
MOOSE project utilizes a community driven “wiki” website
powered by Trac3. The primary function of the Trac site is
to catalog almost any type of information relevant to the
framework and applications. Developers are free to edit
or add to parts of the wiki they have permission to access,
these permissions are based on the applications they have
source code control access to. Some examples of informa-
tion that can be found on the wiki are:

•	 Setup and installation instructions.
•	 Descriptions of each MOOSE-based code housed in

the repository.
•	 Information about tools that can be used while devel-

oping MOOSE-based applications (debugging, revi-
sion control, text editors, etc.).

•	 Partial differential equations describing the physics
solved by an application.

•	 Links to automatically generated documentation and
code coverage statistics.

In addition to these community-developed and curated
sections, the Trac website also provides several other
critical functions for the project. The “ticketing” system is
integral to the MOOSE development process. Each issue
(an issue may be either a defect or task) requiring the
attention of a developer has a “ticket” (created through
the Trac site) associated with it. Every change to MOOSE
is required to reference one or more ticket numbers; the
revision control numbers associated with the changes are
also automatically cross-linked back to the relevant ticket,
thereby providing a “paper trail” of the work performed
on a particular issue.

The Trac website also contains links to documentation
about MOOSE and MOOSE-based applications. This docu-
mentation includes automatically generated Doxygen4 API
documentation, input file syntax, test code coverage, test
timing, code standards adherence, and the MOOSE training
workshop manual. Each of these categories of documenta-
tion is automatically regenerated each time code is com-
mitted to the repository, providing an up-to-date resource
for developers and MOOSE-based application users.

Finally, as previously mentioned, the Trac website is
also where the status of the testing system is reported.
The “Build Status” page displays green (pass), yellow (in-
progress), or red (fail) boxes for each set of tests on each
platform. This provides a graphical representation of the
combined status of the overall project, giving developers
the capability to make an initial diagnosis of failures with
a single glance. Test failures also generate an email mes-
sage with a detailed description of the problem, and send

Gaston et al: Continuous Integration for Concurrent Computational Framework and Application Development Art. e10, page 5 of 6

it to the developer who made the offending commit. A
complete history of every change made to the framework
and applications, along with the corresponding pass/fail
status of each test, is maintained by Trac, and is instru-
mental in quickly tracking down the root cause of an issue.

6 Future Work
The MOOSE developers have long been proponents of open
source software development, and strongly believe that
open-sourcing MOOSE will give the framework its most via-
ble and sustainable future development prospects. Toward
this end, the team has been making steady progress during
the preceding weeks in deploying a GitHub repository5 for
MOOSE. At the time of this writing, the MOOSE repository
is publicly-available and accepting modifications from the
computational science community.

Many of the remarkable development aspects of the
MOOSE project, such as maintaining “devel” and “stable”
areas within the same repository, the regression testing
and cascading build systems, and the continuous inte-
gration system running across multiple architectures are
still present in the GitHub development model, albeit in
slightly updated forms from those discussed in this paper.
Tight version control coupling between the framework and
applications has been relaxed out of necessity, since the
two no longer reside in the same source code repository.

We have adapted our continuous integration model to
better handle the new decentralized nature of applica-
tion development, as well as creating a custom site6 which
interfaces with existing GitHub APIs. Many of the features
of the Trac site, including issue tracking, wikis, and other
forms of community documentation have already been
transferred to native services within GitHub and the new
public MOOSE framework website7. We plan to publish a
more detailed paper describing these and other innova-
tions in the near future.

7 Closing Remarks
The MOOSE project incorporates many modern software
engineering techniques, such as shared source code con-
trol repositories, continuous integration, issue tracking,
and automated/community-driven documentation, that
are considered essential by many in today’s fast-paced
world of scientific software development. A number of
practices unique to the MOOSE project, in particular the
combined stable/development directories and their tight
integration with the testing system, as well as the shared
nature of the source code control repository between
framework and applications, were discussed in detail. The
scientific software community is a vibrant, fast-growing
collection of extremely talented individuals. One of its
greatest strengths has always been in the rapid dissemina-
tion and assimilation of useful information. The authors
hope the MOOSE project will be found in that category.

Author’s note
The submitted manuscript has been authored by a con-
tractor of the U.S. Government under Contract DE-AC07–
05ID14517. Accordingly, the U.S. Government retains a

non-exclusive, royalty-free license to publish or reproduce
the published form of this contribution, or allow others to
do so, for U.S. Government purposes.

Notes
 1 http://git-scm.com
 2 http://sourceforge.net/projects/cppunit
 3 http://trac.edgewall.org
 4 http://www.doxygen.org
 5 https://github.com/idaholab/moose
 6 https://www.moosebuild.com
 7 https://www.mooseframework.com

References
1. Duvall, P M, Matyas, S and Glover, A 2007 Continu-

ous integration: improving software quality and reduc-
ing risk. Addison-Wesley. Available at: http://books.
google.com/books?vid=ISBN9780321336385

2. Deshpande, A and Riehle, D 2008 Continuous inte-
gration in open source software development. In:
Russo, B, Damiani, E, Hissam, S, Lundell, B and Succi,
G (eds.) Open Source Development, Communities and
Quality. The International Federation for Information
Processing (IFIP), vol. 275. New York, NY: Springer. pp.
273–280. DOI: http://dx.doi.org/10.1007/978-0-387-
09684-1_23

