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(1) Overview
Introduction
Many biological and social systems are characterized 
by collective behavior: the correlated pattern of neural 
firing [1], protein diversity in the immune system [2], 
conflict participation in monkeys [3], flocking in birds [4], 
statistics of letters in words [5], or consensus voting in the 
US Supreme Court [6, 7]. Statistical physics is a natural 
approach to probing such systems precisely because they 
are collective [8]. Recently, the development of numerical, 
analytic, and computational tools have made it feasible in 
these large collective systems to solve for the maximum 
entropy (maxent) model that reproduces system behavior, 
corresponding to solving an “inverse problem.” This 
approach contrasts with the typical problem in statistical 
physics where one postulates the microscopic model (the 
Hamiltonian) and works out the physical behavior of the 
system. In the inverse problem, we find the parameters 
that correspond to observed behavior of a known system. 
In many cases, this is a very difficult problem to solve and 
does not have an analytical solution, and we must rely 
on analytic approximation and numerical techniques to 
estimate the parameters.

The pairwise maxent model, the Ising model, has 
been of particular interest because of its simplicity and 
generality. A variety of algorithms have been proposed to 
solve the inverse Ising problem, but different approaches 

are disparately available on separate code bases in 
different coding languages, which makes comparison 
difficult and pedagogy more complicated. With ConIII, it 
is possible to solve the inverse Ising problem with a variety 
of algorithms in just a few lines of code.

ConIII is intended to provide a centralized resource for 
the inverse Ising problem and easy extension to other 
maxent problems. Although some of the implemented 
algorithms are specific to the pairwise Ising model, 
maxent models with arbitrary combinations of higher 
order constraints can be solved as well by specifying the 
particular constraints of the maxent model of interest.

In the first few sections of this paper, we give a brief 
overview of maxent and describe at a high level the 
algorithms implemented in this package. For those 
unfamiliar with maxent, we also provide some useful 
references like [9] and the appendix of [6]. For those 
seeking more detail about the implemented algorithms, 
we provide references specific to each algorithm section. 
Then, we describe the architecture of the package and 
how to contribute.

What is maximum entropy?
Shannon introduced the concept of information entropy 
in his seminal paper about communication over a noisy 
channel [9]. Information entropy is the unique measure 
of uncertainty that follows from insisting on elementary 
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principles of consistency. According to Shannon, the 
entropy over the probability distribution p(s) of possible 
discrete configurations S of a system is
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These configurations could be on-off patterns of firing 
in neurons, the arrangement of letters in a word, or the 
orientation of spins in a material.

When there is no structure in the distribution, meaning 
that the probability is uniform, entropy is at a maximum. 
In the context of communication theory as Shannon 
first discussed, this means that there is no structure to 
exploit to make a prediction about the next part of an 
incoming message; thus, maximum entropy means that 
each new part of the message is maximally “surprising.” 
At the other extreme, when the message consists of the 
same bit over and over again, we can always guess at the 
following part of the message and the signal has zero 
entropy. In the context of modeling, we use entropy not 
to refer to the difficulty of the message, but to our state 
of knowledge about it. Entropy precisely measures our 
uncertainty about the configuration in which we expect 
to find the system.

Maximum entropy, or maxent, is the formal framework 
for building models that are consistent with statistics 
from the data but otherwise as structureless as possible 
[10, 11]. We begin by choosing a set of K useful or 
important features from the data fk(s) that should be true 
for the model that we are trying to build. These could be 
whether or not a set of neurons fire together in a temporal 
bin or the pairwise coincidence for primates in a conflict. 
The average of this feature across the data set D with R 
samples is
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According to the model in which each observation s occurs 
with some probability p(s), the same average is calculated 
over all possible states
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We assert that the model should fit the K features while 
maximizing entropy. The standard procedure is to solve 
this by the method of Langrangian multipliers. We 
construct the Langrangian functional L by introducing 
the multipliers λk.
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Then, we solve for the fixed point by taking the derivative 
with respect to λk. The resulting maxent model is a 
Boltzmann distribution over states:

(s)(s) / ,Ep e Z  (5)

with relative negative log-likelihood (also known as the 
energy or Hamiltonian)
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and normalization factor (also known as the partition 
function)
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Entropy is a convex function of p and the constraints are 
linear with respect to p, so the problem is convex and 
the maxent distribution unique. Readers familiar with 
statistical physics will recognize this as an alternative 
derivation of the microcanonical ensemble, demonstrating 
that statistical mechanics can be viewed as an inference 
procedure using the maxent principle [11].

