
Tauscher, H 2018 Billie. A Prototypical Framework for Building
Information Model Visualization. Journal of Open Research
Software, 6: 18. DOI: https://doi.org/10.5334/jors.206

Journal of
open research software

SOFTWARE METAPAPER

Billie. A Prototypical Framework for Building Information
Model Visualization
Helga Tauscher
National University of Singapore, SG
mail@helgatauscher.de

Current software applications for Building Information Modelling provide only limited possibilities to
create customized visual representations of designed buildings and planned constructions. With reusable
and exchangeable visualization configurations, customized domain- and task-specific visual representations
could be generated for given building information. This concept is demonstrated with a prototypical
implementation: Billie is a proof-of-concept framework written in Java that accepts building information
together with a visualization specification and produces scene graphs for the customized visualization of
the given building information.

To achieve configurability, Billie provides abstract classes as extension points to implement new BIM
input data accessors, new configurations for generating the visualizations, and new scene graph types as
visualization targets. With a domain specific language, the configurations become independent of their
runtime environment and can be passed between different software applications. The software can be
reused for research on new visualization methods in architecture, engineering, and construction or as a
supporting visualization tool for research on other topics in the area.

Keywords: Configurable visualization; visualization framework; building information model
Funding statement: The development of the software was partially (during the early stages) supported
financially in the course of the projects mefisto (grant no. 01LA09001) and eworkBau (grant no. 01PF07045A)
by the German Federal Ministry of Education and Research, which is gratefully acknowledged.

(1) Overview
1.1 Introduction
In the architecture, engineering and construction (AEC)
field, it has always been necessary to exchange information
between the involved parties throughout the whole
cycle of design, planning, construction, and operation
of construction works such as buildings. To this end,
drawings, tables, diagrams, and text documents describing
the physical artefact to be constructed were produced
and circulated among project stakeholders. In the digital
era, with the rapid evolution of information technology,
digital tools are naturally adapted and applied in AEC.
In order to be processed by digital tools the required
information needs to exist in digital form, and is thus
supposed to be captured, exchanged and stored digitally.
Models, standards, and software to achieve this goal were
progressively developed during the previous years and are
successively adapted in the practices of the AEC industry
under the umbrella term Building Information Modelling
(BIM) and mediated through open standards [1].

In the context of this paper, building information
models are understood as “digital representation of the
future building, its properties and its production process

in a semantically explicit form” [2]. This definition
distinguishes building information models from other
digital representations, which contain the information
only implicitly (scanned drawings or rendered imagery)
or as explicit geometry with implicit semantics (2D or 3D
CAD models). Traditional non-digital building information
exchange and storage was based on drawings and
documents, which are essentially visual representations.
Nowadays, the exchange and persistence happens in
digital, non-tangible, non-visual form — the visualizations
are then generated on the fly in dedicated software tools.
Thus, architects and engineers as the domain specialists
have rarely the possibility to create or change those
visualizations albeit the visualization of planned buildings
was traditionally one of their core competences. However,
visual representations and the active involvement in their
creation are important means to access and understand
the information. This is even more relevant, as the data
captured in digital form is of continuously growing
amount.

To reconstitute architects and engineers sovereignty
over the visual representations of the information they
produce, the author has, in previous work [3], proposed

https://doi.org/10.5334/jors.206
mailto:mail@helgatauscher.de

Tauscher: Billie. A Prototypical Framework for Building Information Model VisualizationArt. 18, p. 2 of 9

the use of configurable visualizations which are described
programmatically or with a dedicated domain specific
language (DSL). A generic visualization component would
then consume a visualization configuration together with
respective building information to produce a specific
visualization (Figure 1). These visualization configurations
could be reused across projects and exchanged between
parties involved in the planning process. They would
allow for visualization solutions tailored to specific tasks
and situations, for example to get a comprehensive
overview of design changes after receiving an amendment
for approval. The creation of a visualization configuration
is meant to be carried out by domain specialists, which
would thus be involved in the process of visualization
generation and encouraged to experiment with visual
representations and to re-explore their familiar field of
AEC visualizations under the new paradigm of digital
and interactive media. A use case study [4] identified four
application areas, where such configurable visualizations
could be particularly useful (communication, education,
exploration, and experimentation) and provides examples
for each area.