3. Bartlett, R A 2009 Integration strategies for com-
putational science & engineering software. In: ICSE
Workshop on Software Engineering for Computational
Science and Engineering (SECSE’09), IEEE on 23 May
2009, pp. 35–42. DOI: http://dx.doi.org/10.1109/
SECSE. 2009.5069160

4. Guimarães, M L and Silva, A R 2012 Improving early
detection of software merge conflicts. In: Proceedings
of the 34th International Conference on Software
Engineering (ICSE’12). Piscataway, N J, USA: IEEE Press.
pp. 342–352. Available at: http://dl.acm.org/citation.
cfm?id=2337223.2337264

5. Gaston, D, Newman, C, Hansen, G and Lebrun-
Grandié, D 2009 MOOSE: A parallel computational
framework for coupled systems of nonlinear equa-
tions. Nuclear Engineering and Design, 239(10):
1768–1778. DOI: http://dx.doi.org/10.1016/j.nucen
gdes.2009.05.021

6. Williamson, R L, Hales, J D, Novascone, M R, Tonks,
S R, Gaston, D R, Permann, C J, Andrs, D and Mar-
tineau, R C 2012 Multidimensional multiphysics
simulation of nuclear fuel behavior. Journal of Nuclear
Materials, 423(1-3): 149–163. DOI: http://dx.doi.
org/10.1016/j.jnucmat.2012.01.012

7. Tonks, M R, Gaston, D, Millett, P C, Andrs, D and
Talbot, P 2012 An object-oriented finite element
framework for multiphysics phase field simulations.
Computational Materials Science, 51(1): 20–29. DOI:
http://dx.doi.org/10.1016/j.commatsci.2011.07.028

8. Guo, L, Huang, H, Gaston, D, Permann, C, Andrs,
D, Redden, G, Lu, C, Fox, D and Fujita, Y 2013 A
parallel fully coupled fully implicit solution to reac-
tive transport in porous media using preconditioned

http://git-scm.com
http://sourceforge.net/projects/cppunit
http://trac.edgewall.org
http://www.doxygen.org
https://github.com/idaholab/moose
https://www.moosebuild.com
https://www.mooseframework.com
http://books.google.com/books?vid=ISBN9780321336385
http://books.google.com/books?vid=ISBN9780321336385
http://dx.doi.org/10.1007/978-0-387-09684-1_23
http://dx.doi.org/10.1007/978-0-387-09684-1_23
http://dx.doi.org/10.1109/SECSE. 2009.5069160
http://dx.doi.org/10.1109/SECSE. 2009.5069160
http://dl.acm.org/citation.cfm?id=2337223.2337264
http://dl.acm.org/citation.cfm?id=2337223.2337264
http://dx.doi.org/10.1016/j.nucengdes.2009.05.021
http://dx.doi.org/10.1016/j.nucengdes.2009.05.021
http://dx.doi.org/10.1016/j.jnucmat.2012.01.012
http://dx.doi.org/10.1016/j.jnucmat.2012.01.012
http://dx.doi.org/10.1016/j.commatsci.2011.07.028

Gaston et al: Continuous Integration for Concurrent Computational Framework and Application DevelopmentArt. e10, page 6 of 6

How to cite this article: Gaston, D R, Peterson, J W, Permann, C J, Andrs, D, Slaughter, A E and Miller, J M 2014 Continuous
Integration for Concurrent Computational Framework and Application Development. Journal of Open Research Software, 2(1): e10,
pp. 1-6, DOI: http://dx.doi.org/10.5334/jors.as

Published: 9 July 2014

Copyright: © 2014 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 3.0 Unported License (CC-BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/3.0/.

 OPEN ACCESS Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press.

Jacobian-Free Newton-Krylov method. Advances in
Water Resources, 53: 101–108. DOI: http://dx.doi.org/
10.1016/j. advwatres.2012.10.010

9. Short, M P, Hussey, D, Kendrick, B K, Besmann, T
M, Stanek, C R and Yip, S 2013 Multiphysics mod-
eling of porous CRUD deposits in nuclear reactors.
Journal of Nuclear Materials, 443(1–3): 579–587. DOI:
http://dx.doi.org/10.1016/j.jnucmat.2013.08.014

10. Jokisaari, A M and Thornton, K 2013 HYRAX: Phase
field modeling of zirconium hydride precipitation and
growth in zirconium. In: 12th US National Congress on

Computational Mechanics (USNCCM12). Raleigh, NC
on 22-25 July 2013.

11. Collins-Sussman, B 2002 The subversion project: build-
ing a better CVS. Linux Journal, 2002(94): 3.

12. Nethercote, N and Seward, J 2007 Valgrind: A
Framework for Heavyweight Dynamic Binary Instru-
mentation. In: Proceedings of ACM SIGPLAN 2007
Conference on Programming Language Design and
Implementation (PLDI 2007), San Diego, California,
USA in June 2007. Available at: http://valgrind.org/
docs/valgrind2007.pdf

http://dx.doi.org/10.5334/jors.as
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1016/j.advwatres.2012.10.010
http://dx.doi.org/10.1016/j.advwatres.2012.10.010
http://dx.doi.org/10.1016/j.jnucmat.2013.08.014
http://valgrind.org/docs/valgrind2007.pdf
http://valgrind.org/docs/valgrind2007.pdf