Finding the parameters λk that match the constraints 
⟨fk⟩data is equivalent to minimizing the Kullback-Leibler 
divergence between the model and the data [12]
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In other words, the parameters of the maxent model 
are the ones that minimize the information theoretic 
“distance” to the distribution of the data given the 
constraints. Note that these parameters are given by the 
data: once the constraints have been chosen, there is a 
single maxent solution, with no free parameters.

The Ising model
The Ising model is a statistical physics model of magnetism, 
also known as the pairwise maxent model [13]. It consists 
of a set of spins {si} with 2 possible orientations (up and 
down), each responds to its own external magnetic field 
hi and each pair is coupled to each other with pairwise 
coupling Jij. The strength of the magnetic field determines 
the tendency of each of the spins to orient in a particular 
direction and the couplings determine whether the spins 
tend to point together (Jij > 0) or against each other (Jij < 
0). Typically, neighbors are defined as spins that interact 
with one another given by some underlying network 
structure. Figure 1 shows a fully-connected example.

The energy of each configuration determines its 
probability via Eq (5),
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such that lower energy states are more probable.
We can derive the Ising model from the perspective of 

maxent. Fixing the the means and pairwise correlations to 
those observed in the data

i i data
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we go through the procedure of constructing the 
Langrangian from Eq 4
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where the –1 in Eq 15 has been absorbed into the 
normalization factor
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such that the probability distribution is normalized 
∑sp(s) = 1. Thus, the resulting model is exactly the Ising 
model mentioned earlier.

Despite the simplicity of the Ising model, the structure 
imposed by the discrete nature of the spins means that 
finding the parameters is challenging analytically and 
computationally. In the last few years, numerous techniques 
have been suggested for solving the inverse Ising problem 
exactly or approximately [14]. We have implemented some 
of them in ConIII and designed a package structure to make 
it easily extensible to include more methods. Here, we briefly 
describe the algorithms that are part of the first official 
version of the package. The goal is to give the user a sense of 
how they work without getting bogged down in heavy detail. 
For more detail, we suggest perusing the papers referenced 
in each section or the review [14]. For a complete beginner, it 
may be useful to first get familiar with a slower introduction 
like in the Appendices of Ref [6], Ref [15], or Ref [10].

Inverse Ising methods implemented in ConIII
Enumeration
The naїve approach that only works for small systems 
is to write out the equations from Eq 9 and solve them 
numerically. After writing out all K equations,
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we can use any standard root-finding algorithm to find 
the parameters λk. This approach, however, involves 
enumerating all states of the system, whose number 
grows exponentially with system size.

For the Ising model, writing down the equations has 
a number of steps O(K22N), where K is the number of 
constraints and N the number of spins. Each evaluation 
of the objective in the root-finding algorithm will be 
of the same order. For relatively small systems, around 
N ≤ 15, this approach is feasible on a typical desktop 
computer and is a good way to test the results of a more 
complicated algorithm. This approach is implemented by 
the Enumerate class.

Monte Carlo Histogram (MCH)
Perhaps the most straightforward and most expensive 
computational approach is Monte Carlo Markov Chain 
(MCMC) sampling. A series of states sampled from a 
proposed p(s) is produced by MCMC to approximate 
⟨fk⟩ and determine how close we are to matching ⟨fk⟩data. 
The parameters are then adjusted using a learning rule, 
and both sampling and learning are repeated until a 
stopping criterion is met. This can be combined with 
a variety of approximate gradient descent methods to 
reduce the number of sampling steps by predicting how 
the distribution will change if we modify the parameters 
slightly. The particular technique implemented in ConIII 
is the Monte Carlo Histogram (MCH) method [16].

Since the sampling step is expensive, the idea behind 
MCH is to reuse a sample for more than one gradient 
descent step [16]. Given that we have a sample with 

Figure 1: Example of a fully connected pairwise Ising model with positive and negative couplings. Each spin si (circle) 
can take one of two states (black or white, corresponding to –1 and 1) and is connected to every other spin in the 
system with a positive (red) or negative (blue) coupling. These states could describe the on-off patterns of firing in 
neurons, the orientation of spins in a material, or if each spin is no longer binary the arrangement of letters in a word 
(a Potts model).
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probability distribution p(s) generated with parameters 
λk, we would like to estimate the proposed distribution 
p′(s) from adjusting our parameters λ′k = λk + Δλk. We can 
leverage our current sample to make this extrapolation.