Although the idea of task-specific visual representations
for building information has already been proposed
in the early days of BIM, e.g. as so-called “monitors” [5],
there exist few implementations that provide a flexible
way to define such visualizations. Most commercial BIM
software applicatons provide only fixed visualizations
or arrangements of visualizations to switch between.
A notable exception is RIB iTwo which allows to specify
visualization properties such as colours through
expressions that query into the building model [6, 7].
Most researchers that target the visualization of BIM
models on a more general level recognize the need for
task- and domain-specific visualizations, but still include
only limited configurability in their solutions, e.g.
[8, 9]. Others extend the configurability to real-time and

promote adaptive visual representations that change after
the visualization was generated [10].

There is a growing body of research work that studies
the possibilities and limitations of computer visualization
in transcending traditional paper-based workflows. By
employing the computational power and the interactive
capabilities of computers, these visualization approaches
seek to not only represent the 3D geometry of a building
better than in paper-based approaches, but also include
key design parameters such as energy consumption
or structural resilience, as well as the process of the
building’s construction and construction management
related metrics. This way they hope to foster better
understanding and discovery of spatio-temporal relations
between objects and processes as well as critical points in
the building design and in the construction schedule.

Most of these attempts stay close to the realm of
experience by using visualization time to represent
construction schedules in addition to the 3D geometry and
enhance the resulting animation, e.g. with colours [11],
additional graphical elements for zones [12], or as-built
photographs [13]. Ivson et al. embark on a more
experimental strategy with a 4D visualization where the
3rd dimension of the not-yet-built part of the building is
partially sacrificed in favour of schedule information [14].
With the exception of the latter, where colour scales
can be customized to reflect task-specific metrics,
these prototypes do not consider configurations, but
instead develop one specific visualization type that is
optimized with regard to a concrete task and application
scenario. Although this paper does not focus on the
implementation of concrete novel visualizations, they can
serve as use case examples guiding the development of
a generic configurable solution in a bottom-up fashion.
As such the author has also investigated concrete more
experimental visualizations and their application in the
AEC context, e.g. anamorphic maps [15], hierarchical

Figure 1: Generic visualization component configurable through visualization specifications.

Tauscher: Billie. A Prototypical Framework for Building Information Model Visualization Art. 18, p. 3 of 9

edge bundles [16], and colour schemes for construction
progress monitoring [17].

Another strand of recent development in the area of
BIM visualization focusses on web viewers such as
BIMsurfer [18] or WeXplorer, the visualization part
of the xBIM project [19]. Since these developments
are open source, they can be modified, used for the
implementation of custom visualizations, or included into
custom developments, as opposed to the aforementioned
specialized visualizations, where neither source code
nor binary libraries are publicly available. However, also
these open source web viewers do not include runtime
configurability natively and require substantial software
development efforts to build custom visualization
applications with them.

The approach taken with this work seeks to
minimize required development efforts by providing
all functionality except the specification of the
visualization itself in a framework. This way developing a
visualization is more like writing a configuration and the
visualization specification constitutes additional input
to the framework that is consumed just like the building
information itself.

In order to verify the feasibility of the proposal, Billie
was implemented as a proof-of-concept prototype. In
parallel, use cases from the AEC sector have been studied
and implemented as sample visualization configurations
to complement the development of the prototype with
example cases, including both more traditional as well
as experimental use cases. Subsequently, Billie has been
used to study the integration of the visualization process
with other developments in construction informatics,
such as the multimodel [20, 21] and BIM filter
methods [22].

1.2 Implementation and architecture
The software prototype was implemented as a Java
desktop application and library. It can be used through
the standalone demo tool or be included into other
applications. The next section describes the standalone
usage before proceeding to the software architecture. For
more information on integration with other applications
please refer to Section 3.

1.2.1 Standalone usage
1.2.1.1 Installation
The standalone demo tool can be downloaded as a zip
file (billie-0.12.zip) from Github https://github.com/hlg/
billie/releases/tag/v0.12. Sample project data sets are
provided with the release (billie-data.zip). Please refer to
Section 1.3 for details about these data. To get started,
download both the demo tool and the sample data zip
files. Uncompress billie-0.12.zip into into a new directory
and billie-data.zip into a subdirectory data inside. Open a
command line and change into the new directory.

There are two ways to configure the visualization. For
example, the visualization in Figure 2 can be created
either using the precompiled configuration named IFC_3D
or the equivalent configuration expressed with a DSL in
file ifc_3d-color.vis. In this section, the two possibilities
are described for the preconfigured visualizations shipped
with the release. The creation of custom visualizations
for both approaches is described in Section 1.2.3. The
command-line interfaces (CLI) for the two types of
specifications are described in the next two sections.