p
p p
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To estimate the average,
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To be explicit about the fact that we only have a sampled 
approximation to p, we replace p with the sample 
distribution.
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Likewise, the ratio of the partition function can be 
estimated
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At each step, we update the Lagrangian multipliers 
{λk} while being careful to stay within the bounds of a 
reasonable extrapolation. One suggestion is to update the 
parameters with some inertia [17]
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This has a fixed point at the correct parameters.
In practice, MCH can be difficult to tune properly and 

one must check in on the progress of the algorithm 
often. One issue is choosing how to set the learning rule 
parameters η and ∈. One suggestion for η is to shrink it 
as the inverse of the number of iterations [17]. Another 
issue is that parameters cannot be changed by too 
much when using the MCH approximation step or the 
extrapolation to λ′k will be inaccurate and the algorithm 
will fail to converge. In ConIII, this can be controlled by 
setting a bound on the maximum possible change in each 
parameter Δλmax and restricting the norm of the vector of 
change in parameters 2

kk
 . Another issue is setting the 

parameters of the MCMC sampling routine. Both the burn 
time (the number of iterations before starting to sample) 
and sampling iterations (number of iterations between 
samples) must be large enough that we are sampling from 
the equilibrium distribution. Typically, these are found by 
measuring how long the energy or individual parameter 
values remain correlated as MCMC progresses. The 
parameters may need to be updated during the course 
of MCH because the sampling parameters may need to 
change with the estimated parameters of the model. For 
some regimes of parameter space, samples are correlated 
over long times and alternative sampling methods like 
Wolff or Swendsen-Wang would vastly reduce time to 
reach the equilibrium distribution although these are 
not included in the current release of ConIII. We do not 

discuss these sampling details here, but see Refs [18, 19] 
for examples.

The main computational cost for MCH lies in the 
sampling step. For each iteration of MCH, the runtime 
is proportional to the number of samples n, number of 
MCMC iterations T, and the number of constraints for 
the Ising model N2, O(TnN2), whereas the MCH estimate 
is relatively quick O(tnN2) because the number of MCH 
approximation steps needed to converge is much smaller 
than the number of MCMC sampling iterations t << T.

MCH is implemented in the MCH class.

Pseudolikelihood
The pseudolikelihood approach is an analytic 
approximation to the likelihood that drastically reduces 
the computational complexity of the problem and is exact 
as N → ∞ [20]. We calculate the conditional probability of 
each spin si given the rest of the system {sj≠i}

  2s si ij ji i
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Taking the logarithm, we define the approximate log-
likelihood by summing over data points indexed by r:

 (r ) (r )
i ij i j i

r=1
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In the limit where the ensemble is well sampled, the 
average over the data can be replaced by an average over 
the ensemble:

   i ij i j i i ij
s

s s( , { }) ln { } s; } . , {f h J p p h J  (28)

To find the point of maximum likelihood for a single 
spin si, we calculate the analytical gradient and Hessian, 
∂f/∂Jij and ∂2f/∂Jij∂Ji′j′ for a Newton conjugate-gradient 
descent method. After maximizing likelihood for all spins, 
the maximum likelihood parameters may not satisfy the 
symmetry Jij = Jji. We impose the symmetry by insisting that

ij ij ji( ) / 2.J J J    (29)

Pseudolikelihood is extremely fast and often surprisingly 
accurate. Each calculation of the gradient is order O(RN2) 
and Hessian O(RN3), which must be done for all N. With 
analytic forms for the gradient and Hessian, the conjugate-
gradient descent method tends to converge quickly.

Pseudolikelihood for the Ising model is implemented in 
Pseudo.

Minimum Probability Flow (MPF)
Minimum probability flow involves analytically 
approximating how the probability distribution changes 
as we modify the configurations [21, 22]. In the methods 
so far mentioned, the approach has been to maximize the 
objective (the likelihood function) by immediately taking 
the derivative with respect to the parameters. With MPF, 
we first posit a set of dynamics that will lead the data 
distribution to equilibrate to that of the model. When these 
distributions are equivalent, then there is no “probability 
flow” between them. This technique is closely related to 
score matching, where we instead have a continuous state 
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space and can directly take the derivative with respect to 
the states without specifying dynamics [23].