1.2.1.2 Configuration runner
The configuration runner (de.tudresden.cib.vis.
sampleApps.ConfigurationRunner) loads a selected
precompiled visualization configuration CONFIGNAME
and applies it to a building information model loaded
from BIMFILE.
configurationrunner.bat [CONFIGNAME [BIMFILE]]
./configurationrunner.sh [CONFIGNAME [BIMFILE]]

If no BIMFILE is given, a file selection dialogue will prompt
for the respective input file or folder. If no CONFIGNAME
is given, all available configurations will be listed.

From the command prompt in the unzipped tool
directory call either the batch file (*.bat, on Windows)
or the shell file (*.sh, on Linux or MacOS). For example,
the following command (on Linux or MacOS) will use
the IFC_3D configuration and the IFC file from the
carport project data set and subsequently produce the
visualization shown in Figure 2.
./configrunner.sh IFC_3D data/carport.ifc

Hints on which configurations work together with which
input files can be found in Section 1.3.

Figure 2: Visualization result from applying the IFC3D configuration to the ifc file from the carport sample data set.

https://github.com/hlg/billie/releases/tag/v0.12
https://github.com/hlg/billie/releases/tag/v0.12

Tauscher: Billie. A Prototypical Framework for Building Information Model VisualizationArt. 18, p. 4 of 9

1.2.1.3 DSL runner
The DSL runner (de.tudresden.cib.vis.DSL.VisDSLRunner)
loads a visualization configuration from a DSL file
CONFIGNAME and applies it to a building information
model loaded from BIMFILE.
dslrunner.bat CONFIGFILE [BIMFILE]
./dslrunner.sh CONFIGFILE [BIMFILE]

If no BIMFILE is given, a file selection dialogue prompts
for the respective input file or folder.

For example, the following command will use the ifc_3d.
vis DSL specification and the IFC file from the carport
project data set and produce the visualization shown in
Figure 2.
./dslrunner.sh bisl/ifc_3d-color.vis data/carport.ifc

The DSL version of the visualization description is only
implemented as a very rough sketch in the current alpha
release and does not yet reflect the same functionality as
the precompiled visualization description version.

1.2.2 Architecture
The prototype implements a modular architecture
following the reference model of the visualization
pipeline [23]. The visualization pipeline breaks the
process of visualization generation into three successive
steps: In the first step, relevant data is selected from
the input and prepared for the following step. In the

second step, the data is mapped to a visualization
model. And finally in the third step, the image to be
shown to the user is derived from this model. Figure 3
depicts the modular architecture that results from
employing this reference model for configurable
visualizations.

Each and every pipeline step is covered by an abstract
class serving as a plugin point for modules that implement
the abstract class’ interface and thus are exchangeable.
This modular architecture realizes the adaptability of the
system towards different requirements: Exchangeable
data access modules allow for the adaptation to different
types of input data. Exchangeable modules on the
visualization side allow for the adaptation to different host
environments for the visualization. Implementations of
the central mapping step allow for different visualization
configurations to guide the construction of the
visualization. This central step plays a critical role because
it is here where the configurability of the visualization is
actually realized. Thus it is this part that is proposed to be
implemented as a DSL, which then does not have to be
precompiled, but will be parsed at runtime instead.

The generalizations on the two outer sides — the
visualization and data side — are realized to different
degrees, thus yielding different restrictions on the extent
to which the modules are exchangeable independently

Figure 3: Generic visualization component modular architecture.

Tauscher: Billie. A Prototypical Framework for Building Information Model Visualization Art. 18, p. 5 of 9

of the visualization configuration. On the visualization
side, a high level of generalization was possible building
on visualization ontologies [24], so that the modules can
be exchanged transparently as long as the implementing
visualization module provides the specific categories
of functionality required for the given visualization
configuration, such as 3-dimensionality or interaction. On
the data access side however, the generalization is only less
strict, since the advances and developments in the area
of BIM are still ongoing and the range of possible input
data is too heterogeneous to form simple categories. Thus
there is a tighter dependency between the visualization
configuration and the applicable data access module,
compared to the dependency between the visualization
configuration and the visualization module.

1.2.3 Custom Configurations
Both types of visualization configurations, precompiled
and DSL specifications, can be used to realize custom
task-specific visualizations. Complex visualizations
consisting of smaller parts defined with self-contained
configurations have been investigated [25], but have not
been implemented in Billie.