First note that Monte Carlo dynamics (satisfying 
ergodicity and detailed balance) would lead to equilibration 
to the stationary distribution. The dynamics are specified by 
a transition matrix, an example of which is given in Ref [22]:

s ss s s s s
s s s s

p p p  
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 sss s ss
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with transition probabilities Γss′ from state s′ to state s. 
The connectivity matrix ɡss′ specifies whether there is edge 
between states s and s′ such that probability can flow 
between them. By choosing a sparse ɡss′ while not breaking 
ergodicity, we can drastically reduce the computational 
cost of computing this matrix.

Imagine that we start with the distribution over the 
states as given by the data and run the Monte Carlo 
dynamics. When data and model distributions are 
different, probability will flow between them and indicate 
that the parameters must be changed. By minimizing a 
derivative of the Kullback-Leibler divergence, we measure 
how the difference between the model and the states in 
the data D changes when the dynamics are run for an 
infinitesimal amount of time.
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The idea is that this derivative is also minimized with 
optimal parameters: the MPF algorithm looks for a 
minimum of the objective function L.

For the Ising model, each evaluation of the objective 
function where Γss′ connects each data state with G 
neighbors has runtime O(RGN2). In a large fully connected 
system, G ∼ 2N would be prohibitively large so a sparse 
choice is necessary.

MPF is implemented in the MPF class.

Regularized mean-field method
One attractively simple and efficient approach uses a 
regularized version of mean-field theory. In the inverse 
Ising problem, mean-field theory is equivalent to treating 
each binary individual as instead having a continuously 
varying state (corresponding to its mean value). The 
inverse problem then turns into simply inverting the 
correlation matrix C [24]:
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and where pi corresponds to the frequency of individual i 
being in the active (+1) state and pij is the frequency of the 
pair i and j being simultanously in the active state.

A simple regularization scheme in this case is to 
discourage large values in the interaction matrix Jij. This 
corresponds to putting more weight on solutions that 
are closer to the case with no interactions (independent 

individuals). A particularly convenient form adds 
the following term, quadratic in Jij, to the negative 
log-likelihood:

2
ij i i j j

i i j

(1 ) (1 ).J p p p p


   (35)

In this case, the regularized version of the mean-field 
solution in (33) can be solved analytically, with the slowest 
computational step coming from the inversion of the 
correlation matrix. For details, see Refs. [3, 25].

The idea is then to vary the regularization strength γ to 
move between the non-interacting case (γ → ∞) and the 
naively calculated mean-field solution (33) (γ → 0). While 
there is no guarantee that varying this one parameter will 
produce solutions that are good enough to “fit within 
error bars,” this approach has been successful in at least 
one case of fitting social interactions [3].

The inversion of the correlation matrix is relatively 
fast, bounded by O(N3). Finding the optimal γ involves 
Monte Carlo sampling from the model distribution, which 
has computational cost similar to MCH. It is, however, 
much more efficient because we are only optimizing a 
single parameter.

This is implemented in RegularizedMeanField.

Cluster expansion
Adaptive cluster expansion [24, 25] iteratively calculates 
terms in the cluster expansion of the entropy S:

0 ,S S S


    (36)

where the sum is over clusters Γ and in the exact 
case includes all 2N – 1 possible nonempty subsets of 
individuals in the system. In the simplest version of the 
expansion, one expands around S0 = 0. In some cases it can 
be more advantageous to expand around the independent 
individual solution or one of the mean-field solutions 
described in the previous section [25].

The inverse Ising problem is solved independently on 
each of the clusters, which can be done exactly when the 
clusters are small. These results are used to construct a 
full interaction matrix Jij. The expansion starts with small 
clusters and expands to use larger clusters, neglecting 
any clusters whose contribution ΔSΓ to the entropy falls 
below a threshold. To find the best solution that does 
not overfit, the threshold is initially set at a large value 
and then lowered, gradually including more clusters in 
the expansion, until samples from the resulting Jij fit the 
desired statistics of the data sufficiently well.

The runtime will depend on the size of clusters included 
in the expansion. If the expansion is truncated at clusters 
of size n, the worst-case runtime would be 2n

N
n

  
     

O . The 
point is that S can often be accurately estimated even 
when n ≪ N. The adaptive cluster expansion method is 
implemented in the ClusterExpansion class.

Implementation and architecture
The package is divided into three principal modules 
containing the algorithms for solving the inverse maxent 
problem (solvers.py), the Monte Carlo Markov Chain 
(MCMC) sampling algorithms (samplers.py), and 
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supporting “utility” functions for the remaining modules 
(utils.py) as shown in Figure 2. Besides the utils.py 
module, the package is organized around classes that 
correspond to different algorithms. This class-based 
structure ensures that the state of the solver or sampler, 
including the data it was fit to and the current guess for 
the parameters, are all contained within the instance of 
the algorithm class. As a result, the current state of work 
can be saved and moved between workstations using the 
Python package dill.