1.2.3.1 Precompiled specification
For precompiled specifications, the abstract class
de.tudresden.cib.vis.mapping.Configuration has to be
extended. In particular, the custom configuration has to
implement the config method. Inside the config method,
the custom configuration can then call the designated
configuration methods provided by the abstract class.
The most important of these provided methods is
addMapping (Condition condition, PropertyMap mapping),
which adds a mapping rule to be applied if a specific
condition is fulfilled. The following example shows the
implementation of the IFC_3D configuration used as an
example in Section 1.2.1.

In order to process this configuration in conjunction
with given input data (ifcUrl), the configuration has to be

instantiated together with a matching data accessor and
then be handed over to a mapper for the type of scene
that should be produced, e.g. a Java3D scene:

Configuration ifc3dconfig = new Ifc_3D();
DataAccessor ifcAccessor = new EMFIfcGeometric
 Accessor();
ifcAccessor.read(ifcUrl);
Mapper ifcJava3dMapper = Java3dBuilder.createMapper
 (ifcAccessor)
Scene scene = ifcJava3dMapper.map(ifc3dConfig).get
 Scene();

To allow for a compile time compatibility check of the
associated data accessor, mapper, scene graph, and
configuration, the respective abstract classes have
generified class and method signatures. However, due
to type erasure in Java, generics will fail in the case of
configurations specified by a DSL since these are only
loaded at runtime. Thus the generic class signature might
be replaced by some other mechanism in the future.

The Billie release includes a range of data accessors to
consume the provided sample data as well as scene builders
to generate respective scenes. These are listed below.

Data accessors:
• simple link-centred multimodel access
• grouped multimodel access
• GAEB access using the Eclipse Modelling Framework [26]

with or without hierarchy analysis
• EMF-based IFC access with or without external geom-

etry analysis and with or without external hierarchy
analysis

• EMF-based access to quantity take-offs
• EMF-based access to schedules
• iCalendar schedules

Scene builders:
• Draw2D: creates Eclipse Draw2D models
• Java2D: creates Java2D scenes
• Java3D: creates Java3D scenes
• Text: creates text output, for debugging

public class Ifc_3D extends Configuration<EMFIfcParser.EngineEObject, Condition<EMFIfcPar.EngineEObject>>
 public void config() {
 this.addMapping(new Condition<EMFIfcParser.EngineEObject>() {
 @Override
 public boolean matches(EMFIfcParser.EngineEObject data) {
 return data.getObject() instanceof IfcBuildingElement;
 }
 }, new PropertyMap<EMFIfcParser.EngineEObject, VisFactory3D.Polyeder>() {
 @Override
 protected void configure() {
 Geometry geometry = data.getGeometry();
 if(data.getObject() instanceof IfcSlab || data.getObject() instanceof IfcRoof){
 graphObject.setColor(200,0,0,0);
 } else {
 graphObject.setColor(128,128,128,150);
 }
 graphObject.setVertizes(geometry.vertizes);
 graphObject.setNormals(geometry.normals);
 graphObject.setIndizes(geometry.indizes);
 }
 });
 }
}

Tauscher: Billie. A Prototypical Framework for Building Information Model VisualizationArt. 18, p. 6 of 9

The generated scenes are intended for further usage in
custom applications. For convenience, the Billie release
provides simple viewers for Java3D and Draw2D, offering
a quick way to display the generated scenes. In addition, a
configurable Java3D loader is provided as well.

1.2.3.2 Building Information Style Language (BISL)
The Building information style language (BISL) is
proposed as a domain specific language (DSL) to specify
visualization configurations at runtime. A basic mapping
rule in BISL is specified by giving the type of the source
and target object, a condition and an initial mapping as
follows:

vt.rule(EngineEObject, Polyeder){
 condition {
 data.object instanceof IfcBuildingElement
 }
 initial {
 visual.vertices = data.geometry.vertices
 visual.normals = data.geometry.normals
 visual.indices = data.geometry.indices
 if (data.object instanceof IfcSlab)
 visual.color = [200,0,0,0]
 else
 visual.color = [128,128,128,150]
 }
}

The example specifies the same configuration as the
precompiled example given in Section 1.2.3.1. By comparing
the two listings, it can be seen that the DSL is merely a thin
layer over the underlying domain model of the mapping
rule specification as suggested by Fowler [27]. Details
about the proposed DSL for visualization configurations
including the main elements in Backus-Naur form (BNF)
can be found in the authors thesis, Chapter 5.5 [2].

Only very basic mapping with simple animation and
without interaction is implemented so far for the DSL
interpreter. The Billie release contains four sample
configurations (*.vis files).

1.3 Quality control
The software was tested with sporadic unit and integration
tests which do not provide comprehensive code coverage,
but are included in the Ant build scripts and thus executed
on every build. Functional testing was done based on use
case data described in the following.

A range of use cases from the AEC industry was
collected before and in parallel to the development of the
prototype. In the spirit of test-driven development, which
promotes the implementation of unit tests before any
actual implementation, these use cases served not only
as after-the-fact functional tests, but also to guide the
development of the prototypical implementation from
the very beginning. Each use case consists of a sample
data set from a building project and a visualization
configuration, both of which in combination determine
the resulting visualization. Both the building project data
sets and the visualization configurations were designed
to cover a broad and diverse range. Building project
data sets (D3, D4, D5, D6) vary from small, artificially
constructed demo projects to large buildings taken from

real world projects. Visualization configurations (V2, V4,
V5, V6) range from conventional visualizations, such as
coloured 3D representations, bar charts, and Gantt charts
to experimental visualizations, such as anamorphic maps
and hierarchical edge bundles.

D3) Carport: four columns and one slab
D4) One-family house: full construction, multimodel

with cost and schedule, implicit quantity-takeoff
D5) High-rise building: structural, core, shell,

 multimodel with cost, schedule, progress, quantity-
takeoff

D6) Airport building: structural, core, shell,
 multimodel with cost, schedule, progress, quantity-
takeoff

V2) Elementary 3D models, bar charts, Gantt charts
V4) Simple multimodel visualizations
V5) Link visualization with HEBs
V6) Progress control visualization

In Table 1, all those cases which can be reproduced with
the current Billie prototype are listed in an adjacency
matrix of input data sets and visualization configurations.
The full list of considered cases contains further project
data sets and configurations which can not yet be used
within Billie [2].

To systematically test the implemented use cases, a set
of sample project data is provided from the project site
http://hlg.github.io/billie, covering the cases D3, D4,
D5, and D6 listed above. Visualization configurations
are shipped as precompiled configurations with the
release. The script (functional.sh for Linux, functional.
bat for Windows) contained in the Billie release lists all
implemented pairs of these building project data sets and
visualization configurations. It can be used to copy the
command for a single combination and run this particular
combination as a functional test. To run the functional
test script semi-automatically with all combinations,
the sample data is supposed to be unzipped into a data
folder relative to the script. When running the test suite
this way, each visualization is produced and displayed for
examination and has to be closed manually before the
script proceeds to the next case.

The testing was carried out under Ubuntu 12.04 LTS
and Windows 7. No further measurement of memory and
processor load has been done.

Table 1: Use cases as a combination of input data (rows)
and visualization configuration (columns).

V2 V4 V5 V6

D3 x x x –

D4 x x x x

D5 x x – –

D6 x x x x

http://hlg.github.io/billie

Tauscher: Billie. A Prototypical Framework for Building Information Model Visualization Art. 18, p. 7 of 9

(2) Availability
2.1 Operating system
Since Billie runs in the Java Virtual Machine, it is
operation system independent, though the Java Runtime
Environment needs to be installed. Testing was carried out
on Windows 7 and Ubuntu 12.04 LTS. Native libraries are
included in the release for 32- and 64-bit Windows, Linux,
and MacOS system.

2.2 Programming language
Billie is implemented in Java 7 and Groovy.

2.3 Additional system requirements
Memory, disk and processor requirements depend on
the size of the input data, which can be demanding for
real-world construction projects with detailed geometry.
The sample configurations are optimized for a screen
width in the range of around 1000 pixels. For interactive
visualizations a pointing device (e.g. a mouse) is
required.

2.4 Dependencies
In the release, all dependencies needed for running the
test cases are included. They are also sufficient to create
custom configurations with the building information
input types and scene graph target types listed in
Section 1.2.3. Most dependencies are encapsulated in
exchangeable modules. Dependencies are managed
with Apache Ivy, the ivy.xml file in each module provides
a detailed list of dependencies. The reminder of this
section provides an excerpt from these files as compact
overview.