For the solvers, the different algorithms available are 
accessible from the coniii.solvers module as listed 
in Figure 2. These algorithm classes are all derived from 
a base Solver class as shown in Figure 2. The module 
Solver.solve serves as the interface for solving the 
inverse maxent problem. To keep the solution algorithms 
generic enough to solve a variety of different maxent 
problems, they all require that the user define the 
maxent model upon instantiation through the definition 
of keyword arguments like calc_observables. 
The particular methods required to specify the maxent 
problem differ by algorithm, but for the pairwise maxent 
problem we have made it easy by defining those functions 
as part of the package. These helper functions are 
available as part of the utils.py module and their use 
is demonstrated in the Jupyter notebook usage guide.

The MCMC sampling algorithms are likewise based on 
a class architecture derived from Sampler as shown 
in Figure 2. Each instance of Solver automatically 
instantiates this class under Solver.sampler and 
wraps calls to it. For the Ising model, this is an instance 
of Metropolis. Other sampling algorithms listed in the 
samplers.py box in Figure 2 will be released with 
later versions of this package.

Quality Control
For checks of basic functionality, the package is 
released with unit tests that can be run with the Python 
package pytest.

The most direct test of the algorithms is to generate 
a system where the parameters are known, sample 
from the system to generate a data set, and run the 
inverse solution to make sure that the correlations and 
parameters match the known values. With a finite sample, 
exact correspondence to the correct parameters is not 
expected although differences should decrease with 
a larger sample. Furthermore, most of the algorithms 
only return an approximate solution such that the 
fidelity of the found parameters to the original ones 
will depend on the sample size and whether or not the 
approximation is valid. The Jupyter notebook released 
with the software provides examples for using the 
algorithms included in ConIII for a random system of five 
spins. We recommend that the user run this notebook 
to check how well different algorithms converge 
to the solutions depending on the algorithm and  
sample size.

More importantly, the user can check if the algorithms 
match the expected correlations closely or not. How one 
checks the validity of a particular maxent model for data 
is beyond the scope of this paper, but we point the reader 
to the appendix of Ref [6] where the methodology is 
explained in detail for a broad audience.

If there are any issues or bugs in the software, we 
organize improvements and patches through the GitHub 
repository where both issues can be filed and pull requests 
made.

(2) Availability
Operating system
Linux, MacOS, Windows

Programming language
Python 3.6, 3.7

Dependencies
Python packages multiprocess ≥ v0.70.5 and <v1, numpy, 
scipy, joblib, matplotlib, numba ≥ v0.39.0, dill.

Figure 2: Brief summary of ConIII architecture. The principal modules are solvers.py, samplers.py, and 
utils.py. The module solvers.py contains classes based on Solver that each implement a different 
algorithm for solving the relevant inverse maxent problem accessible through the method Solver.solve(). 
The samplers.py module contains the Metropolis algorithm for Monte Carlo Markov Chain sampling and will 
support other samplers in future versions (gray font) including Wolff sampling, Swendsen-Wang sampling, and 
parallel tempering. The utils.py module contains supporting functions for the other modules such as the few 
examples listed. ConIII’s modularized structure ensures that contributed algorithms can be appended independently 
of existing code.
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Software location
Name: PyPI
�Persistent�identifier: https://pypi.org/project/coniii/
Licence: MIT License
Publisher: Edward D. Lee
Version published: v1.1.4
Date published: 1/6/2019

Code repository
Name: GitHub
�Persistent�identifier: https://github.com/eltrompetero/
coniii
Licence: MIT License
Version published: v1.1.4

Name: Zenodo
�Persistent�identifier: https://doi.org/10.5281/
zenodo.2236632
Licence: MIT License
Version published: v1.1.1

Language
English

(3) Reuse potential
To contribute either an algorithm for the inverse maxent 
problem or a sampling technique, we suggest following 
the template for the classes described in the base Solver 
and Sampler classes. New algorithms should be filed 
as a pull request to the GitHub repository along with an 
example solution that can be included in the usage guide 
Jupyter notebook and unit tests.

Documentation for the package is included as part of 
the GitHub repository and also hosted online at https://
eddielee.co/coniii/index.html.
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