Core modules:
• vis: Guava
• vis.DSL: Groovy

Data modules:
• vis.data.bimserver: Opensource BIMserver, EMF Ecore
• vis.data.jsdai: CIB BIMfit
• vis.data.mmqlserver: M2A2 MMQL
• vis.data.multimodel: CIB Multimodel, Mefisto

GAEB/QTO/risk/schedule, EMF, ICal4J, Opensource
 BIMserver, JUnit

Visualization modules:
• vis.runtime.draw2d, vis.scene.draw2d: Eclipse Draw2D
• vis.runtime.java3d, vis.scene.java3d: Java3D

Sample applications:
• vis.sampleApps: Eclipse SWT
• vis.swingApp: Groovy Swing

Throughout the modules, also Apache Commons.IO,
SLF4J, and JUnit are used.

2.5 List of contributors
Billie was created by Helga Tauscher as a research assistant
at TU Dresden.

2.6 Software location
2.6.1 Archive

Name: Zenodo
Identifier: https://doi.org/10.5281/zenodo.1059067
Licence: GPL v2
Publisher: Helga Tauscher
Version published: v0.12
Date published: 28/04/18

2.6.2 Code repository
Name: Github
Identifier: http://github.com/hlg/billie
Date published: 19/02/18 (alpha v0.12)

2.7 Language
Java and Groovy

(3) Reuse potential
The software could be reused for research and
development of use case specific construction
visualizations from two possible perspectives. On one
hand, as a prototyping framework it can facilitate research
about the development and application of new interactive
visualization methods in the field of AEC. For example it
could be used to test the application of visual analytics
methods in construction engineering. This approach
seems promising to manage huge amounts of building
data and keep it consistent during project time. Keim et
al. [28] provide a research agenda for this emerging field.
This type of research would focus on the visualizations
themselves and strive to develop novel forms of visual
representation.

On the other hand, it can aid other research on topics
from the field of construction informatics that are
not inherently visual, by providing a means to create
visualizations for the research subjects to make them
more tangible. Research approaches often introduce new
conceptual models of the subject, which may imply a
new domain view of the data or even information models
with enhanced data. Naturally, for such novel domain
models there might not yet be adequate support in
existing software including visual representation. Billie
could then be integrated in other research prototypes
as a visualization component. Examples for this kind of
non-visual research topics include e.g. computational
fluid dynamics, risk analysis, and other simulations, or
information management issues such as multimodels and
filters.

The technical preconditions for reuse are given through
the modular architecture. The creation of customized
visualizations is described in Section 1.2.3. Using Billie
simplifies the development process as opposed to from-
scratch development, because existing data access and
scene building modules (listed in Section 1.2.3) can
be reused as a framework that handles and hides some
aspects of the underlying libraries and thus facilitates
rapid visualization prototyping. In addition, the included
visualization runtime environments can be used for the
quick instantiation of default viewer components.

https://doi.org/10.5281/zenodo.1059067
http://github.com/hlg/billie

Tauscher: Billie. A Prototypical Framework for Building Information Model VisualizationArt. 18, p. 8 of 9

In case of new requirements in terms of the input data
or the application runtime context, new data accessors
and scene builders can be implemented and plugged into
the system. To achieve this, the following classes would
have to be extended or implemented:

• de.tudresden.cib.vis.data.DataAccessor
• de.tudresden.cib.vis.scene.VisBuilder
• de.tudresden.cib.vis.scene.VisFactory2D/VisFactory3D
• de.tudresden.cib.vis.scene.UIContext

The modules prefixed with vis.data (for data accessors)
and vis.scene (for scene builders) contain existing
implementations or extensions and can serve as examples
or starting points for custom developments.

Acknowledgements
I would like to acknowledge the support of Raimar J.
Scherer, who provided the research environment to
develop this software and acted as a mentor for the
theoretical framework. I would also like to acknowledge
the input and feedback I received from Sebastian Fuchs
and Alexander Wülfing on the integration of Billie with
the multimodel framework M2A2 and the filter library
BIMfit.

Competing Interests
The author has no competing interests to declare.

References
1. buildingSMART 2018 Technical vision: About BIM

[Internet]. Available from: https://www.buildingsmart.
org/standards/technical-vision.

2. Tauscher, H 2017 Configurable nD-visualization for
complex building information models [PhD thesis]. TU
Dresden.

3. Tauscher, H and Scherer, R J 2016 Billie: An extendible
framework for the configurable visualization of
information models. In: Emmitt, S and Adeyeye, K
(eds.), Proceedings of the ID@50 Integrated Design
Conference, 111–24. Bath, UK.

4. Tauscher, H and Scherer, R J 2014 Use cases for
configurable building information model visualization.
In: Fusion (ECAADE 32), 485–94. Newcastle, UK.

5. Liebich, T 1993 Wissensbasierter Architekturentwurf:
Von den Modellen des Entwurfs zu einer
intelligenten Computerunterstützung [PhD thesis].
Bauhausuniversität Weimar.

6. Demharter, J and Scherer, R J 2014 Visuelle Prüfung
und Vergleich von Multimodellen. In: Scherer, R J and
Schapke, S-E (eds.), Informationssysteme im Bauwesen
1: Modelle, Methoden und Prozesse [Internet], 483–502.
Berlin: Springer. DOI: https://doi.org/10.1007/978-3-
642-40883-0_20

7. RIB Software SE 2017 iTwo 4.0: Cloud-based 5D BIM
enterprise solution [Internet]. Available from: http://
www.itwo.com/en/5d-bim-enterprise-platform-
itwo-4-0.

8. Boton, C, Kubicki, S and Halin, G 2013 Designing
adapted visualization for collaborative 4D applications.

Automation in Construction, 36: 152–67. DOI: https://
doi.org/10.1016/j.autcon.2013.09.003

9. Kuo, C-H, Tsai, M-H and Kang, S-C 2011 A framework
of information visualization for multi-system
construction. Automation in Construction, 20: 247–62.
DOI: https://doi.org/10.1016/j.autcon.2010.10.003

10. Altenburger, T, Guerriero, A, Vagner, A and
Martin, B 2010 Toward adaptive context-aware user
interfaces for better usability and productivity in AEC
collaborative tasks. In: Proceedings of the CIB W78
2010: 27th international conference. Cairo, Egypt.

11. Chang, H-S, Chih-Chung, K and Po-Han, C 2009
Systematic procedure of determining an ideal
color scheme on 4D models. Advanced Engineering
Informatics, 23: 463–73. DOI: https://doi.
org/10.1016/j.aei.2009.05.002

12. Haque, M E and Rahman, M 2009 Time-space-activity
conflict detection using 4D visualization in multi-storied
construction project. In: Visual informatics: Bridging
research and practice, first International Visual Informatics
Conference (IVIC), 266–78. Kuala Lumpur, Malaysia.

13. Golparvar-Fard, M, Peña-Mora, F, Arboleda, C A
and Lee, S 2009 Visualization of construction progress
monitoring with 4D simulation model overlaid on
time-lapsed photographs. Journal of Computing in
Civil Engineering, 23: 391–404. DOI: https://doi.
org/10.1061/(ASCE)0887-3801(2009)23:6(391)

14. Ivson, P, Nascimento, D, Celes, W and Barbosa,
S D 2018 CasCADe: A novel 4D visualization system
for virtual construction planning. IEEE Transactions on
Visualization & Computer Graphics, 24: 687–97. DOI:
https://doi.org/10.1109/TVCG.2017.2745105

15. Tauscher, H and Scherer, R J 2011 Area cartograms
in building product model visualization: A case study
on the presentation of non-spatial object properties in
spatial context with anamorphic maps. In: Respecting
fragile places (ECAADE 29), 444–50. Ljubljana,
Slovenia.

16. Tauscher, H and Scherer, R J 2013 Utilizing
hierarchical edge bundles in multi model
visualization. In: Suter, G, Wilde, P and de Rafiq, Y
(eds.), EG-ICE 2013: 20th International Workshop:
Intelligent Computing in Engineering, 351–60. Vienna
University of Technology.

17. Tauscher, H and Scherer, R J 2013 Applied
visualization methods for building information
models with heterogeneous sources. In: Envisioning
Architecture: Design, Evaluation, Communication
Conference (EAEA11), 93–100. Milan, Italy.

18. bimsurfer.org 2011 BIMsurfer: Open Source WebGL
viewer for IFC models [Internet]. Available from:
http://bimsurfer.org.

19. Steve Lockley, C B and Černý, M. Xbim.Essentials:
A library for interoperable building information
applications. The Journal of Open Source Software,
2: 473.

20. Fuchs, S and Scherer, R J 2017 Multimodels:
Instant nD-modeling using original data. Automation
in Construction, 75: 22–32. DOI: https://doi.
org/10.1016/j.autcon.2016.11.013

https://www.buildingsmart.org/standards/technical-vision
https://www.buildingsmart.org/standards/technical-vision
https://doi.org/10.1007/978-3-642-40883-0_20
https://doi.org/10.1007/978-3-642-40883-0_20
http://www.itwo.com/en/5d-bim-enterprise-platform-itwo-4-0
http://www.itwo.com/en/5d-bim-enterprise-platform-itwo-4-0
http://www.itwo.com/en/5d-bim-enterprise-platform-itwo-4-0
https://doi.org/10.1016/j.autcon.2013.09.003
https://doi.org/10.1016/j.autcon.2013.09.003
https://doi.org/10.1016/j.autcon.2010.10.003
https://doi.org/10.1016/j.aei.2009.05.002
https://doi.org/10.1016/j.aei.2009.05.002
https://doi.org/10.1061/(ASCE)0887-3801(2009)23:6(391)
https://doi.org/10.1061/(ASCE)0887-3801(2009)23:6(391)
https://doi.org/10.1109/TVCG.2017.2745105
http://bimsurfer.org
http://bimsurfer.org
https://doi.org/10.1016/j.autcon.2016.11.013
https://doi.org/10.1016/j.autcon.2016.11.013

Tauscher: Billie. A Prototypical Framework for Building Information Model Visualization Art. 18, p. 9 of 9

21. Tauscher, H and Scherer, R J 2016 Divide and conquer,
mix and match. a top–down and bottom–up approach
to building information visualization. In: Complexity &
simplicity (ECAADE 34), 611–20. Oulu, Finland.

22. Wülfing, A, Windisch, R and Scherer, R J 2014 A
visual BIM query language. In: Proc 10th European
Conference On Product And Process Modelling
(ECPPM), 157–64. Vienna, Austria. DOI: https://doi.
org/10.1201/b17396-30

23. Haber, R B and McNabb, D A 1979 Visualization
idioms: A conceptual model for scientific visualization
systems. In: Nielson, G M, Shriver, B and Rosenblum,
L J (eds.), Visualization in scientific computing. Los
Alamitos, CA: IEEE Computer Science Press.

24. Voigt, M and Polowinski, J 2011 Towards a
unifying visualization ontology [Internet]. TU

Dresden. Available from: http://nbn-resolving.de/
urn:nbn:de:bsz:14-qucosa-67559.

25. Tauscher, H and Scherer, R J 2015 Specification
of complex visualization configurations using
hierarchically nested mapping rule sets. ITcon
[Internet], 20: 40–50. Available from: http://www.
itcon.org/2015/3.

26. The Eclipse Foundation 2018 Eclipse Modelling
Framework (EMF) [Internet]. Available from: http://
www.eclipse.org/modeling/emf.

27. Fowler, M 2010 Domain-specific languages. Boston:
Addison-Wesley.

28. Keim, D, Kohlhammer, J, Ellis, G and Mansmann,
F (eds.) 2010 Mastering the Information Age: Solving
Problems with Visual Analytics. Goslar: Eurographics
Association.

How to cite this article: Tauscher, H 2018 Billie. A Prototypical Framework for Building Information Model Visualization.
Journal of Open Research Software, 6: 18. DOI: https://doi.org/10.5334/jors.206

Submitted: 26 November 2017 Accepted: 29 April 2018 Published: 18 May 2018

Copyright: © 2018 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

https://doi.org/10.1201/b17396-30
https://doi.org/10.1201/b17396-30
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-67559
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-67559
http://www.itcon.org/2015/3
http://www.itcon.org/2015/3
http://www.eclipse.org/modeling/emf
http://www.eclipse.org/modeling/emf
https://doi.org/10.5334/jors.206
http://creativecommons.org/licenses/by/4.0/

	(1) Overview
	1.1 Introduction
	1.2 Implementation and architecture
	1.2.1 Standalone usage
	1.2.1.1 Installation
	1.2.1.2 Configuration runner
	1.2.1.3 DSL runner

	1.2.2 Architecture
	1.2.3 Custom Configurations
	1.2.3.1 Precompiled specification
	1.2.3.2 Building Information Style Language (BISL)

	1.3 Quality control

	(2) Availability
	2.1 Operating system
	2.2 Programming language
	2.3 Additional system requirements
	2.4 Dependencies
	2.5 List of contributors
	2.6 Software location
	2.6.1 Archive
	2.6.2 Code repository

	2.7 Language

	(3) Reuse potential
	Acknowledgements
	Competing Interests
	References
	Figure 1
	Figure 2
	Figure 3
	Table 1

